初三物理人教版力和机械知识点总结

更新时间:2023-05-13 17:26:01 阅读量: 实用文档 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

123

人教版力和机械知识点总结

弹力 弹簧测力计

一、弹力

物体由于弹性形变而产生的力叫弹力。

1、物体受力发生形变,不受力时又恢复原来的形状的特性叫弹性。(如轻压直尺它发生形变,撤去压力,直尺恢复原状;把橡皮筋拉长,松手后,橡皮筋又恢复原状;压缩弹簧,松手后,弹簧也能恢复原状等等)

2、物体形变后不能自动恢复原来的形状的特性叫塑性。(如橡皮泥用力捏后松手它不能恢复原状;面团用力握后松手它也不能恢复原状)

3、任何物体只要发生弹性形变,就一定会产生弹力。(如书放于桌面,书和桌子都发生了弹性形变,只不过这种形变量很小,我们不易观察,那么书和桌子之间就存在着相互作用的弹力,我们平常称它们为压力和支持力。)我们平时说的压力、支持力、拉力、弹力、张力等等都是由于物体发生弹性形变而产生的,这些力实质上都是弹力。

4、弹力产生于直接接触的物体之间,并以物体产生弹性形变为先决条件,不相互接触的物体之间是不会发生弹力作用的。

二、弹簧测力计

1、原理:弹簧受到的拉力越大,它的伸长就越长。

弹簧测力计只有在弹性形变范围内,它的伸长量才跟它受到的拉力成正比。如果超出弹性形变范围,它就要损坏。

2、使用方法

(1)使用前观察:指针是否指零刻线、量程、分度值。

(2)使用时注意

①不要超过它的量程。

②拉动时要避免与外壳摩擦,以免影响测量的准确程度(尽量保证弹簧测力计内弹簧伸长的方向与所测得力在同一条直线上,即可避免上述摩擦)。

③读数时,视线要与刻度板表面垂直。

重力

一、重力的概念

宇宙间任何两个物体之间都存在互相吸引的力,这就是万有引力。大到天体之间,小到灰尘之间,以及地球与它附近的物体之间都存在万有引力。万有引力的大小与物体的质量有关,正是万有引力把地球和其他行星束缚在太阳系中,围绕太阳运转。

我们把由于地球的吸引而使物体受到的力,叫重力。重力符号为G,单位为N。

1、地球附近的一切物体,无论是固体、液体还是气体,都受到地球的吸引。重力通常叫做重量。

2、由于物体间力的作用是相互的,地球吸引物体的同时,其他物体对地球也有吸引作用,而重力特指地球对其他物体的吸引力。

3、重力的施力者是地球,受力者是物体。

4、我们身边的物体,质量比太阳、行星、月球小得多,它们之间的万有引力非常小,小到我们

123

不能察觉,比起地球对它的重力来说,就可以忽略不计了。

二、重力的三要素

1、重力的大小

(1)物体所受重力的大小与质量成正比,其关系为G g或G mg,g=9.8N/kg。 m

(2)重力的大小可用弹簧测力计测出。 G注意: g(或G mg)中的g为重力与质量的比例常数,数值为9.8N/kg,意思是在地面附m

近质量为1kg的物体,受到的重力是9.8N。

在粗略计算时g可取10N/kg。

利用G mg计算时,要注意式中各量的单位,m的单位是kg,g的单位是N/kg,G的单位是N。

2、重力的方向

由于重力作用的效果是将物体拉向地面,因此重力的方向总是竖直向下的。

利用重力的方向总是竖直向下的这一特性,可以制成重垂线来检查墙壁是否竖直,也可以在水平仪上悬挂一个重垂线,检查物体表面是否水平。

3、重力的作用点

重力在物体上的作用点叫重心。

(1)重心的位置

物体的重心位置与物体的形状、材料是否均匀有关。对于材料均匀、形状规则的物体、重心在它的几何中心上;例如均匀细棒的重心在棒的中点,均匀球的重心在它的球心。

(2)重力与质量的区别和联系

重力虽与质量有关,但它与质量是完全不同的两个概念。它们的区别是本质上的,绝不可混为一

摩擦力

一、摩擦力

1、定义:两个互相接触的物体,当它们做相对运动时,在接触面上会产生一种阻碍相对运动的

123

力,这种力叫做摩擦力。

2、产生的条件:(1)两个物体要相互接触;(2)两物体要发生相对运动趋势;(3)两物体之间要有正压力。

3、作用效果:阻碍物体间的相对运动。

4、方向:与物体相对运动方向相反。

5、施力物体:是相互接触的物体。

6、摩擦的种类:滑动摩擦、滚动摩擦等。

(1)滑动摩擦是指一个物体在另一个物体表面上滑动时产生的摩擦;滚动摩擦是指一个物体在另一个物体表面上滚动时产生的摩擦。

(2)滚动摩擦是比较复杂的物理现象,不能称作滚动摩擦力。

(3)在压力相同的情况下,滚动摩擦比滑动摩擦小得多。

(4)还有一种摩擦叫静摩擦。两个相互接触哦物体,在外力作用下有相对运动趋势而又保持相对静止时,在接触面间产生的摩擦力叫静摩擦力。如推桌子却没推动,这时在桌子与地面间就产生了静摩擦,它阻碍了桌子与地面间的相对运动趋势,其方向总是与物体相对运动趋势的方向相反,由于物体仍保持静止状态,所以静摩擦力总与外力平衡,当外力逐渐增大时(但物体仍没有运动起来),静摩擦力也随之增大。当外力增大到某一程度物体运动起来后,在接触面间产生的就不再是静摩擦力。

二、滑动摩擦力大小的决定因素

1、跟压力大小有关:在其他条件相同时,压力越大,滑动摩擦力越大。

2、跟接触面的粗糙程度有关:压力一定时,接触面越粗糙,滑动摩擦力越大。

注意:这里采用的研究方法叫控制变量法。这种方法在今后的学习中经常采用。

物体在水平拉力F运动,拉力F和摩擦力F即F′=F三、增大和减小摩擦的方法

1、增大有益摩擦的方法:使接触面粗糙、增大压力。例如在汽车轮胎上刻上花纹,以防打滑;啤酒瓶颈握在手中时,如果要下滑,我们只有握得更紧就不会再滑。这两种方法前者就是使接触面粗糙,后者则是增大压力。

2、减小有害摩擦的方法:减小压力,使接触面变得光滑些;用滚动代替滑动;使相互接触的表面分开(如加润滑油和用压缩空气或电磁场使摩擦面脱离接触)。

杠杆

一、杠杆

1、定义:一根硬棒,在力的作用下能绕着固定点转动,这根硬棒就叫杠杆。

(1)“硬棒”不一定是棒,泛指有一定长度的,在外力作用下不变形的物体。

(2)杠杆可以是直的,也可以是任何形状的。

2、杠杆的七要素

(1)支点:杠杆绕着转动的固定点,用字母“O”表示。它可能在棒的某一端,也可能在棒的中间,在杠杆转动时,支点是相对固定的。

(2)动力:使杠杆转动的力,用“F1”表示。

(3)阻力:阻碍杠杆转动的力,用“F2”表示。

(4)动力作用点:动力在杠杆上的作用点。

123

(5)阻力作用点:阻力在杠杆上的作用点。

(6)动力臂:从支点到动力作用线的垂直距离,用“l1”表示。

(7)阻力臂:从支点到阻力作用线的垂直距离,用“l2 ”表示。

注意:无论动力还是阻力,都是作用在杠杆上的力,但这两个力的作用效果正好相反。一般情况下,把人施加给杠杆的力或使杠杆按照人的意愿转动的力叫做动力,而把阻碍杠杆按照需要方向转动的力叫阻力。

力臂是点到线的距离,而不是支点到力的作用点的距离。力的作用线通过支点的,其力臂为零,对杠杆的转动不起作用。

3、杠杆示意图的画法:(1)根据题意先确定

支点O;(2)确定动力和阻力并用虚线将其作用线

延长;(3)从支点向力的作用线画垂线,并用l1和

l2分别表示动力臂和阻力臂。如图所示,以翘棒为例。

第一步:先确定支点,即杠杆绕着哪一点转动,用字母“O”表示。如图甲所示。

第二步:确定动力和阻力。人的愿望是将石头翘起,则人应向下用力,画出此力即为动力用“F1”表示。这个力F1作用效果是使杠杆逆时针转动。而阻力的作用效果恰好与动力作用效果相反,在阻力的作用下杠杆应朝着顺时针方向转动,则阻力是石头施加给杠杆的,方向向下,用“F2”表示如图乙所示。

第三步:画出动力臂和阻力臂,将力的作用线正向或反向延长,由支点向力的作用线作垂线,并标明相应的“l1”“l2”, “l1”“l2”分别表示动力臂和阻力臂,如图丙所示。

1、杠杆的平衡:当杠杆在动力和阻力的作用下静止时,我们就说杠杆平衡了。

2

(1)首先调节杠杆两端的螺母,使杠杆在水平位置平衡。如图所示,当杠杆在水平位置平衡时,力臂l1和l2恰好重合,这样就可以由杠杆上的刻度直接读出力臂食物大小了,而图甲杠杆在倾斜位置平衡,读力臂的数值就没有乙方便。由此,只有杠杆在水平位置平衡时,我们才能够直接从杠杆上读出动力臂和阻力臂的大小,因此本实验要求杠杆在水平位置平衡。

(2)在实验过程中绝不能再调节螺母。因为实验过程中再调节平衡螺母,就会破坏原有的平衡。

3、杠杆的平衡条件:动力×动力臂=阻力×阻力臂,或F1l1=F2l2。

杠杆如果在相等时间内能转过相等的角度,即匀速转动时,也叫做杠杆的平衡,这属于“动平衡”。而杠杆静止不动的平衡则属于“静平衡”。

三、杠杆的应用

1、省力杠杆:动力臂l1>阻力臂l2,则平衡时F1<F2,这种杠杆使用时可省力(即用较小的动

123

力就可以克服较大的阻力),但却费了距离(即动力作用点移动的距离大于阻力作用点移动的距离,并且比不使用杠杆,力直接作用在物体上移动的距离大)。

2、费力杠杆:动力臂l1<阻力臂l2,则平衡时F1>F2,这种杠杆叫做费力杠杆。使用费力杠杆时虽然费了力(动力大于阻力),但却省距离(可使动力作用点比阻力作用点少移动距离)。

3、等臂杠杆:动力臂l1=阻力臂l2,则平衡时F1=F2,这种杠杆叫做等臂杠杆。使用这种杠杆既不省力,也不费力,即不省距离也不费距离。

既省力又省距离的杠杆时不存在的。

其他简单机械

一、滑轮

1

因此可看作是能够连续旋转的杠杆,仍可以用杠杆的平衡条件来分析。

根据使用情况不同,滑轮可分为定滑轮和动滑轮。

2、定滑轮

(1)定义:工作时,中间的轴固定不动的滑轮叫定滑轮。如下左图所示。

(2)实质:是个等臂杠杆。(如下中图所示)

轴心O点固定不动为支点,其动力臂和阻力臂都等于圆的半径r,根据杠杆的平衡条件:,可知,因为重物匀速上升可知,则,不省力。

(3)特点:不省力,但可改变力的方向。 S=h

所谓“改变力的方向”是指我们施加某一方向的力(图中F1方向向下)能得到一个与该力方向不同的力(图中得到使重物G上升的力)。

(4)动力移动的距离与重物移动的距离相等。(如上右图所示)

对于定滑轮来说,无论朝哪个方向用力,

G。(不计绳重和摩擦)

3、动滑轮

(1)定义:工作时,轴随重物一起移动的滑轮叫动滑轮。

123

(2)实质:是个动力臂为阻力臂二倍的杠杆。(如上中图所示)

图中O可看作是一个能运动的支点,其动力臂l1=2r ,阻力臂l2=r,根据杠杆平衡条件:F1l1=F2l2,

11即F1·2r=F2·r,得出F1 F2,当重物竖直匀速向上时,F2=G,则F1 G。 22

(3)特点:省一半力,但不能改变力的方向。

(4)动力移动的距离是重物移动距离的2倍。(如上右图所示)

对于动滑轮来说:

(1)动滑轮在移动的过程中,支点也在不停地移动;

(2)动滑轮省一半力的条件是:动滑轮与重物一起匀速移动;动力F1的方向与并排绳子平行;不计动滑轮重、绳重和摩擦。

二、滑轮组

1、定义:由若干个定滑轮和动滑轮匹配而成。

2、特点:可以省力,也可以改变力的方向。使用滑轮组时,有几段绳子吊着物体,提起物体所1用的力就是物重的几分之一,即F G物(条件:不计动滑轮、绳重和摩擦)。 n

1注意:如果不忽略动滑轮的重量则:F G物 G滑 n

3、动力移动的距离s和重物移动的距离h的关系是:使用滑轮组时,滑轮组用n段绳子吊着物体,提起物体所用的力移动的距离就是物体移动距离的n倍,即s=nh。如下图所示。(n表示承担物重绳子的段数)

4、绳子端的速度与物体上升的速度关系:V绳 nV物

n=2 n=3 111111F G总 F G总 F G总 F G总 F G总 F G总 233445

s=2h s=3h s=3h s=4h s=4h s=5h

A B C D E F

14、滑轮组的组装:(1).根据F G的关系,求出动滑轮上绳子的段数n;(2)确定动滑轮的n

个数;(3)根据施力方向的要求,确定定滑轮个数。确定定滑轮个数的原则是:一个动滑轮应配置

123

一个定滑轮,当动滑轮上为偶数段绳子时,可减少一个定滑轮,但若要求改变力的作用方向时,则应在增加一个定滑轮。在确定了动、定滑轮个数后,绳子的连接应遵循“奇拴动、偶拴定”的规则,由内向外缠绕滑轮。

三、轮轴 1、定义:由两个半径不同的轮子固定在同一转轴的

装置叫做轮轴。半径较大的轮叫轮,半径较小的轮叫轴。

2、实质:轮轴可看作是杠杆的变形。如右图所示。

3、特点:当把动力施加在轮上,阻力施加在轴上, 则动力臂l1=R,阻力臂l2=r,根据杠杆的平衡条件:F1l1=F2l2,

即FR=F,∴F12r,∵R>r1<F2

四、斜面

(1)如图所示斜面是一种可以省力的简单机械,但却费距离。

(2)如上图所示:当斜面高度h一定时,斜面L越长,越省力(即F越小);

当斜面长L相同时,斜面高h越小,越省力(即F越小)当斜面L越长,斜面高h越小时,越省力(即F越小)。

本文来源:https://www.bwwdw.com/article/jxge.html

Top