医用高数课后习题答案

更新时间:2024-01-24 13:15:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

医用高等数学习题解答(第1,2,3,6章) - 1 -

第一章 函数、极限与连续习题题解(P27)

一、判断题题解

1. 正确。设h(x)=f(x)+f(?x), 则h(?x)= f(?x)+f(x)= h(x)。故为偶函数。 2. 错。y=2lnx的定义域(0,+?), y=lnx2的定义域(??,0)∪(0,+?)。定义域不同。 3. 错。limx?01???。故无界。 2x4. 错。在x0点极限存在不一定连续。 5. 错。lim?x???1?0逐渐增大。 x6. 正确。设limf(x)?A,当x无限趋向于x0,并在x0的邻域内,有A???f(x)?A??。

x?x07. 正确。反证法:设F(x)=f(x)+g(x)在x0处连续,则g(x) =F(x)?f(x),在x0处F(x),f(x)均连续,从而g(x)在x=x0处也连续,与已知条件矛盾。 8. 正确。是复合函数的连续性定理。

二、选择题题解

1. f(x)?x2,?(x)?2x,f[?(x)]?2x2. y=x (C)

??2?22x (D)

1?0 (A)

x?0x1xsinx?0 (B) 4. limx?0cosx3. limxsin5. ?limf(x)?lim?(3x?1)?2, lim?f(x)?lim?(3?x)?2, ?limf(x)?2?f(1) (B) ?x?1x?1x?1x?1x?16. 9?x?0?x?3 (D)

7. 画出图形后知:最大值是3,最小值是?10。 (A)

8. 设f(x)?x?x?1,则f(1)??1,f(2)?13,f(x)连续,由介质定理可知。 (D)

42三、填空题题解

1. 0?x?1?2?1?x?3

医用高等数学习题解答(第1,2,3,6章) - 2 -

2. y?arctan(x)是奇函数,关于原点对称。 3. ??312?,T??6?。

?34. x??y,可以写成y??x。

t2?1t?12?lim2? 5. 设x?t,x?1,t?1,lim3t?1t?1t?1t?t?1366. arctanx??2有界,lim1?0,故极限为0。 x??xx2?4x?2?lim?4 7. limx?2sin(x?2)x?2sin(x?2)x?28. x?ax?b?(1?x)(?x?c)?x?(c?1)x?c?b?c,a??(c?1),而lim(?x?c)?5,得c=6, 从而

x?122b=6, a=?7。

1x1?sinx??sinxx9. lim(1?sinx)?lim(1?sinx)x?0x?0?e?1

tan2xsin2xsin2x5x122?lim?lim????

x?0sin5xx?0cos2x?sin5xx?02xsin5xcos2x55u11?lim??1 11. 设u=ex?1,lim1u?0ln(1?u)u?0lneln(1?u)u10. lim12. 由x?0处连续定义,lim?(a?x)?a?lim?e?1,得:a=1。

x?0x?0x四、解答题题解 1. 求定义域 (1) ??x??x?0x?0, 定义域为[1,??)和x=0 ???x?0?x(x?1)?0?x?1?1??4?x?6(2) ?5????5?x?5?定义域为[?4,5]

?2?25?x?0?(3) 设圆柱底半径为r,高为h,则v=?r2h, h?v?2v?2S?2?r?2?rh?2,则罐头筒的全面积??r??,

r??r2?其定义域为(0,+?)。

2(4) 经过一天细菌数为N1?N0?N0r?N0(1?r),经过两天细菌数为N2?N1?N1r?N1(1?r)?N0(1?r),故

医用高等数学习题解答(第1,2,3,6章) - 3 -

x经过x天的细菌数为N?N0(1?r),其定义域为[0,+?)。

2. f(x)?ux?2?2?2a?b?2??4,f(a?b)? (a?b??1)。 ,f(?2)??2?1a?b?1x?133. y?e,u?v,v?sint,t?1。 x4. 证明:f[x(x?1)]?lnx(x?1)?lnx?ln(x?1)?f(x)?f(x?1)。

?(t?1)2 , 0?t?1?1?(t?1)2 , 1?t?2??5. 令x+1=t, 则x=t?1。f(x?1)?f(t)??,所以:

2(t?1) , 1?t?1?22(t?1) , 2?t?3???(x?1)2 , 1?x?2f(x)??。

2(x?1) , 2?x?3?6. 求函数的极限

12n?14(1) 原式=lim1?1/2?。

n??11?n?1331?1/31?(2) 原式=lim??1???n????1?1??11?1????1lim1?=????????1。 ??????n???2??23??n?1??nn?1??3?(1?x?x2)(1?x)(2?x)2?xlim?lim?1。 (3) 原式=lim=

x?1x?1(1?x)(1?x?x2)x?11?x?x21?x3?2?2???33(4) 原式=lim??n?3。

n???2????1?3?2sin2xsinxsin2xsinx=(P289常见三角公式提示) lim4???4。

x?0x?0x22xx1arcsinxarctanxarcsinxt??lim?1 (6) 原式=lim,令arcsinx?t,则sint?x,limx?0t?0sint2x?0xxxarctanxtt1?lim?lim?cost?1,原式=。 令arctanx?t,则tant?x,limx?0t?0tantt?0sintx2(5) 原式=lim(7) 原式=lim1?3tanxx?0n?2?1?33tan2x?2=?lim1?3tanx?x?0??13tan2x??= e3。 ?3(8) 原式=lim?1??x???2??2x?1?2x?1?2?122x?1?1??2?2?2????=?lim?1??lim?1?= e2。 ????x???2x?1??x???2x?1???2医用高等数学习题解答(第1,2,3,6章) - 4 -

?x?sinx?2?xsinx??(9) 原式=lim=2limx?0x?0xx?sinx?2sin2(1?xsinx?1)??2??221?1。

1?xsinx?1ea(et?1)?ea(填空题11)。 (10) 令t?x?a,则x?a?t,原式=limt?0t7. S1?1?31aa?31aa?3a?asin?2a2,S2???sin?4a2,S3??2?2sin?6a2,?,

22232222322321?1??1?n?1aa?31?3244??11Sn??n?1?n?1sin?2na2, S?3a2??2???n?=3a2??a(n??)

1222324?3?441?48. 指出下列各题的无穷大量和无穷小量

sinx?0,为无穷小量。

x?01?cosxarctanx(2) lim?0,为无穷小量。

x??1?x2(1) lim(3) lime?sinx?0,为无穷小量。

x???x(4) limx?1??,为无穷大量。

x?0sinx9. 比较下列无穷小量的阶

lim1?x111?x3

,,当x?1时,1?x与1?x是同阶无穷小。1?x与 ?(1?x2)是等阶无穷小。lim?13x?11?x3x?11(1?x2)222

2

x2?1x2?110. 当x?0时,x是无穷小量,当x??时,x是无穷大量;当x?±1时,3是无穷小量,当x?0时,3xx是无穷大量;当x?+?时,e?x是无穷小量,当x???时,e?x是无穷大量。 11. ?y?f(3)?f(1)?(2?3?1)?(2?1?1)?19?3?16。 12. lim?x?0221sinx???1,lim??xsin?b??b,?b=1,f(0)?a?2=1,?a=?1

x?0?xx?2x?11??e2?ek?k?2 ??lim?1?(x?1)?x?1??e2,?limf(x)?f(1) , ?x?1?x?1?x2213. limxx?114. 设f(x)?e?2,f(0)??1?0,f(2)?e?2?0,由介质定理推论知:在(0,2)上至少存在一点x0

医用高等数学习题解答(第1,2,3,6章) - 5 -

x使得f(x0)?0,即e?2?0。

15. 设f(x)?asinx?b?x,它在[0,a+b]上连续,且f(0)?b?0,f(a?b)?a[sin(a?b)?1]?0,若f(a?b)?0,则a+b就是方程f(x)?0的根。若f(a?b)?0,由介质定理推论知:至少存在一点??(0, a+b), 使得f(?)?0,即?是f(x)?0的根。综上所述,方程x?asinx?b至少且个正根,并且它不超过a+b。 16. (1)w(0)?26262626263w?lim?26??(g);(2)(g);(3)?t?ln30?5(周)。 22max0?3t?3tt???21?30e1?30e3121?30e17. 设F(x)?f(x)?g(x),则F(x)在[a,b]上连续,F(a)?f(a)?g(a)?0,F(b)?f(b)?g(b)?0,由介质定理推论知:至少存在一点??(a, b), 使得F(?)?0。即f(?)?g(?)?0?f(?)?g(?)。所以y?f(x)与y?g(x)在(a,b)内至少有一个交点。

医用高等数学习题解答(第1,2,3,6章) - 6 -

第二章 一元函数微分学习题题解(P66)

一、判断题题解

1. 正确。设y=f(x), 则lim?y?lim??x?0?y???y????x???limlim?x)?y??0?0。 ?(??x?0?x?x?0?x????x?02. 正确。反证法。假设F(x)?f(x)?g(x)在x0点可导,则g(x)?F(x)?f(x)在x0点也可导,与题设矛盾。故命题成立。

3. 错。极值点也可能发生一阶导数不存在的点上。 4. 错。如图。

5. 错。拐点也可能发生二阶导数不存在的点上。 6. 错。不满足拉格朗日中值的结论。 7. 错。设f(x)?x, g(x)?yoabx1,则:F(x)?f(x)?g(x)?1, x显然f(x)在x?0点的导数为1,g(x)在x?0点的导数不存在,而F(x)在x?0点的导数为0。是可导的。

338. 错。设y?x和y?3x,显然它们在(??,+?)上是单调增函数,但在x?0点y?x的导数为0,y?3x的

导数不存在。

二、选择题题解

1. 设切点坐标为(x0,y0),则切线的斜率k?y?x?x?2x0,切线方程为:y?y0?2x0(x?x0)过(0,?1)得

01?y0?2x20,又有

y0?x20,解方程组

?1?y0?2x02得:y0?1,x0??1,切线方程为:y??2x?1。(A) ?2y?x?002. 可导一定连续。(C) 3. 连续但不可导。(C) 4. 因为??(x2,x1)?(a,b)。(B)

5. y1?x ,y2?3x,在x=0处导数不存在,但y1在x=0处切线不存在,y2在x=0处切线存在。(D)。 6. f??(0)?limsin(0??x)?0sin?x(0??x)?0?lim?1,f??(0)?lim?1可导。(C)

?x?0?x?0?x?x?0?x?x医用高等数学习题解答(第1,2,3,6章) - 7 -

x5xx5x7. f(e)?e,f?(e)?5e。(B)

(0??x)2sin8. lim?x?01?010??x?lim?xsin?0。(B)

?x?0?x?x三、填空题题解

1. f?(x)?1xx?12,f?(?2)?1?2(?2)?12?123。

2. (cscx)???cscx?cotx

3. [sin(xy)]?x?(x?y)?x?cos(xy)?(y?xy?)?1?y?, y??4. d(esinx)?esinx?cosx2?2xdx。

5. f?(x)?6x?6x?36?6(x?2)(x?3),当?2?x?3时,f?(x)?0,单调调减小。 6. lny?[lnf(x)?lng(x)]?

222ycos(xy)?1。

1?xcos(xy)12f(x)?f?(x)g?(x)?11?f?(x)g?(x)????。 y??????y????????y2?f(x)g(x)?2g(x)?f(x)g(x)?7. f(x)?x?x,f?(x)?5323522?1123x?x3?3?5x?2?,当x?时,f(x)由减变增,取得极小值。 3353x8.

dydx11。 ?1?ex,??dxdydy1?exdx四、解答题题解

11??2???10(1??t)?g(1??t)???10?g?122???????lim?10?g?g?t??10?g 1. S?(1)?lim?t?0?t?0?t2??(0??x)sin2. (1)lim?x?01?010??x不存在,f(x)在x?0不可导。 ?limsin?x?0?x?x(0??x)2sin(2) lim?x?01?01??0??x?lim??x?sin??0,f(x)在x?0可导,且f?(0)?0。

?x?0?x?x??(0??x)??01?lim1????不可导。 3. lim?x?0?x?0?x?x医用高等数学习题解答(第1,2,3,6章) - 8 -

4. 过(1,1)与(2,4)两点的割线斜率为k?4?1?3,抛物线y?x2过x点的切线斜率为y??2x,故2x?3,得2?139?39?x?,y?,?,?即为所求点。

24?24?x2?y05. 过(x0,y0)点作抛物线y?x的切线,设切点为(x,x),应满足?2x方程,若方程有两个不等的

x?x0222实根x,则说明过(x0,y0)点可作抛物线的两条切线。整理方程得:x?2x0x?y0?0,当??4x0?4y0?0时,2方程有两个不等的实根。也就是要满足y0?x0即可。

26. 求下列函数的导数。 (1) y??(x?a)??nxnxn?1?axlna

(2) y??(x?lnx?5)??1?n1 xn?1(3) y??(xsinx?cosx?x)??nxsinx?xncosx?sinx?1

tanxx2sec2x?2xtanx112tanx1????(4) y??(2?arctanx)??

xx41?x2x2cos2xx31?x2(5) y??(sin2x?lnx)??cos2x?lnx?12sin2x 2x?secx(1?x)secxtanx?secx???ln(1?n)??(6) y??? 21?x(1?x)??7. 求下列函数的导数。 (1) y??n(1?x)2nn?1?(1?xn)??n(1?xn)n?1?nxn?1?n2xn?1(1?xn)n?1

222(2) y??(x)?tan3x?x(tan3x)??2xtan3x?3xsec3x (3) y??[lnsinx?ln(1?x)]??2cosx2x2x??cotx? sinx1?x21?x2(4) y???[ln(2x?1)]?1(2x?1)?2???

ln(2x?1)ln(2x?1)2x?1(2x?1)ln(2x?1)(5) y??[ln(1?sinx)?ln(1?sinx)]??cosxcosx2cosx???2secx

1?sinx1?sinxcos2x医用高等数学习题解答(第1,2,3,6章) - 9 -

(ln3x)?3(ln2x)(lnx)?3ln2x6ln(ln3x)33?2ln(lnx)3?(6) y??ln(lnx)?2ln(lnx)[ln(lnx)]??2ln(lnx)3?2ln(lnx) 3lnxlnxxlnxxlnx?23??333n?(t)kn0ekt8. n?(t)?[n0e]??kn0e,??k。 ktn(t)n0ektkt9. 求下列函数的导数。 (1) lny?sinxlnx,

1sinxsinx?sinx??y??cosxlnx?,y??x?cosxlnx??

x?yx?(2) lny?112cos2x?1???ln2?ln(x?1)?ln(x?3)?lnsin2x?,1?y??1???,

y2?x?1x?3sin2x?2y??12(x?1)(x?3)?11(x?1)(x?3)?11????2cot2x?????2cot2x? ??2sin2x2sin2x?x?1x?3?x?1x?3??xxy ?(lny)??lnx?1,?lny(lnx?1),y ??ylny(lnx?1),y??ex?xx(lnx?1) lnyy(3) lny?x,lnlny?xlnx,

xn(4) lny?xlnarcta,?y?x1xx???lnarctanx????, y ?(arctanx)ln(arctanx)?2?? yarctanx1?x2(1?x)arctanx??10. 求下列函数的n阶导数。

x2(n)xn(1) y?5,y??5ln5,y???5ln5,…,y?5ln5

xx(2) y?acosbx,y???absinbx?abcos?bx????????????22?,y????absin?bx???abcos?bx???,2?2?22???3??y?????ab3sin?bx????ab3cos?bx?2?(3) y?lnx,y??????(n)ny?abcosbx?n?,…,???

2???1?x?1,y????x?2,y????2x?3,…,y(n)?(?1)n?1?(n?1)!x?n x11. 求下列隐函数的导数。

x2?ay(1) (x?y?3axy)?x?0,3x?3yy??3a(y?xy?)?0,y??

ax?y23322(2) 同填空题3。[sin(xy)]?x?(x?y)?x?cos(xy)?(y?xy?)?1?y?, y??ycos(xy)?1。

1?xcos(xy)?(1?xy)exy(3) (y?xe)?x?(cosy)?x?y??e?xe(y?xy?)??siny?y??y?? 2xy1?siny?xexyxyxy医用高等数学习题解答(第1,2,3,6章) - 10 -

1?y?x2y2y?xy?(4) [arctan(xy)?y]?x?(x)?x? ?y??1?y??1?x?x2y21?(xy)212. 求下列函数的微分。 (1) dy?d(esinx)?esinxd(sinx)?esinxcosxdx

2x(2) dy?d(arcsine)?d(e2x)1?(e)2x2?e2xd(2x)1?e4x?2e2xdx1?e4x

(3) dy?d[sin(x?arccosx)]?cos(x?arccosx)d(x?arccosx)?cos(x?arccosx)??1?????dx 2?1?x?1(4) dy?d(e2arctanx)?e2arctanxd(2arctanx)?e2arctanx22e2arctanxdx?dx 221?x1?x?13. 求5、sin31近似值。

(1) 设f(x)?x,则f?(x)?12x2,取x0?2.2?4.84,?x?0.16,则f(x0)?4.84?2.2,

f?(x0)?1?0.227,故5?f(x0??x)?f(x0)?f?(x0)?x?2.2?0.227?0.16?2.236

24.84?(2) 设f(x)?sinx,则f?(x)?cosx,取x0?30??6,?x?1???180,则f(x0)?sin30??1,2f?(x0)?cos30??313????0.515 ,故sin31?f(x0??x)?f(x0)?f?(x0)?x??22218014. 证明下列不等式。

22(1) 设f(x)?x?tanx,则f?(x)?1?secx??tanx?0,f(x)在??,?上单调递减。当x???,0?时,

?????22?????2????f(x)?f(0),即x?tanx,当x??0,?时,f(x)?f(0),即x?tanx,当x?0时,f(x)?f(0),即x?tanx,

?2?综上所述,当x???,?时,x?tanx。

?????22?(2) 设f(x)?11?xx1???0,有f(x)?f(0),?ln(1?x)?1??ln(1?x),当x?0时,f?(x)?22(1?x)1?x(1?x)1?x1?x即

x1x?ln(1?x);设f(x)?x?ln(1?x),当x?0时,f?(x)?1???0,有f(x)?f(0),即x?ln(1?x);综1?x1?x1?x

医用高等数学习题解答(第1,2,3,6章) - 11 -

上所述,当x?0时,有

x?ln(1?x)?x。 1?xxxx(3) 设f(x)?e?1?x,则f?(x)?e?1,当x?0时,f?(x)?0,有f(x)?f(0),即e?1?x?0;当x?0时,f?(x)?0,有f(x)?f(0),即e?1?x?0;综上所述e?1?x (x?0)。 15. 求下列函数的极限。

xx?5sin5xln(cos5x)55sin5x2xcos2x25(1) lim=limcos5x=lim?= ??x?0ln(cos2x)x?0x?0?2sin2x225xsin2xcos5x4cos2xqlnq?1xq(q?1)lnq?2xq(q?1)?(q?n?1)lnq?nxlnqx(2) lim?xlnx?lim??p=lim?=lim?=…=lim?=0 ?px?0?pxx?0x?0x?0x?0x(?p)2x?p(?p)nx?ppq(分子和分母分别求n阶导数,使n>q) (3) lim?xsinx?lim?esinxlnx?ex?0x?0x?0limsinxlnx?=e?1

01sin2x2sinxcosxlnxx=lim?=lim?=lim??0 lim?sinxlnx?lim?x?0cosx?xsinxx?0x?01x?0?cosxx?0xcosxsinxsin2x(4) limxx?111?x?limex?11x2lnx1?x?elimlnxx?11?x=e11lim?x?1x(?1)=e

xxcosx?sinx?x2limsinxx?02xxcosx?sinxx?02x2sinxlim?1

?sinx?(5) lim??x?0?x??limex?01sinxlnxx2ln=ex?0limsinxxx2=e=e=e?16?1 6e?limx?0?cosx?sinxxcosx?sinxcosx?xsinx?cosx1limlim==== lim?x?04cosx?2(cosx?xsinx)x?04sinx?2xcosxx?04xsinx?2x2cosx2x2sinx61lnx(6) lim?(cotx)x?0?lim?ex?0lncotxlnx?elncotxx?0?lnxlim=e?xx?0?sinxcosxlim?e?1

16. 证明下列不等式。

(1) 令f(x)?sinx?x,因为f ?(x)?cosx?1?0 (x?0), 所以当x?0时f(x)↘, f(x)?f(0)?0 ? sinx?x ;

令g(x)?sinx?x?x/6, 则:g?(x)?cosx?1?x/2,g??(x) ? ? sinx?x, g???(x)= ? cosx?1?0 (x?0), 有g??(x)↗ ?g??(x) ?g??(0)?0?g?(x)↘, g?(x)?g?(0)?0?g(x)↗?g(x)? g(0)?0 ? sinx?x?x3/6。综上所述: x?sinx?x?x3/6

pp(2) 令f(x)?x?(1?x), f(x)在[0,1]连续且f(0)?f(1)?1,f ?(x)? p?xp?1?(1?x)p?1?,令f ?(x)?0得x=1/2为驻点。

32医用高等数学习题解答(第1,2,3,6章)

pp - 12 -

111?1??1??1?ppf ??(x)?p(p?1)?x?(1?x)??0,有极小值f?????????p?1,?p?1?f(x)?1?p?1?x?(1?x)?1

22?2??2??2?2p?2

p?2

17. 确定下列函数的单调区间。

223(1) y?x?6x,定义域(??,+?),y??3x?6?3(x?2),令y??0,解得x??2,增减性如下表:

x (??,?2) ?2 (?2,2) y? y + ↗ 0 ? ↘ 2 (2,+?) 0 + ↗ (2) y?x?sinx,定义域(??,+?),y??1?cosx?0,令y??0,解得x?(2k?1)?,k?0,?1,?2,?,均是孤立驻点,故在(??,+?)单调递增。

322 (3) y?2x?3x?12x?7,定义域(??,+?),y??6x?6x?12

x (??,?1) ?1 (?1,2) 2 (2,+?) y? y + ↗ 0 ? ↘ 0 0 极小值 y ↘ 为0 ↗ (e,+?) + ?10 + ↗ (0,+?) + =3(x?2)(x?1),令y??0,解得x??1,2,增减性如右表: 18. 求下列函数的极值。

(1) y?x?ln(1?x),定义域(?1,+?),y??1?x (?1,0) 1x=,令y??0,解得1?x1?xy? ? x?0,极值见右表:

(2) y?xlnx,定义域(0,+?),y??lnx1lnx?2=, ?2x2xxx (0,e?2) y? y ? ↘ e?2 0 极小值为?2e ?2令y??0,解得x?e,极值见如右表: (3) y?x??2↗ 112,定义域(??,0)∪(0,+?),y??1?2,y???3,令y??0,解得x??1,y??(?1)??2?0有极xxx大值y(?1)??2,y??(1)?2?0有极小值y(1)?2。 19. 求下列函数在所给区间内的最大值和最小值。 (1) f(x)?5?4x是[?1,1]上的连续函数,f?(x)??2?0减函数且无驻点,但有一个不可导点

5?4xx?5?1,它不在[?1,1]上,故fmax(?1)?3,fmin(1)?1。 42??(x2?3x?2) , 1?x?2(2) f(x)?x?3x?2是[?10,10]上的连续函数,此函数可用分段函数表示f(x)??2,

x?3x?2 , 其它?医用高等数学习题解答(第1,2,3,6章) - 13 -

313??2x?3 , 1?x?2f?(x)??2,令f?(x)?0,得:x?,f(1)?f(2)?0,f()?,f(?10)?132,f(10)?72,

242?2x?3 , x?1或x?2比较得:fmax?132,fmin?0。 (3) f(x)?2x?2?22?x , x?2是[?5,5]上的连续函数,此函数可用分段函数表示f(x)??x?2,分段点为x?2,

2 , x?2???22?xln2 , x?273f(2)?1,f?(x)??x?2,无驻点。f(?5)?2,f(5)?2,比较得:fmax?128,fmin?1。

?2ln2 , x?2?20. y?ax?bx,y??3ax?2bx,y???6ax?2b,因为(1,3)为曲线的拐点,所以有?3226a?2b?0,32a?1?b?1?3?解之得:a??39,b?。 222(x?1)(x2?4x?1)?x2?2x?1x?121. y?2,y??,y???,令y???0,解得x1??1,x2,3?2?3,2322(x?1)(x?1)x?1y1??1,y2,3??1?3?1?3???1?3?????是曲线的三个拐点。下面论?,可验证(?1,?1),2?3,,?2?3,??44??4???证此三点在一条直线上。只要证明过任意两点的直线的斜率相同即可。

?1?33?3?1?33?3?1?1y?y1y?y144k1?21??4?,k2?31??4?,k1?k2得证。 x2?x1x3?x12?3?13?342?3?13?34?kt22. w?bew?w0(1?b),w?w0(1?b)?kt?kt两端对t求导数:w??b(?kew?ew?)?0 ?kt1?bebke?ktwbkw0(1?b)e?kt??w?? ?kt?kt21?be(1?be)222223.设R?R0?dR?0.02?0.2t,v?R?r?(0.02?0.2t)?r,

dv?2(0.02?0.2t)?0.2?(0.008?0.08t)cm/min2。 dt24. (1)求出现浓度最大值的时刻:C(t)?122(e?0.18t?e?t),C?(t)?122(?0.18e?0.18t?e?t),令C?(t)?0,解

?ln0.180.82?0.18??ln0.18?ln0.1822?0.18t?t????C(t)?122(0.18e?e)C()?122(0.18et?得唯一驻点。,

0.820.829ln0.184150ln0.1841941504191415041?e??ln0.180.82)

=122(0.18e2?e)=122(0.18?0.18?0.18)=122(0.18?0.18)?0有极大值。也为最大值。

2(2)求出现浓度变化率最小值的时刻:令C??(t)?0,解得唯一驻点t??ln0.18。 0.41医用高等数学习题解答(第1,2,3,6章) - 14 -

C???(t)?122(?0.18e1004133?0.18t?0.18??ln0.18?e),C???()?122(?0.183e0.41?t18411004114141?ln0.180.41?e? ?ln0.180.41)=122(e100ln0.1841?0.18e318ln0.1841)

=122(0.18?0.18?0.18)=122(0.18?0.18)?0有极小值。也为最小值。

25. 求w?何时达最大值。lnw?ln(341.5?w)?k(t?1.66)?w?341.5…①, k(1.66?t)1?e1?1k?w???w??k?w??(341.5w?w2)…②,

341.5w341.5?wk?341.5w??2w?w???k?341.5?2w?w?,令w???0,得:w??0,w?341.5。 w???341.5341.52由w??0?(341.5?w)w?0,而w?0?w=341.5,由①得e由w?k(1.66?t)?0无解。

k341.5k(1.66?t)341.5w???2(w?)2?2w?w??, ?1,得:t?1.66是唯一驻点。w?????e341.52341.5341.5当t?1.66时,w?,w??k,w???0,w????0有极大值。也为最大值。

24??26. 讨论下列函数的凹凸性和拐点

a2(a?0),定义域(??,+?),(1) y?22a?x2a2(3x2?a2)?2a2xy??2,y???,令22(a2?x2)3(a?x)a3

,y?,列表讨论。 y???0,得x??43x (??,?+ aaaa) ?,) (?33330 拐点 3/4 ? aa,??) (330 拐点 3/4 + y?? y 凹 凸 凹 (2) y?x?sinx,定义域(??,+?),y??1?cosx,y????sinx,令y???0,得x?k?,(k?0,?1,?2,?),当

x??(2k?1)?,2k??时,y???0,曲线是凹的。当x??2k?,(2k?1)??时,y???0,曲线是凸的。拐点为:

?k?,k??。

27. 讨论下列函数的单调性、极值、凹凸性、拐点和渐进线,并画出它们的大致图形。 (1) y?e?x,定义域(??,+?),是偶函数,limex??2?x2?0,有水平渐进线y?0,y???2xe?x,

2y????2[e?x?xe?x(?2x)]?e?x(2x2?1)

x 222(??,?+ 111 (?,0) 0 ) ?222+ + 0 (0,1) 2? 11 (,??) 22? ? yy?e?x2y? ox医用高等数学习题解答(第1,2,3,6章) - 15 -

y?? + 0 拐 点 ? 0 极 大 ? 0 拐 点 + y (2) y?ln1?x1?x1?x,定义域(?1,1),f(?x)??f(x)是奇函数,lim?ln??,lim?ln??有垂直渐进线

x?1x??11?x1?x1?x2无驻点,但当x??1时导数不存在。x??1,y??1?x21?xy???4x,令y???0,得x?0。

(1?x2)2x ?1 (?1,0) + ? 0 ? 0 拐点 0 (0,1) + + 1 无 无 yy?ln1?xy? 无 y?? 无 y ?1o1x 3(3) y?x?6x,定义域(??,+?),是奇函数,无渐进线。y??3x?6,y???6x,令y??0,得驻点x??2,

2令y???0,得x?0,列表讨论。f(0)?0,f(?6)?0,f(?2)??22 x y22oy?x3?6x(??,?2) ?2 (?2,0) 0 + ? 0 ? 极 大 ? ? ? 0 拐 点 (0,2) ? + 2 (2,??) 0 + 极 小 + + y? y?? ?6?226x?22 y ex?e?xex?e?xex?e?x(4) y?,定义域(??,+?),是偶函数,无渐进线。y??,y???,令y??0,得

222驻点x?0,而y???0,列表讨论。

x y(??,0) ? 0 0 (0,??) + ex?e?xy?2y? 1.5431?1o1x

医用高等数学习题解答(第1,2,3,6章) - 16 -

y?? y + + 极小 1 + yx?arctanx?lim?1,b?lim(y?ax) x??xx??x??x??1=lim?(x?arctanx)?x???,有两条渐进线:y?x?。y??1??02x??221?x(5) y?x?arctanx,定义域(??,+?),是奇函数,a?lim?2x无驻点,y???,令y???0,得x?0 22(1?x)x yy?x?arctanx?2(??,0) + + 0 0 + 拐点 0 (0,??) + ? y? y?? y ??2?o?2x?2 1?x21?x2?arccos(?1)??,有一条水平渐进(6) y?arccos,定义域(??,+?),是偶函数,limarccosx??1?x21?x2?4x??2 , x?0 , x?022?2?4x?2x?(1?x)1?x???0,f(0)?arccosy?线y=?,y??=,=1?0,??4x?222(1?x)x?? , x?0(1?x) , x?0222??1?x?(1?x)f(?1)?arccos0?x ?2。

y(0,??) + ? (??,0) ? ? 0 无 无 y? ?/21?x2y?arccos1?x2y?? y 极小0 ?1o 1x28. 已知不在同一直线上的三点A(x1,y1)、B(x2,y2)和C(x3,y3);试用xi,yi表示?ABC的面积。 解:由P55例42知:直线y?kx?b到(x0,y0)的距离为:d?y0?kx0?b1?k2。那么,直线AB的方程为:

医用高等数学习题解答(第1,2,3,6章) - 17 -

y?y1?y2?y1y?yxy?xy(x?x1)?y?21x?2112,AB两点间的距离为:(x2?x1)2?(y2?y1)2,

x2?x1x2?x1x2?x1?ABC的面积=

y?kx3?b1 (x2?x1)2?(y2?y1)2?3221?ky3?y2?y1xy?xy?x3?2112x2?x1x2?x1?y2?y1?1???x?x???21?2=

1(x2?x1)2?(y2?y1)2?2

=

1(x2?x1)2?(y2?y1)2?2y3(x2?x1)?(y2?y1)x3?(x2y1?x1y2)x2?x1(x2?x1)?(y2?y1)x2?x122

=

11y3(x2?x1)?(y2?y1)x3?(x2y1?x1y2)=(x1y2?x2y3?x3y1)?(y1x2?y2x3?y3x1) 22x2y229. 椭圆2?2?1(a?b)的切线与x轴y轴分别交于A、B两点,(1)求AB之间的最小距离;(2)求三角形

ab?OAB的最小面积。

yA(x0,y0)x2y2解:椭圆方程:2?2?1…①如图。设切点坐标为(x0,y0),

abb2xb2x0则y???2…②,此点切线斜率为:k??2,切线方程为:

ayay0oxBb2x0y?y0??2(x?x0)。

ay02a2y02b2x02?a2y0a2a2令y?0,x?x0?2??,坐标A(,0)。

bx0b2x0x0x0222b2x0b2x0?a2y0b2b2令x?0,y?y0?2??,坐标B(0,)。 2ay0ay0y0y0a4b4?2a4?2b4a4b4???3?y?(1) AB?oA?oB?2?2。可设l?2?2,令lxx?0,将②代入得:3xyxyx0y0222b32a4b4?b2x?b3a32?3???2??0?y?3x,代入①得驻点:x??,y??。 3??axy?ay?a?ba?b医用高等数学习题解答(第1,2,3,6章) - 18 -

?26??2b6?42b6??42b4?4?54?4?5?bx?4?3?4?2?y?4xy?2?l????x?=6ax?? ??2ax?a2xy??=6ax?a2?y?4xy?y?aay????a4b42b6??44b22?6?2?l???a(a?b)?b(a?b)?(a?b)=6ax?2?有极小值。,故ABy?xy?0332?aba?a??a?ba?b4?4之间的最小距离是a?b。

1a2b2122122122?b2x??1?2?2???ab(xy),S???ab(xy)(y?xy?)=?ab(xy)?(2) 可设面积S??, y?x2???2xy222ay??b22ab令S??0,得:y?2x,代入①得驻点:x?,y?(三角形边长取值应大于零)。

a222?3112?3122?2?1??S????by?abxy?=?b2y?4y??a2b2?2x?3y?1?x?2y?2y?

222?2???2?3b4xa2b2b432?4??b2x?122??3?1?2?2??bx??=25?3????ab??2xy?xy?=?by? 322??????2ayxy2xy2ay2ay???????3b4??ab??S???,???22??2a2??a??a2b2b464b2b62b2?=????=??0有极小值。 533abaaabab??a??b??a??b??????2????2??2??2??2??2?a2b2?ab?S?,?ab,故三角形的最小面积为a?b。 ??ab????22??2?????2??2?第三章 一元函数积分学习题题解(P108)

一、判断题题解

1. 错。是原函数的全体,记作

?f(x)dx?C。

2. 错。f(x)的任意两个原函数之差为常数。 3. 错。是F(x)?C。 4. 正确。

5. 错。被积函数在x=0处无界。

医用高等数学习题解答(第1,2,3,6章) - 19 -

6. 正确。y??sinx,y?x?0?0

7. 正确。被积函数是奇函数,积分区间对称。 8. 正确。

二、选择题题解

1. f(?x)??x?x??f(x)被积函数是奇函数,积分区间对称,定积分为零。或

? 1?1xxdx=

? 0?1?x2dx??x2dx

0113111=?x?x3=??0?(?1)??(1?0)?0。(A)

333?1302.

0??111 0??????0?=+=+=dxdxdxarctanxarctanx?????0??。(A) ???1?x2???1?x2? 01?x2?? 0?2?2?? 013. 正确的是C。 4.

? a?af(?x)dx??????dx??du令u??x?a af(u)du=?f(x)dx。(D)

?a a5. 令b?ax?u,?adx?du,f(b?ax)dx??6. 令F(x)?e,则f(x)??e7.

?x?x?111==f(u)du?F(u)?C?F(b?ax)?C。(B) ?aaa,xf(x)dx??xe?xdx=xde?x=xe?x?e?xdx=e(x?1)?C。(D)

???????x?x 11?tdt???????dt?du2u4令t?ux 1x1111d?xdu?udu,????x。(D) 1?t4dt?1?u=?=? 12 1u2xdx??2u2或

d?x111?442??x ?? 11?tdt?=1?(x)(x)?=1?xdx??2x2x8.

1122?x2?x2????????????==,, df(x)?f(x)?Cf(x)f(x)dxf(x)df(x)f(x)?ef(x)??2xe?2??221122?2x2?x2??C。(B) ? ?f(x)??C=?2xe?C=2xe22??三、填空题题解 1. xln(1?x)dx=

?21?2xdx?112222222(1?x)ln(1?x)?(1?x)?ln(1?x)d(1?x)(1?x)ln(1?x)?2?xdx ==??2??2?1?x?22??=

1(1?x2)ln(1?x2)?x2?C。 2??1?11?cos2kx?2dx=?x?sin2kx?= ?。 2. ?sinkxdx=?????22?2k??? ? ? ?医用高等数学习题解答(第1,2,3,6章) - 20 -

3.

?arctanxdx=x?arctanx?? ?x1=dxx?arctanx?ln(1?x2)?C。 21?x2 ?1?111?4. ?sinkxsinlxdx =???cos(k?l)x?cos(k?l)x?dx=??sin(k?l)x?sin(k?l)x?= 0。

????22?k?lk?l??? ?dexex1xdxarctane?C。 5. ?x===dxx22x?x??1?(e)e?1e?edx2?16. costdt=cos(x2?1)?(x2?1)?=2xcos(x2?1)。 ?dx 017. ?sin2xdx=?cos2x?C。

28. 这是积分上限函数,由定理3知:Φ?(x)?f(x),?y??xe。

x四、解答题题解

1. 分别对三个函数求导数,结果皆为2. (1) 错。F(x)?C是不定积分。 (2) 错。

2,所以它们是同一函数的原函数。 x?f(x)dx是f(x)所有原函数。

(3) 正确。设F(x)?C是f(x)的一个原函数,则F?(x)?0?f(x)。 (4) 正确。因为积分变量不同,造成被积函数不同。 (5) 正确。因为n??1时,xdx?3. 求下列不定积分 (1)

32x?x?C =(1?3x)dx??n1n?1x?C。 n?12x13?x?C (2) ?(2?x)dx=

ln23x2xx2x?1??C=x2?2x2?C dx=?(x?x)dx=(3) ?113x?1??122(4)

121?21?121??1231?2x(x?3)dx=?x?3x)dx=x2?2x2?C

53212531?x2?1x21??dxdx1?dx=x?arctanx?C (5) ?==?2?22??1?x1?x?1?x?

医用高等数学习题解答(第1,2,3,6章) - 21 -

1?x2?1x211?x?1?dxdx?1dx(6) ?===????1?x2?2ln1?x?x?C ?1?x21?x2(7)

1?cosx12x==sindxdx(x?sinx)?C ?2?22?1?2?1dx=?cotx?x?C =cotxdx???sin2x???(8)

??441???2444(9) ??1?2?xxdx=?1?xxdx=?(x?x)dx=x?4x4?C

7x????33571e2x?1dx=?(ex?1)dx=ex?x?C (10) ?xe?1(11)

cos2x?cosx?sinxdx=?(cosx?sinx)dx=sinx?cosx?C 1?11?1?dxdx==??arctanx?C 22??x2(1?x2)??x?x1?x?1?1?1?dx=tanx?cotx?C =dx??cos2xsin2x??cos2xsin2x??(12)

(13)

(14)

?1?x21?x4dx=?11?x2dx=arcsinx?C

(15)

11??1?sinx?cosxdx=x?cosx?sinx?C ????22?4. 求下列不定积分

2(1) ?(2?x)dx=??(2?x)d(2?x)=?(2?x)2?C

7(2)

525271d(1?2x)dx1?==?(1?2x)22?(1?2x)22(1?2x)?C

(3)

?dx2?3x2=

??3??d??2x????3??31???2x???2=

13arcsinx?C

23?x?d??dxdxx2(4) ?=?=???=?cot?C

xx1?cosx2sin22sin222医用高等数学习题解答(第1,2,3,6章) - 22 -

(5)

3xa?dx=

13x13x=ad(3x)a?C

3?3lnad(x2?x?3)2x?1(6) ?2=lnx2?x?3?C dx=?2x?x?3x?x?31?2x?x?x?2x=?e?e?C (e?e)dx?21(8) ?(sin5x?sin5a)dx=?cos5x?x?sin5a?C

5(7) (9)

?1d(1?x2)dx=??=?1?x2?C

21?x21?x2x141133323(10) ?x?1?xdx=?(1?x)3d(1?x)=(1?x)3?C

4331x(11) ?=dx4?x44??x2?1?x2??d??=arctan????C 22?2?42?x??????1???2???1(12)

?1dxdx=2?x(1?x)1?x?x2??322=2arctanx?C

(13)

?xe?1?x21?x22dx=??ed(?x)=?e?C

22dx=??cosxd(cosx)=2cos??12(14)

sinxcos3xx?C=

2?C cosx(15)

3?1144d(cotx)=?4?C dx????=?cotxcotx?sin2x?4cotx?3(16)

arctanx12==dx(arctanx)?C arctanxd(arctanx)?1?x2?2dexex1x(17) ?x=arctane?C(填空题5) dx=?2xdx=?x2?x1?(e)e?1e?e11?x?1?x?1?1?x?11?xlnd?lnlndx(18) ?=?=?ln??C 2?1?x?1?x?4?1?x?1?x21?x(19)

21?11?1x?111?dxln?C dx??lnx?1?lnx?3?C===???(x?1)(x?3)4??x?1x?3?44x?31?11x?1?dxdxarctanx?arctan?C ==???(x2?1)(x2?2)??x2?1x2?2?22(20)

(21)

?sin3xsinxdx=??11111??cos4x?cos2x?dx=?1??sin4x?sin2x??C=sin2x?sin4x?C

2?42248?医用高等数学习题解答(第1,2,3,6章)

2 - 23 -

1311?1?cos2x?2(22) ?sinxdx=??==??1?2cos2x?cos2xdxx?sin2x?sin4x?C dx??484322??4231522245===sinx?sinx?sinx?C cosxdx(1?sinx)dsinx(1?2sinx?sinx)dsinx???3512(24) ?tan3xdx=?tanx(sec2x?1)dx=?tanxdtanx??tanxdx=tanx?lncosx?C

2(23)

e?1?(25) ?2dx=??exd??=?ex?C

x?x?(26) (27)

1x1112132????==lnx?dxlnx?C ????lnxdlnx??x3sinxsinxsinx==e?C ecosxdxedsinx??(28)

1?11?1?1112?3x1??dx?ln2?3x?ln2?3x?Cln?C ===dx?????4?9x24??2?3x2?3x?4?33122?3x?(29)

?(arcsinx)dx21?x2=

d(arcsinx)1=??(arcsinx)2arcsinx?C

(30)

d(x?1)dx=?x2?2x?2?(x?1)2?1=arctan(x?1)?C

?(1?ex)21?2ex?e2x2ex?x??dxdxx?2arctane?C (31) ?===1?dx2x2xx2????1?e1?e?1?(e)?d(x2?2x?3)d(x?1)(x2?2x?3)?2x?10x2?7(2x?2)?12x??12dxdx=?x?dx(32) ?2==?x2?2x?3?22?(x?1)2 ?x2?2x?3x2?2x?3x?2x?3=x?lnx?2x?3?12?2x?112?(x?1)?C ln?C=x?lnx2?2x?3?3lnx?32?22?(x?1)5. 求下列不定积分

363(1) ?x?1?xdx???????(1?u)?udu=??(u?2u?u)du=?u3?u3?u3?C

dx??du471023令1?x?u2131343734710363=?(1?x)3?(1?x)3?(1?x)3?C

4710(2)

4710?令2?x?u31?11x2(2?u)28322522222dx???????du=?(?4u?4u?u)du=?8u?u?u?C

dx??du35u2?x=?22u(60?20u?3u2)?C=?32?8x?3x21515??2?x?C

医用高等数学习题解答(第1,2,3,6章)

令1?ex?u - 24 -

(3)

?1?ex?11?u?12du?1?C dx????????C=ln=???du=ln2?2uduxxu?1u?1?u?1u?1?dx?21?e?11?eu?11(4)

arctanxarctanx2(arctanx)?C ===dx2d(x)2arctanxd(arctanx)?x(1?x)?1?(x)2?(5)

?(1?x)2dx32dx?cosudu??????令x?atanu令x?sinucosudu(1?sinu)232=

xdu?C ==tanu?C?cos2u21?x=

2(6)

?(x?dx2?a)232dx?asecudu???????2asec2udu(atanu?a)2223x11?C ==cosudusinu?C222a2?a2ax?a(7)

2tanu?secudu令3x?2secu11dx123lnsecu?tanu?Cln3x?9x?4?C ===secudu??????????222339x?4dx?3tanusecudu4secu?43令x?asecua2sec2u?a2x2?a2dx?????????atanu?secudu=a?tan2udu=a?sec2u?1du=a(tanu?u)?C dx?atanusecuduxasecu(8)

????x2?a2?aa??arccos?C?=x2?a2?a?arccos?C =a??axx??(9)

25?=1?sinx?sinxd(sinx)=??cosxsinxdx?sin???212x?2sin52x?sin92x??d(sinx)

?=

4223247211?2?sinx?sin2x?sin2x?C=sinx?sinx?sin3x?sin5x??C

7113711?3?311?lnx?1lnx21??2d(1?lnx)=??1?lnx?dx=?(10) ??d(1?lnx)=(1?lnx)?2(1?lnx)2?C

31?lnxx1?lnx1?lnx??=

21?lnx?lnx?2??C 3(11)

?edxx2?ex1du?e2????????x2令u?ex22dx?1udx11?1?12du?1?2ln1?u?lnu?2??du==????C ???u?u2u??1?uuu2??u?x??1?u1?1?e21????C=2?ln1?e?x2?e?x2??C =2?=2ln?ln??C???xx????22??uu??ee??dx132?cotx?cotx?C (12) ?==?cotx?1d(cotx)4?sinx3??(13)

?1?u2du??13??12?666u?1?du6u?u?ln1?u?C6x?x?ln1?x6===??????????C ????32dx?6u5du1?u221?u??????x?xdx令x?u6(14)

?tan3u11?1???12???dcosu???C secudu==????????24?3??2dx?sec2udu?secu?cosucosu??cosu3cosu?1?xx3dx令x?tanu医用高等数学习题解答(第1,2,3,6章)

31222=(1?x)?1?x?C 3 - 25 -

6. 求下列不定积分 (1)

?arctanxdx=x?arctanx??nx1=dxx?arctanx?ln(1?x2)?C 21?x21?n?1xn?1?11n?1n?1n??(2) ?xlnxdx (n??1)=x?lnx??C lnxdx=x?lnx??xdx=???n?1n?1n?1?n?1?????xn?1?1?=?lnx???C n?1?n?1?(3)

?xln2xdx=

332?322422?3222???2??2?xlnx?lnxdx==lnxdxxlnx?2xlnxdx??? ?????????????3??3?33232?248?23228?32232?23228?32?=xlnx??xlnx??xdx?=xlnx??xlnx?x??C=x?lnx?lnx???C

?33?39?9?339??(4) (5)

uuuuuu???C=2e2ue?e===edx?????2eudu2ude2ue?edu????x令x?udx?2udu??x?x?1?C

?22=xlnx?1?x??lnx?1?xdx??????x?1??x?1?x2?1?x2x?xdx?dx=xlnx?1?x2?? ?21?x???=xlnx?1?x2?1?x2?C (6) (7) =????xcosxdx=?xdsinx=xsinx??sinxdx=xsinx?cosx?C

2?2xx?edx=?12?2x12?2x12?2x12?2x?2x?2x?2x?2x?xe?2xedx?xe?xde?xe?xe?edx ===xde????2222??????1?2?2x1?2x1?2x?21???2x?xe?xe?e?C?=?e?x?x???C 2?222???233===secxdxsecxd(tanx)secxtanx?tanxsecxdxsecxtanx?(secx?secx)dx ????(8)

=secxtanx?sec3xdx?lnsecx?tanx,?sec3xdx=

??(9)

?sin(lnx)dx=xsin(lnx)??cos(lnx)dx=xsin(lnx)??xcos(lnx)??sin(lnx)dx?

1??sin(lnx)dx=x?sin(lnx)?cos(lnx)??C

21?secxtanx?lnsecx?tanx??C 2(10)

1axb?1axbax1axbax?axesinbx?ecosbx?esinbxdxesinbx?ecosbxdx==esinbxdx?? ???aa?aaaa?eax?asinbx?bcosbx??C ??esinbxdx=22a?bax

医用高等数学习题解答(第1,2,3,6章) - 26 -

(11)

?a2?1a2a2?a?xdx?????a?cosudu=??1?cos2u?du=?u?sin2u??C=?u?sinucosu??C

dx?acosudu2?222?22令x?asinu2222a2?xxa?x=?arcsin??2?aaa?2?a??C=arcsinx?x?a2?x2?C

?2a2?(12)

22x(arcsinx)??x?2arcsinx?=(arcsinx)dx?dx1?x2=x(arcsinx)?2arcsinxd(1?x)

2?2=x(arcsinx)2?2?1?x2arcsinx?????1?x2??=x(arcsinx)2?21?x2arcsinx?x?C ?1?x2?dx??(13)

cosxln(sinx)2dx?cotxln(sinx)?cotx?dx===?ln(sinx)d(cotx)?cotxln(sinx)?cscx?1dx ?sin2x???sinx??=??cotxln(sinx)?cotx?x??C (14)

2?xcosxdx=?1?cos2x1111xdx=x2??xd(sin2x)=x2?xsin2x??sin2xdx 24444??=

121?1?x??xsin2x?cos2x??C 44?2?7. 求下列不定积分

令x?1?ux11x?1u?2?1?2?2?3???C??C dx?u?u?C(1) ?====du????u?2udu?dx?du?u3x?1(x?1)2(x?1)2(x?1)3??(2)

1?3x?2?2?dx=2lnx?lnx?1?C=lnx2x?1?C dx=??x(x?1)??xx?1????(3)

1?1?x?2?11?1?(2x?1)?3???dx== dxlnx?1?????2?dx???x3?13??x?1x2?x?1?3??2?x?x?1?????1????dx????x?11?1313?1?2?2?dx?=?ln? =?lnx?1?ln?x?x?1???2??2223?22x?x?1?3?2x?x?11??3??????x????????2??2???????1?ln=3???(4)

1?x??x?1312??C=1??ln??arctan23?3?x?x?123??22?x?1x2?x?1?3arctan2x?1???C 3????2xx?33323?2ln??C dx???2lnx?2?2lnx?3??C===??dx2??(x?2)(x?3)2??x?2x?3x?3?x?2x?3(x?3)?医用高等数学习题解答(第1,2,3,6章) - 27 -

xdx1?xx?1?x2?1?122??(5) ?2=??dx=ln(x?1)?ln(x?4)?C=ln?2??C (x?1)(x2?4)3??x2?1x2?4?66?x?4?????12x?21d(x2?1)dxd(x2?1)x?12x???2??2dx=??(6) ? ?2?22?dx=lnx?1??2222??2x?1x?1(x?1)(x?1)(x?1)?x?1x?1(x?1)?=lnx?1?x?1111ln(x2?1)?arctanx?2?C=ln?arctanx?2?C

22x?1x?1x?18. 求下列不定积分 (1)

dx1?sinx2==dxsec?1?sinx?1?sin2x?x?tanxsecxdx=tanx?secx?C

???ex?dx?dx=x?ln(1?ex)?C (2) ?=??1?xx??1?e?1?e?(3)

1?cosx?sinx?dxcosxdx1cosx?sinx?cosx?sinx===dx?1??dx ??1?tanx?cosx?sinx2?2?cosx?sinx?cosx?sinx=

1?d(cosx?sinx)?1?x???=?x?lncosx?sinx??C 2?cosx?sinx?2(4)

?a?xa?xxdx=?dx=a?arcsin?a2?x2?C a?xaa2?x2(5)

1?11?dx?dx1?1x?1?dx===ln?arctanx??????C ?x4?1?(x2?1)(x2?1)2??x2?1x2?1?2?2x?1??dxx2?1令x?1u(6)

?x??????idx??u2?du1?u2=arccosu?C=arccos?C

du1x9. 将区间[T0,T1]细分为n个小区间,在每个小区间[ti?1,ti]上任取一点?i,(i?1,2,?,n),由于小区间的长度?ti?ti?ti?1很小,可以近似地认为放射性物质在[ti?1,ti]内是以速度v(?i)均匀分解。 (1) 分解质量的近似值为:

?v(?)?t

iii?1n(2) 分解质量的精确值为:lim12??0?v(?)?t,??max{?t,?t,?,?t}

ii12nni?110. 用定义计算

?xdx。y?x在[0,1]上连续,?定积分存在。故可将[0,1]区间n等份:

2

00?x0

nnn医用高等数学习题解答(第1,2,3,6章)

2 - 28 -

1n21?1??1?11n(2n?1)(n?1)?i?1?limi?lim??2???1??? ?lim?xdx?limf(?)?x?lim?????ii3?3?0n??n??n????0n??ni?16?n??n?3n6i?1i?1?n?n12nn11. (1)是一个底边长为1高为2的三角形,面积为1。 (2)奇函数在对称区间上,定积分为0。

(3)偶函数在对称区间上,定积分为2倍的正的区间上的定积分。 12. (1)在[0,1]区间上x?x,由定积分性质知:

232?xdx??xdx。

001312(2)在[1,2]区间上(lnx)?lnx,由定积分性质知:

2?2 1(lnx)2dx??lnxdx。

1213. (1) 在[1,4]区间上2?x?1?17,由定积分性质知:6?(2) 在[0,1]区间上e?x2?4 1(x2?1)dx?51。

?112是一个单调递减函数,有1?e?x2?e,由定积分性质知:e??e?xdx?1。

?105???5??4221?1?sinx?2??(1?sinx)dx?2?。 (3) 在?,区间上,由定积分性质知:???444??14. 由积分上限函数的定理3知y??sinx,y?x?0?0,y?x???41。 215. 求下列函数的导数。

?xtx??(1) ??5edt?=5e ?0???2x22????(2) ??1?tdt?=???1?tdt?=?1?x2

?x??2??x2?1??222222(3) ??sintdt?=sin(x?1)(x?1)?=2xsin(x?1)

? 0????23x3xx?x31??a1???111?=??2??(4) ??2=dtdt?dt?dt?dt????x??x??? a? 44444 a a1?t??1?t1?t1?t1?t????=?11?x8(x)??211?x12(x)?=?32x1?x8?3x21?x12

16. 求下列极限。

1arctantdt2arctanx1?01?x(1) lim=== limlim2x?0x?0x?0x2x22x医用高等数学习题解答(第1,2,3,6章) - 29 -

?x2?x?11(2) limx=lim=lim=lim=?

x?0x(x?sinx)x?0x?0x?sinxx?01?cosx2t(t?sint)dt?x0?0t2dt17. F(x)??t?x?x2te?0dt,F?(x)?xe,F??(x)?e(1?2x),令F?(x)?0,得驻点:x?0,F??(0)?1?0x222有极小值,F(0)?0。 18. 计算下列定积分。

(1)

?9 41?231??231??231?x(1?x)dx=?x2?x2?=?92?92???42?42?=45

2??32?62?4?3?339(2)

1? 131?x2dx=arctanx?313=

?3??6??6

?(3)

??2 0211sin?cos3?d?=??2cos3?d(cos?)=?cos4?=

0440???34 02?4 0?4 0(4)

4 0tan?d?=?(sec??1)tan?d?=?tan?d(tan?)???1?42tan?d?=?tan??lncos??

?2?0?=

111?ln=(1?ln2) 222(5) (6)

?2?? 0xcosxdx=?xd(sinx)=xsinx0??sinxdx=cosx0??1?1??2

0 0??????2 0ecosxdx=?cosxd(e)=ecosx??esinxdx=?1??sinxd(e)=?1?esinx??2excosxdx

x?2xx 0?20?2x?2xx 0 0?20? 01??2?=e?1??ecosxdx, ??ecosxdx??e?1?

0 0?2?e?1e?1xe?1e?1(7) ?ln(x?1)dx=xln(x?1) 0??dx=e?1??x?ln(x?1)? 0=1

0 0x?1?2x?2x??????13?1?x3333??ln ??????lnsinxdx?xd(cotx)?xcotx?cotxdx(8) ??====??2????44332233444sinx44?3(9)

?2dx(3?x)4 15=??(3?x) 12?45d(3?x)=?5(3?x)12515=?5(1?52)=5(2?1)

e131?lnxdx=?(1?lnx)d(1?lnx)=(1?lnx)2? (10) ? 1 1x221ee(11)

?2? 0sinxdx=?sinxdx??sinxdx=?cosx0?cosx ??4=

0 ??2??2?医用高等数学习题解答(第1,2,3,6章)

1 - 30 -

(12)

? 1?1令5?4x?u1x1 15?u1?23?1dx???????dx=??10u2?u2?=

?4dx?du16 9u16?35?4x?961?ex?12ex1????x?ln(1?e)(13) ?=== 1?dxdx1?ln(1?e)?(?ln2)?lnx?? 0?0 01?ex1?e?1?e?1(14)

?1 0(1?x)dx???????dx?cosudu23令x?sinu?2 0?11??1?cos2u?2?3?cos2u?cos4u=ducosudu=????du ?? 0 082?82???4?22=?u?2?3?811?23?sin2u?sin4u?= 432?016?(15)

?dxx?1?(x?1)3令x?asinu令x?1?u,x?1?u2dx?2udu 0??????????2du?3??2arctanu== 1 11?u2634a4?22a4?21?cos4ua4?1?2?a2222422du=?u?sin4u?=(16) ?xa?xdx?????a?sinucosudu=?sin2udu=?

0 0dx?acosudu4 04 02168?4? 0a?19. 证明: (1)

??? ? ?coskxsinlxdx=?1?sin(l?k)x?sin(l?k)x?dx=0,奇函数在对称区间上的定积分为0。 ??2 ? ?1?111??sin(k?l)x?sin(k?l)x?=0 cos(k?l)x?cos(k?l)x?dx=?(2) ?coskxcoslxdx=?????22?k?lk?l???11?11?sin(k?l)x?sin(k?l)x?=0 (3) ?sinkxsinlxdx=???cos(k?l)x?cos(k?l)x?dx=?????22?k?lk?l??? ? ? ? ?20.

?a?T af(x)dx=?f(x)dx??f(x)dx??a00Ta?T Tf(x)dx

0a?T?a?T Tf(x)dx??????f(u?T)du=?f(u)du=??f(x)dx,??dx?du00a令x?u?Taa af(x)dx=?f(x)dx。

0T21. 由万有引力定律,火箭与地心距离为r时,地球对火箭的引力是F?GMm。将火箭送至离地面高为H2r处所做的功为:W??R?H RF(r)dr=GMm?R?H R11??1??1GMm?GMm?==dr??,在地球表面引??2RR?Hrr???? RR?H力就是重力,即:

1?GMm2?12W?mgR??mg?GMm?mgR, ??。 2RR?HR??101?11?cos2?t?dt=?t?sin2?t?=5。 22. Q??sin?tdt=? 0 022?2? 0102104?1423122?kb23. Q??kt(t?b)dt=k?(t?2bt?bt)dt=k?t?bt?bt?=。

0 012432??0b2b322b

医用高等数学习题解答(第1,2,3,6章) - 31 -

24. 如右图所示。

?1?32A???x2?4x?5?dx=?x3?2x2?5x?=

3?3?335525. 如下图所示。

y??x2?4x?3,y???2x?4,y?x?0?4,y?x?3??2,两条切线方程为:

?y?4x?3,其交点坐标为:?3,3?

???y??2x?6??2?A??32 0?(4x?3)?(?x 322?4x?3)dx??3(?2x?6)?(?x2?4x?3)dx

2? 3??=

?32 0?1??1?9xdx??3(x?6x?9)dx=?x3???x3?3x2?9x?=。

2?3?0?3?342323226. 如右图所示。

y3?8?a2by2?22?2?Vy?2??xdy=2??a??y?3b2??=3 ?1?b2??dy=2?a? 0 0??0??bbb27. 如右图所示。

1?3??1Vx???xdx???xdx=??x2?x5??

005?010?2114128. 如右图所示。

4422Vx?2????05?16?xdx??05?16?xdx??

??????=40??40xx???16?xdx=40??8arcsin??16?x2?=40??8?=160?2。

242??02429. 求曲线x?y?1在?0,1?上的弧长。y?1?x?1?2x?x,y??1?12??21 xl??1?(y?)dx=?012012121令x?u,x?u12??dx???????2??22udu=2?2u2?2u?1du

00dx?2uduuuxx医用高等数学习题解答(第1,2,3,6章) - 32 -

=22?102?1???u?1??22222211111?2?1??1??1???????????2??u????????ln?u????u??????u?????d?u??=22?22?2??2??2??2??2??2??2??2????2222???1111111???????????????????ln?????????2?2??2????4?2??2?8?????? ???012222??1111111?????????=22????????ln?????????4?2??2?82?2??2??????? ??????12??11=22??ln22?22812???22?l??1?(y?)dx=?012??12?1??=1?1ln???=1?ln1?2

???222?2?1?????1011?1??1??1?21令x?u,x?u2??dx??????2?2u2?2u?1du=22??u?????d?u??

00dx?2uduxx?2??2??2?2221???????12du?sec2tdt211令u??tant22??? ?44sec3tdt,而?sec3xdx=

?41?secxtanx?lnsecx?tanx??C 21l?122?secxtanx?lnsecx?tanx?=

??422?(2?ln2?1)?(?2?ln2?1)

??2?1??1????=1?1ln1?2 22?ln?=

?2?1??22?2??????1t?a?kx t?a?kta?kx?kt=== akedxee?11?e0t?0?0ttt11?x?x131. y?edx=?e=??e?1?1?=1?e?1 ?01?0030. v???????32. 判别下列各广义积分的收敛性,如果收敛,则计算广义积分。

(1)

???? 11dx=?x43x3??=??0??? 1??1?3?1 (收敛) 3(2)

?? 1??dx=2x??? (发散)

1x1??(3)

???? 01??dxdxdx?1?1?==??? (发散)

x(lnx)2?0x(lnx)2? 1x(lnx)2lnx0lnx 1(4)

?? 012xedx=?e?x2?x2??=? 011(0?1)? (收敛) 22医用高等数学习题解答(第1,2,3,6章)

?? - 33 -

(5)

??? 011eax?asinbx?bcosbx?1?xaxesinxdx=?e?sinx?cosx?=?(0?1)?,??esinbxdx=?C 22a?b222 0?x(6)

??d(x?1)dx???===??arctanx?1???x2?2x?2???(x?1)2?1??2??????????? (收敛) ?2?(7)

?1xdx1?x20=?1?x210=?(0?1)?1 (收敛)

12(8)

?2012dxdxdx?1??1??==??????? (发散)

(1?x)2?0(1?x)2?1(1?x)2?1?x?0?1?x?1b33. 当k为何值时,积分

?adx (b?a)收敛或发散?

(x?a)k当k=1时,

?bab? ? , 1?k?0bdxbdx1?1?k?ln(x?a)a??,当k?1时,?, ?(x?a)=?11?kka??b?a , 1?k?0x?a(x?a)1?ka??1?k??ba?11?kdx??b?a? , k?1,收敛=?1?k

(x?a)k? ? , k?1,发散?第六章 常微分方程习题题解(P186)

一、判断题题解

1. 错。应该是:微分方程通解中独立任意常数的个数由微分方程的阶所确定。 2. 错。有三个变量z, x, y。 3. 错。不管C取何值y??1都不为0。 x?C4. 错。如y?Cx是y???0的解,但它既不是通解也不是特解。 5. 错。它只有一个独立的任意常数。 6. 正确。它的通解为:y?sin(x?C),当x?C??时,y?1 2??p(x)y1??C2?y2??p(x)y2??0 7. 正确。(C1y1?C2y2)??p(x)(C1y1?C2y2)?C1?y18. 错。y1,y2必须是两个线性无关的解。 二、选择题题解

医用高等数学习题解答(第1,2,3,6章) - 34 -

1. 在选项(A)中有y。 2. 在选项(B)中有y。

?1

2?dx?2?3. 通解为:y?ex??xe??4. (B)是一阶微分方程 5. 将(C)代入满足方程

1?1dxx?lnx2?lnx?12?=e?xe=x?x?C?,(B) dx?C?dx?C??2??????p(x)y1??C2?y2??p(x)y2??0 6. 在选项(C)中,将C1y1?C2y2代入y??p(x)y?0后,有C1?y1??C1?C2?Q(x)?0,而Q(x)?0?C1?C2?0 7. 在选项(A)中,对x求导数:y??xxyxyxy=== 3546262662y?3Cy2y?3Cy2x?Cy?3Cy2x?Cy??=

xyxy=。

2x2?x2?y43x2?y4??三、填空题题解

21. 特征方程为:r?2r?3?0,特征根为:r??1,3,通解为:y?C1e?x?C2e3x。

2. y?e??cosxdx?e?sinxe?cosxdxdx?C?=e?sinxe?sinxesinxdx?C=e?sinx?x?C? ?????????xx?xx23. 特征方程为:r?1?0,特征根为:r??1,通解为:y?C1e?C2e,y???C1e?C2e。该曲线过

(0,0)点,且切线斜率为1,有:0?C1?C2,y?x?0??C1?C2?1,得:C1??,C2?四、解答题题解

121x1?x1,y?e?e。 222yax2?bx?ax?2ax?b?y? 1. y?ax?bx,y??2ax?b,?ax?xx22. 求下列一阶微分方程的通解或特解。

2x?yy2xy(1) y??e,edy?edx?e?12xe?C 2xxx(2) edx?dx?sin2ydy,(e?1)dx?sin2ydy?cos2y??2(e?x)?C

22(3) (4x?xy)dx?(y?xy)dy?0,

yx112222ln(4?y)(1?x)?C dy??dx??ln(4?y)??ln(1?x)?C1224?y1?x22医用高等数学习题解答(第1,2,3,6章) - 35 -

(4)

1dydy??dx?ln3y?8??x?C1?ln3y?8??3x?3C1?(3y?8)e3x?C ?3y?8,

3y?83dx323dyyy3ydydudu??3,令?u,y?xu,(5) xdy?(yx?y)dx?0,?u?x?u?x?u?u3 dxxxxdxdxdx?

dudx1?2????u??lnx?C1?u?2?2lnx?2C1?x2?y2lnx2?C 3ux2dyydyyydudxydydudu? ?yln,?ln,令?u,y?xu,?u?x?u?x?ulnu?

u(lnu?1)xdxxdxdxdxxdxxxlnu?1?C?u?eCx?1?y?xe1?Cx x(6) x?lnlnu?1?lnx?C1?(7)

dy11dzdydzzdz??1,令z?2x?y?1,?2?,?2??1??dx?z?ln1?z?x?C1 dx2x?y?1zdxdxdx1?zx?y?2x?y?1?ln2x?y?2?x?C1?2x?y?2?Ce(8)

dy1dz1dzdy1??1, 令z?x?y,?1?, 1???1?zdz??dx?z2??x?C1?(x?y)2??2x?C dxx?ydxdxdxz222??dx??dx?dydy2322x? ?2y?xcos4x,?y?xcos4x,y?ex?(9) xxcos4xedx?C???dxdxx??=elnx2??xcos4xe2lnx?2?1?dx?C=x2?cos4xdx?C=x2?sin4x?C?

?4????11??dx?lnx?1?lnx?dx?xdy111?x?x?dx?0,?y?eedx?C(10) xdy?ydx?,y?e=edx?C?? ?lnx??lnx?lnxdxxlnx????=x?1??dx?C?=x?lnlnx?C? ??xlnx?(11) y??xyydydudu1dx?,yx?1?2,令?u,y?xu, ?u?x?u?x?u??udu?yxxxdxdxdxuy2y21222?u?lnx?C1?2?lnx?C,由初始条件得:C?4。2?lnx?4

xx2(12) xy??1?4e,yx??2?ydydxeydydxyy(4?e)x?C ??????ln4?e?lnx?C?0,?y1yx4e?1x4?ey0由初始条件得:C??2(4?e)??6。(e?4)x?6

医用高等数学习题解答(第1,2,3,6章) - 36 -

11??dx?ex?dx??lnx?exlnx?11xxxx??edx?C?=e??edx?C? (13) xy??y?e?0,yx?1?3e,y??y?e,y?e?x??x?xx????=

1x??edx?C?=1?exxx?C,由初始条件得:C?2e。y??1xe?2e x??(14)

dy??ytanx?secx,yx?0?,y?e?tanxdx?secxe??tanxdxdx?C=e?lncosx?secxelncosxdx?C dx2????=

1???11?y?x???=,由初始条件得:。secxcosxdx?Cx?CC???

cosx?2?cosx?cosx2??3. 求下列特殊的二阶微分方程的通解或特解。

x(1) y???xe,y??xexdx?C1=xdex?C1=xex?exdx?C1=xe?e?C1?e(x?1)?C1

???xxxy??ex(x?1)?C1dx?C2=?(x?1)dex?C1x?C2=(x?1)ex??exdx?C1x?C2=(x?2)ex?C1x?C2

(2) y???1?y?,令y??p,y???p?,p??1?p,

??dp?dx?ln1?p?x?A?p?C1ex?1 1?py??C1ex?1dx?C2=C1ex?x?C2

?2dx(3) y???2y??4x,令y??p,y???p?,p??2p?4x,p?e?????4xe?2dxdx?C1=e?2x?4xe2xdx?C1

???=e?2x??2xd(e?2x)?C1=e?2x2xe2x??e2xd(2x)?C1=e?2x?2xe2x?e2x?C1?=2x?1?C1e?2x

???y??2x?1?C1e?2xdx?C2=x2?x?C1e?2x?C2

33dx???dx?3lnx?32?3lnxx?x?=e????????(4) xy?3y?x,令y?p,y?p,p?p?x,p?exedx?Cxedx?C1 1????x?????=x3??x?21?1?dx?C1=x3???C1?=C1x3?x2,y??C1x3?x2dx?C2=C1x4?x3?C2

3?x????(5) y???1?(y?),令y??p,y???p?,p??1?p,

22dp?dx?arctanp?x?C1,p?tan(x?C1) 21?py??tan(x?C1)dx?C2=?lncos(x?C1)?C2

(6) y???1dpdp1dy121?2????0y?p,y?pp??pdp??,令,??p?y?C1?p?333dyydyyy221?C1 2yydy1?C1y2?dx?

11?C1y2?x?C2?1?C1y2?C1x?C2?1?C1y2?(C1x?C2)2 C1(7) 1?yy???y?2?0,yx?0?1,y?x?0?0,令y??p,y???pdppdpdydp?p2?0???,1?yp

dydy1?p2y医用高等数学习题解答(第1,2,3,6章) - 37 -

?ln1?p??lny?C1?1?p?21222C1,由初始条件得:C1?1,p?2y22ydy1??dx ?122y1?y2??1?y2?x?C2?1?y?(x?C2),由初始条件得:C2?0,x?y?1

2(8) (1?x2)y???2xy?,yx?0?0,y?x?0?1,令y??p,y???p?,(1?x)p??2xp?

dp2xd ?p1?x22?lnp?ln1?x2?C1?p?C1(1?x),由y?x?0?1得:C1?1,y?(1?x2)dx?C2=x??13x?C2, 3由yx?0?0得:C2?0,y?x?13x 34. 求下列二阶常系数线性齐次微分方程的通解或特解。

?x3x2(1) y???2y??3y?0,特征方程:r?2r?3?0,特征根:r1,2??1,3。通解:y?C1e?C2e。 ?xr2?2r?3?0,(2) y???2y??3y?0,特征方程:特征根:通解:y?eC1cos2x?C2sin2x。 r1,2??1?2i。

??x32???(3) 4y?12y?9y?0,特征方程:4r?12r?9?0,特征根:r1,2?。通解:y??C1?C2x?e。

2322(4) y???y??0,特征方程:r?r?0,特征根:r1,2??1,0。通解:y?C1e?x?C2。

(5) y???3y??4y?0,yx?0?1,y?x?0?0,特征方程:r?3r?4?0,特征根:r1,2??1,4。 通解:y?C1e特解:y??x2?C2e4x,y???C1e?x?4C2e4x,由yx?0?1,y?x?0?0,得:C1?41,C2? 554?x14xe?e。 552(6) y???8y??16y?0,yx?0?2,y?x?0?5,特征方程:r?8r?16?0,特征根:r1,2?4。 通解:y??C1?C2x?e,y??C2e4x4x?4?C1?C2x?e4x,由yx?0?2,y?x?0?5,得:C1?2,C2??3

特解:y??2?3x?e。

4x(7) 4y???9y?0,yx?0?2,y?x?0?通解:y?C1cosx?C2sinx,y??特解:y?2cosx?sin332,特征方程:4r?9?0,特征根:r1,2??i。

223?33?3??C1sinx?C2cosx?,由yx?0?2,y?x?0?,得:C1?2,C2?1 2?22?23232323x 25. 设t小时细菌数为N(t),依题意可建立微分方程:

dN?kN,其中k为比例系数。解之得N?Cekt,不dt2kln2妨设N(0)?N0,则C?N0,从而有N?N0e,由已知条件2N0?N0e,得k?,那么3N0?N0e2ktln2t2,

医用高等数学习题解答(第1,2,3,6章) - 38 -

t?2ln3?3.17小时。 ln2dM?kM。解之得M?Cekt,?M(0)?m0,有C?m0,dtln26. 设第t天32P的乘余量为M(t),依题意得:

?tm01ln214.3k14.3又?M(14.3)?,?m0?m0e,得:k??,故:M?m0e。

2214.37. 设t分钟时过氧化氢的浓度为A(t)摩尔/米,依题意有:

3dA?kA,解之得A?Cekt,dt0.16510.165?0.276?Ce10k10k,,e?k?ln??0.05,?A(10)?0.276, A(20)?0.165,代入上式有:?20k0.165?Ce0.276100.276?0.2760.2762C?10k??0.46,A?0.46e?0.05t。

e0.165dT??2(T?15),则T?15?Ce?2t,由T(0)?37,得dtln2?0.347小时。 C?22,?T?15?22e?2t,当T?26时,由26?15?22e?2t,得t?2d?kt?M?Q(t)?dQ9. 设输入葡萄糖t分钟后,血液中葡萄糖含量为Q(t),依题意有:?aQ(t),即?aQ?k,

dtdt8. 设死亡后t小时尸体的温度为T(t),依题意有:解之得:Q?k?k?kk?Q???M??e?at,由初始条件:Q(0)?M代入上式得C?M?,显然当t????Ce?at,

a?a?aat???时,e?at?0 ,有limQ?k。 adM?kM,解dt10. 设t年后14C的含量为M(t),由物理学知:放射性元素的衰减速度与当时的量成正比。有

ktkt之得M?Ce,假定M(0)?M0,则C?M0 , M?M0e,当t=1时,M?M0?M0?0.999875M0,8000tt由此得到M?M00.999875?0.999875?Mln0.0624?6.24%,t??22192.13,故此人大约死M0ln0.999875于22193年前。

第四章多元函数微分学补充习题

1. 一动点M(x,y,z)距点P1(2,?3,4)的距离等于距点P2(?1,?3, 6)的距离的4倍,求这动点的轨迹方程。

2. 求中心在点 (2,?3,?1),半径为2的球面方程。

3. 求球面方程x2+y2+z2?2x?4y?4z?7=0的中心坐标和半径。 4. 球的中心在点(2,?1,3),球面通过点(5,0,?1),求这球面方程。 5. 求柱面4x2+9y2=36与各坐标轴的交点。 6. 下列各方程在空间各表示什么样的图形?

(1) z??5

(2) y?7

医用高等数学习题解答(第1,2,3,6章) - 39 -

(3) x?0

(4) 2x?7y?0 (6) x2?y2??1 (8) x2?y2?25

(5) x?y?1

(7) x2?y2?z2?16 (9) y2?2x?0

222 (10) x?y?0

?x?y?z?25 (11) ?22?x?y?9?x2y2?(12) ?9?4?1

??z?6题解

1. 由题意知: |MP1|=4|MP2|

(x?2)2?(y?3)2?(z?4)2?4(x?1)2?(y?3)2?(z?6)2

2. 设球面上任意一点的坐标为(x,y,z) ,则:

(x?2)2?(y?3)2?(z?1)2?2

2223. 配方后得:(x?1)?(y?2)?(z?2)?16,中心为(1,2,2),半径为4。

22224. 设球面上任意一点的坐标为(x,y,z) ,半径为R, 则:(x?2)?(y?1)?(z?3)?R

又球面通过点(5,0,?1),则:(5?2)2?(0?1)2?(?1?3)2?R2?R2?26,?(x?2)2?(y?1)2?(z?3)2?26 5. 与x轴交点为(3,0,0), (?3,0,0)与y轴交点为(0,2,0), (0,?2,0)与z轴无交点。

6. (1)与xoy平面平行且与z轴相交于?5的平面。(2)与xoz平面平行且与y轴相交于7的平面。(3)是xoz平面。(4)过原点且与z轴平行的平面。(5)与x轴相交于1, 与y轴相交于1, 且与z轴平行的平面。(6)平行于z轴的双曲柱面。(7)半径为4的球面。(8)半径为5且平行于z轴的柱面。(9)平行于z轴的抛物柱面。(10)过原点且与z轴平行的平面。(11)在z=?4的两个平面上分别有一个半径为3的圆,是两条曲线。(12)是z=6平面上的双曲线。

第四章多元函数微分学习题题解(P139)

一、判断题题解

1. 邻域内(x?x0)?(y?y0)?? 2. 任一路径 3. 定义域不同 4. 正确 5. limy?x?0y?k22sin(xy)?k?1?k xyx2?y2116. 设x?, y?, f(x,y)?

2xyuv医用高等数学习题解答(第1,2,3,6章)

22 - 40 -

22?1??1?u?v?????2211u2?v2???u??v?uv, ? f(x,y)?f?,????2112uv???uv?2???uv?uv??11?f??x,y?? ??7. 去掉(0,0)的xoy平面。

8. x2+y2?1 二、选择题题解 1. 有理化分母

xy?xy?1?1 (D)

xy?1?1xx2?y2x2?y2?x?z?2. ?x3. 画出草图(C)

y2yx2?y2x2?y2?2?? (C) 222x?yyx?yx2?y2x21?2x?y2yx2?yy?x2?4x?y2?0?22222224. ?1?x?y?1?y?4x,x?y?0,x?y?1 (B)

?1?x2?y2?0?5. u?x?(1,1)y?x??21212?xyx?xy?xy?e?e?5??2xy?y?e ?x?22?oy?xx?u?xy???12x??2xy?y?e??2x?y (B) ?y?2?22?6. 求驻点z? (D) x?3?3x?0,zy?3?3y?0?x??1,y??1227. z?; y?0,2 (B) x?3x?6x?9?3(x?3)(x?1), z?y??3y?6y??3y(y?2)?x??3,18. (A)定义域不同;(B)定义域不同;(C)定义域不同,对应规律也不同;(D)相等。 三、填空题题解

???1. zuv1?, z?, ut??et, vt???2e2t v2uu1?e2tt1vt12t??ut??zv??vt???2?e??(?2e)??2t?e?t?(?2e2t)??(et?e?t) zt??zueeuu?2. 将x看作常数,对y求偏导数z?y?xy22??xyy?x22

?x?1???y????

医用高等数学习题解答(第1,2,3,6章) - 41 -

?x?u2u2x??2ulnv, zv??, u?y??2, v?y??2, z?????3. zuy?zu?uy?zv?vy?2ulnv????y2???v?(?2) vy???x??2??y?xx2x2?11??????2ln(3x?2y)?2? ??2?ln(3x?2y)???yy3x?2yy?y3x?2y?x1x1y?1yyyy?1yy??????z??z??yx??xlnx,?2x?2z 4. z??(x)?yx, z?(x)?xlnxxyxxyyylnxylnx5. fx?(x,y)?e?x(?x)?xsin(x?2y)?e?xcos(x?2y)(x?2y)?x??e?xsin(x?2y)?e?xcos(x?2y)

2??????e?x?cos(x?2y)?sin(x?2y)?, fx?(0,)?e0?cos()?sin()???1

422????fy?(x,y)?e?xcos(x?2y)(x?2y)?y?2e?xcos(x?2y), fy?(0,)?2e0cos()?0

42?????x???x?x?x另解:fx?(x,)??esin(x?)???e?xcosx???ecosx?esinx??e(cosx?sinx),

4?2?fx?(0,)??e0?cos0?sin0???1

4???fy?(0,y)?(e0sin(0?2y))?y?(sin2y)??2cos2y,fy?(0,)?2cos()?0 426. y?1,x?0?y?x,x?0,如图。 xyy?xysinx3?xsiny?9ysinx 7. ??xsiny3?xsiny?9??x?y??xo?x?y?xx???x?0?sinxy? ??3?xsiny?9??6???xsiny?y?0???y??x1111111??111??8. z?y2x2,z?y?(x2y2)?y?x2(y2)?y?x2y2 x?(xy)x?y(x)x?2212121212四、解答题题解 1. 求定义域

?x?1?1?x2?0??(1)?2, D??(x,y)|x|?1,|y|?1?

y?1?y?1?0?(2)D?(x,y,z)x?0,y?0,z?0 (3)见选择题4

2.不连续区域D?(x,y)1?x2?y2?0

????医用高等数学习题解答(第1,2,3,6章) - 42 -

3.求极限

2?xy?42?xy?4?11(1) ?????(x,y)?(0,0)?

xy42?xy?42?xy?4(2) sin(xy)xsin(xy)??x??0?(x,y)?(0,0)? yxxyx2?y21(3) 4????(x,y)?(0,0)?

x?y4x2?y2(4) x?y?0?(x,y)?(?,?)?

x2?y24.求偏导数

2x2x?(1) z?x?2esiny, zy?ecosy y?1y?(2) z??yx, z?xlnx xy(3) z?x?111, z?y??

x?lnyx?lnyy11?xy2(4) z?x??y2x, z?y?x1?xy2

yy?1yy1?yzzz??(5) u???x, u?xlnx?, u?xlnx? xyzzzz21yy2, z??y2(1?xy)y?1 (6)两端取对数lnz?yln(1?xy), z?x?yx?zz1?xy1?xy?1xxy?xy?y?????? z??ln(1?xy)?y, z?zln(1?xy)? ?(1?xy)ln(1?xy)?yy????1?xy?z1?xy1?xy???v?1v?????y?uvlnu?0?vyuv?1 也可设z?u, u?1?xy, v?y, z?x?zu?ux?zv?vx?vuv?1????z??x?uvlnu?1?uv(y?zu?uy?zv?vy?vuxv?lnu) u5.求给定点的偏导数

????3???z(?,)?2cos(2??)?3, z(?,)?cos(2??)?(1) z??2cos(2x?y), z?cos(2x?y), xyxy6666222???(2) z?x?3x?2y, zy?3y?2x?2y,zx(2,?1)?12?2?14,zy(2,?1)?3?4?2??3

6.证:z?ln(x?y),z?x?11?, z?y?x?y2x11?

x?y2y医用高等数学习题解答(第1,2,3,6章) - 43 -

?x?z?x?y?zy?x?7.证:z?11111??y????x?y2xx?y2y2x?y???2x?y??1 22?xy?x?y , z?e?tdt??e?tdt??e?tdt??ae?tdt??ae?tdt,z?x?ey??e2a2x2x2y2ya?x?y?x?z??(?z)?e?e?exy222?y2

8.求二阶导数

6(x2?y2)?6x?2x6(y2?x2)6x6y6(x2?y2)?6y?2y???2(1) z?, z?y?2,z?,z? xx?yy?x?22222222(x2?y2)2(x?y)(x?y)x?yx?y0?(x2?y2)?6x?2y?12xy0?(x2?y2)?6y?2x?12xy6(x2?y2)?????2z??z??,, xyyx22222222222222(x?y)(x?y)(x?y)(x?y)(x?y)?(2) z?x?cos(x?2y), zy?2cos(x?2y)

???????z?xx??sin(x?2y),zyy??4sin(x?2y),zxy??2sin(x?2y),zyx??2sin(x?2y)

??(3) u?x?y?z, uy?x?z, uz?x?y

?????????????????u?xx?0, uyy?0, uzz?0, uxy?1, uxz?1,uyx?1, uyz?1, uzx?1, uzy?1

(4) z?x?e?1?z??exyy?xy?1xy?,z??, z??e?yxx?e2yyx?2?ey?xy?x?xy11??2?2ey,z?yy?eyy?xy?x?xyx2?4?ey?xy?2x?3?ey?xy?x22x???y4?y3?? ???xy1?2?ey?xy?1x?x????,?z?eyx2?y2y3?y???1??ey?xy1?2?ey?xy?1x????y2y3?? ??9.验证函数z?x?1?x?1???y?????21y?2, z?y?2yx?y1?x?1???y?????2?x?x??1, xv??1, yu??1, yv???1 ?,xu222yx?y??z????zux?xu?zy?yu?y?xy?x?????, z?z?x?z?y?, vxvyvx2?y2x2?y2??zv??zuy?xy?x2y2(u?v)u?v???? 2222222222x?yx?yx?y(u?v)?(u?v)u?v10.求多元复合函数的导数

(1)见(三、填空题1) (2)见(三、填空题3)

dz?z?z?yyx(1?x)exyxxx?????e?, z?y?, y?(3)z? x?x?e,22dx?x?y?x1?(xy)21?(xy)21?x2e2x1?(xy)1?(xy)(4)可设z?f(u,v), u?x1?x??fu?(u,v), zv??fv?(u,v), u???, v?x2,zu?, u?, v?xyx?2x, vy?0

yyy2医用高等数学习题解答(第1,2,3,6章) - 44 -

?z?z?u?z?v1?z?z?u?z?v?x????fu?(u,v)?2xfv?(u,v), ????2fu?(u,v) ?x?u?x?v?xy?y?u?y?v?yy??eusinv, zv??eucosv, u???, v?(5)zux?y, uy?x, vx?1y?1

?z?z?u?z?v????eusinv?y?eucosv?1?exy?ysin(x?y)?cos(x?y)? ?x?u?x?v?x?z?z?u?z?v????eusinv?x?eucosv?1?exy?xsin(x?y)?cos(x?y)? ?y?u?y?v?y11.求函数的全微分

22??(1) z?x?2x?y,zy?2xy?cosy,dz?z?xdx?zydy?(2x?y)dx?(2xy?cosy)dy

(2) z?x?1?x?1???y????2?1?y1y1?xy22,z?x?x?x?1???y????2??1?y2?xy21?xy22

dz?1x2y1?2ydx?y2?xx21?2ydy??x??dx?dy?? 2?yx??y1?2y1yexy(ex?ey)?exyexexy(y?1)ex?yeyxexy(ex?ey)?exyeyexy(x?1)ey?xex(3) z???,z? x?y?xy2xy2(e?e)(e?e)(ex?ey)2(ex?ey)2exyxyyxdz?x[(y?1)e?ye]dx?[(x?1)e?xe]dy y2(e?e)??????2222?(4) z?x?3x?2y, zy?3y?2x,dz??3x?2y?dx??3y?2x?dy

?R2?a2?z222?12.设内接长方体长,宽,高分别是x,y,z且满足:?2?1??1?

R??x???y???2??2??长方形体积为:V?xyz。F?xyz??(x?zaR14212y?z2?a2) 4yx?Fx??yz??x/2?0???1212??xy?F?xz??y/2?0??x?y?2z,代入 x?y?z2?a2?0 ?y?zy44?F??xy?2?z?0???z??y4z?z?2aa,x?y? 332另解:V?xya?1212x?y 44医用高等数学习题解答(第1,2,3,6章) - 45 -

?1??x112Vx??y?a2?x2?y2?x?44121222a?x?y?44???1???y?, V??x?a2?1x2?1y2?y2y??44121222a?x?y??44????? ????Vx??02aa 令? 解之得 x?y?, z??V?033?y13.求函数的极值

?z??x??1x?2x?y?1?0(1) z?x?xy?y?x?y?1,? ???z?2y?x?1?0?y?1?y22???z??A?z?xx?2xx?2????2??C?z?yy??2?B2?AC??3, 故 f极小值(?1,1)?0 ?z?yy?z???1?B?z???1xy?xy???z?xx??2y?a??z??ay?2xy?y?0?(2) z?axy?x2y?xy2,?x, ?z? ?x?y?yy??2x2?3???zy?ax?x?2xy?0?xy?a?2x?2y?z?22a???A?z??xx?3?aaa32a3a2?2???,当a?0时是极大值,当a?0时是极小值。 , f(,)???C?z?yy?B?AC??332739?a?B?z????xy?3?112由x?y?1得y? 14.求条件极值z?x(1?x)?x?x, z??1?2x?0?x?, 22111z????2由定理9知有极大值, 故 z极大值(,)?

22415.求条件极值F(x,y)?x?y???22?xy???1? ?ab????F?2x??0?x?ab2ax?2??2?ax?by?0???a?b? ???Fy?2y??0??2b?bx?ay?ab?y?ab???x?y?1a2?b2???ab?????A?z?xx?2, C?zyy?2, B?zxy?0, B?AC??4, 故 z极小值?z?15?14x?32y?8xy?2x2?10y316.根据条件?

?x?y?1.52a2b2?2 2a?b

医用高等数学习题解答(第1,2,3,6章) - 46 -

?Fx??14?8y?4x???0?F(x,y)?15?14x?32y?8xy?2x2?10y3??(x?y?1.5),?Fy??32?8x?30y2???0

?x?y?1.5??15y2?2x?4y?9?01?11?5y2?2y?2?0?y??0.8633 , x?0.6367 ??5?x?1.5?y第五章多元函数积分学习补充习题

1.画出积分区域,计算下列二重积分:

(1) ??xexydxdy, D为矩形:0?x?1, –1?y?0。

D(2) ??xy2dxdy, D为x2+y2?4与y轴所围成的右半区域。

D(3) ??(x2?y2)dxdy, D为:0?y?sin x , 0?x??。

D2.交换积分次序

(1) ?dy?f(x,y)dx

0 01y

(2) ?dx? 022x xf(x,y)dy

22

(3) ?dx?x2?1f(x,y)dy

?54 11?x(4) ?dx?12 01?x xf(x,y)dy

(5) ?dx?02x220f(x,y)dy?? 2dx?8?x2 0f(x,y)dy

3.用二重积分求下列曲线所围图形面积: (1) y?x , y?5x , x?1; (2) y2?x , y2?4x , x?4;

yoy(0,2)(1,0)xox2?y2?4(2,0)x(3) xy ? 4 , xy ? 8 , y ? x , y ? 2x (x > 0 , y > 0)。 (0,?1)(1,?1)(0,?2)题解

1.画出积分区域,计算下列二重积分:

(1) ??xexydxdy??dx?xexydy??(1?e?x)dx

D0?101 01yy?sinx(2) ??xydxdy??dy?D?22 24?y2 0xy2dx??y24?y2dy?0sinx222??64 15sinxo?x(3) ??(x?y)dxdy??dx?D 022? 0??11???(x?y)dy???x2y?y3?dx???x2sinx?sin3x?dx

0 033? 0????1?3??xsinxdx??sinxdx 03 0440?(?2?4)???2?

99?2y1y?x(1,1)y4y?2xy?x2(2,2)o1x医用高等数学习题解答(第1,2,3,6章) - 47 -

2.交换积分次序

(1) ?dy?f(x,y)dx??dx?f(x,y)dy

0 01y11 0x(2) ?dx? 022x xf(x,y)dy

42 2??dy?yf(x,y)dx??dy?yf(x,y)dx

0222yx2?1y?4(3) ?dx?x2?1f(x,y)dy

?54 11?x(?5,6)61?yy6y1y?x?112oy?x??1dy?-412 0 04y?1?4y?11?xf(x,y)dx??dy? 0?4y?1f(x,y)dx 11(,)2212(4) ?dx?12 0y0 xf(x,y)dy

11?y??dy?f(x,y)dx??1dy?22x22 00f(x,y)dx

o1x?51(0,?)41xy?1?xy(5) I??dx? 0f(x,y)dy??22 2dx?8?x2 0f(x,y)dy x2?y2?82??0?y?1?0?y?8?x22x积分域由两部分组成:D1:? ,D2:?0?x?2???2?x?2222y?12x??2y?x?8?y2将D?D1?D2视为Y–型区域, 则D:? ?0?y?2?D1y?5xD2I??dy? 028?y2 2yf(x,y)dx

y5210o2y22x3.用二重积分求面积

(1) y?x , y?5x , x?1;

4y2?4xS??dx?dy??4xdx?2x 0 x 015x1?2

4y?xoy2?x(2) y2?x , y2?4x , x?4;

4xS?2?dx? 042x xdy?2?4 04332xdx?x2?

3038x xo1x(3) xy ? 4 , xy ? 8 , y ? x , y ? 2x (x > 0 , y > 0)

?4y422S??dx?4dy??2 x 2 22x22 2dx?dy

y?2xy?x224???8????2x? ?dx????x?dx

2 2x???x??x?4lnx(2,2)xy?8xy?4x?2? 221????8lnx?x2?

2? 2?22o2224医用高等数学习题解答(第1,2,3,6章) - 48 -

??2?2ln2??(4ln2?2)?2ln2

第五章多元函数积分学习题题解(P162)

一、判断题题解 1.正确 2.错。缺r

3.?x?y?3?ln(x?y)?1?1?ln(x?y)?ln2(x?y) ?错 4.正确

5.如图所示,在D内有0?x+y?1?(x+y)2?(x+y)3。错 6.错。应为rdrd?

二、选择题题解

1.函数相同且关于,x,y轴对称,而D1是对称区域, D2是其中四分之一, 故I1=4I2。(C)

2.因为|x|?1,|y|?1所以x+1?0。(D) 3.如图交换积分次序(D)。

y1oD3xy1?10dx?1?x 0f(x,y)dy??dy?011?y 0f(x,y)dx

oyD11x2?y2?14.积分区域如图,将之化为极坐标:

?2 0?10dx?1?x2x 011?x2?y2dy

??d??r1?rdr?012??1???1?r2?3?322?????(C) ?06y22x?y?2?05.积分区域的面积为1,如图,选择(A)。 6.积分区域为矩形。

x?yxyedxdy?edxe????dy?eDo1x11x1000?ey10?(e?1)2 (A)

yy?1?x1oDo11?y00三、填空题题解

1x1xI??dy??1 01?y0f(x,y)dx??dy?f(x,y)dx??dx?011?xx?1f(x,y)dy 1x?1?y四、解答题题解

1. 证明:因为(1,0)在圆周(x?2)2+(y?1)2=2上,圆周上的导数为:2(x?2)+2(y?1)y?=0, y(x?2)2?(y?1)2?2y?x?1??1,故圆周上(1,0)处的切线方程为:x+y=1。而切线上方有:x+y?1,

y?0那么在区域D内也有:x+y?1。? (x+y)2?(x+y)3

?

2. 列出两个变量先后次序不同积分 (1)区域D如图:

y1?x23(x?y)dxdy?(x?y)dxdy ????DDDo13xx?y?1??Df(x,y)d???dx?011?y1 0f(x,y)dy

1yy?xy2?4x4Df(x,y)dx

o??dy?0 01xo4x医用高等数学习题解答(第1,2,3,6章) - 49 -

(2)区域D如图:

??Df(x,y)d???dx?042x xf(x,y)dy??dy?104yy2f(x,y)dx 4y(0,a)x2?y2?a2(3)区域D如图:

??f(x,y)d???dx?D?aaa2?x2 0f(x,y)dy??dy?02xaa2?y2?a2?y2f(x,y)dx (?a,0)o(a,0)x(4)区域D如图:

??f(x,y)d???dx?D1221y1xf(x,y)dy yx?221oy?xy2y?2x??1dy?1f(x,y)dx??dy?f(x,y)dx

2y12xy?1y?x3.改变积分次序

12x1(1,1)(1) ?dx?f(x,y)dy??dy?yf(x,y)dx??dy?yf(x,y)dx 0 x12x1y22 0212o1y?x(2) ?dy? 0 12y 0f(x,y)dx??dy? 133?y 0f(x,y)dx

y3y?x?3??dx?1 023?xxf(x,y)dy

24.计算二重积分 12y?x(2,1)(1) ??sinxsinydxdy D:0?x?D?2, 0?y?? ?o23xo?x?20??sinxdx?sinydy?cosx02?cosy0?(0?1)?(?1?1)?2

0??y1y?x21??(2) ??(x?y)dxdy??dx?2(x?y)dy???x2y?y2?dx

0 x02?x2?D21x21xy?x7?5??13213?3342?dx??x2?x2?x5?????x?x?x??7?140 0?22410??x2??0x1 1oxx1x(3) ??xcos(x?y)dxdy??xdx?cos(x?y)dy??xsin(x?y)0dx??(xsin2x?xsinx)dx

D?x??000 0?1?1??(xcos2x)0??cos2xdx?? ? 0xsin2xdx??2? 0xd(cos2x)??2? 0??111?????sin2x0???

242??????xsinxdx??xd(cosx)??(xcosx)?cosxdx?? ? 0? 0? 00???y(?,?)o(?,0)x???sinx0??

?yx?221oy?xyy?xy2?x1xy?112xo1x医用高等数学习题解答(第1,2,3,6章) - 50 -

3? ??xcos(x?y)dxdy???

2D2x1x2(4) ??2dxdy??x2dx?12dy

1yxyD22?1?9?1214?3? x2??dx?(?x?x)dx??x?x?????y?114?14?2??xx2??1(5) ??D1sinyy1siny11siny1dxdy??dy?2dx??(y?y2)dy??(siny?ysiny)dy??cosy0??yd(cosy)

0y000yyy111??cos1?1?(ycosy)0??cosydy?1?siny0?1?sin1

0yyy?2x2y2?11?(6) ??(x2?y2?x)dxdy??dy?y(x2?y2?x)dx???x3?y2x?x2?dy

0 032?y?2Dy?x221?13?19332??19???y?y?dy??y4?y3?? 0248?8?06??9622o2x5.用极坐标计算二重积分

(1) ??eD2?x?y22dxdy D:x?y?4

r222y222x?y?4y2x2?y2?41r22?2??e??d??erdr???(e4?1)

0002(2) ??x3y2dxdy D:x2?y2?4,x?0,y?0

2Do2xo2x72??2d??(rcos?)(rsin?)rdr??2cos?sin?d??rdr?000072323226????20cos3?sin2?d?

2?77???D20128?sin?sin??2256??(1?sin?)sin?d(sin?)??? ??7?35?01052235(3) ??ln(1?x2?y2)dxdy D:x2?y2?1,x?0,y?0

?0??2d??rln(1?r2)dr?01?1?22?01ln(1?r2)d(1?r2)?1??22122?(1?r)ln(1?r)0??(1?r)dln(1?r)??

4?0?0?44?(4) ??(4?2x?3y)dxdy D:x2?y2?9

D?1?????2ln2?1? 2ln2?2rdr????y?2?x2?y2?4?2??d??(4?2rcos??3rsin?)rdr

002?3o?2?x

本文来源:https://www.bwwdw.com/article/jwuo.html

Top