集成电路发展史

更新时间:2023-08-20 01:25:01 阅读量: 高等教育 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

记分

衡阳师范学院

《电子信息学科概论》课程学习报告

学号:11360210

班级:11电工2班

姓名: 何小冬

物理与电子信息科学系

二O一一年十二月

【摘要】 随着科学技术的发展,以集成电路为代表的微电子技术是电子信息技术的基石,而集成电路产业有代表了一个国家的科学技术和工业水平,它是材料、精密机械、化学、光学、电子学、控制、系统集成等多学科联合协同的产品。所以有必要了解它的发展及应用。

【关键词】集成电路的概述;发展史;发展趋势;应用

集成电路发展与应用 1.集成电路概述

集成电路(integrated circuit)是一种微型电子器件或部件。采用一定的工艺,把一个电路中所需的晶体管、二极管、电阻、电容和电感等元件及布线互连一起,制作在一小块或几小块半导体晶片或介质基片上,然后封装在一个管壳内,成为具有所需电路功能的微型结构;其中所有元件在结构上已组成一个整体,使电子元件向着微小型化、低功耗和高可靠性方面迈进了一大步。它在电路中用字母“IC”表示。集成电路发明者为杰克·基尔比(基于硅的集成电路)和罗伯特·诺伊思(基于锗的集成电路)。

2.集成电路的发展史 集成电路的发展经历了一个漫长的过程, 1906年,第一个电子管诞生;1912年前后,电子管的制作日趋成熟引发了无线电技术的发展;1918年前后,逐步发现了半导体材料;1920年,发现半导体材料所具有的光敏特性;1932年前后,运用量子学说建立了能带理论研究半导体现象;1947年发明了晶体管(微电子技术发展中第一个里程碑);1950年管诞生(结型晶体);1956年,硅台面晶体管问世;1960年12月,世界上第一块硅集成电路制造成功;1966年,美国贝尔实验室使用比较完善的硅外延平面工艺制造成第一块公认的大规模集成电路。1988年:16M DRAM问世(标志着进入超大规模集成电路阶段的更高阶段);1997年:300MHz奔腾Ⅱ问世;2009年:intel酷睿i系列全新推出,创纪录采用了领先的32纳米工艺,并且下一代22纳米工艺正在研发。由此集成电路从产生到成熟大致经历了如下过程:电子管——晶体管——集成电路——超大规模集成电路。

我国集成电路的发展史:我国集成电路产业诞生于六十年代,共经历了三个发展阶段:1965年-1978年:以计算机和军工配套为目标,以开发逻辑电路为主要产品,初步建立集成电路工业基础及相关设备、仪器、材料的配套条件;1978年-1990年:主要引进美国二手设备,改善集成电路装备水平,在“治散治乱”的同时,以消费类整机作为配套重点,较好地解决了彩电集成电路的国产化;1990年-2000年:以908工程、909工程为重点,以CAD为突破口,抓好科技攻关和北方科研开发基地的建设,为信息产业服务,集成电路行业取得了新的发展。

其发展的特点主要表现在:(1)特征尺寸越来越小;(2)芯片尺寸越来越大;(3)单片上的晶体管数越来越多;(4)时钟速度越来越快;(5)电源电压越来越低;(6)布线层数越来越多;(7)输入/输出(I/O)引脚越来越多。

3.集成电路发展趋势

随着集成方法学和微细加工技术的持续成熟和不断发展,以及集成技术应用领域的不断扩大,集成电路的发展趋势将呈现小型化、系统化和关联性的态势。

3.1器件特征尺寸不断缩小

自1965年以来, 集成电路持续地按摩尔定律增长, 即集成电路中晶体管的数目每18个月增加一倍。每2~3年制造技术更新一代, 这是基于栅长不断缩小的结果, 器件栅长的缩小又基本上依照等比例缩小的原则, 同时促进了其它工艺参数的提高。预计在未来的10~15年, 摩尔定律仍将是集成电路发展所遵循的一条定律, 按此规律,CMOS器件从亚半微米进入纳米时代, 即器件的栅长小于100 nm转到小于50 nm的时间将在2010年前后。

3.2 系统集成芯片(SoC)

随着集成电路技术的持续发展, 不同类型的集成电路相互镶嵌, 已形成了各种嵌入式系统(Embedded System) 和片上系统(System on Chip即oC) 技术。也就是说, 在实现从集成电路(IC)到系统集成(IS) 的过渡中, 可以将一个电子子系统或整个电子系统集成在一个芯片上, 从而完成信息的加工与处理功能。SoC作为系统级集成电路, 它可在单一芯片上实现信号采集、转换、存

储、处理和I/O等功能, 它将数字电路、存储器、MPU、MCU、DSP等集成在一块芯片上, 从而实现一个完整的系统功能。SoC的制造主要涉及深亚微米技术、特殊电路的工艺兼容技术、设计方法的研究、嵌入式IP核设计技术、测试策略和可测性技术以及软硬件协同设计技术和安全保密技术。SoC以IP复用为基础, 把已有优化的子系统甚至系统级模块纳入到新的系统设计之中, 从而实现集成电路设计能力的第4次飞跃, 并必将导致又一次以系统芯片为特色的信息产业革命。

3.3 学科结合将带动关联发展

微细加工技术的不断成熟和应用领域的不断扩大, 必将带动一系列交叉学科及其有关技术的发展, 例如微电子机械系统、微光电系统、DNA芯片、二元光学、化学分析芯片以及作为电子科学和生物科学结合的产物———生物芯片的研究开发等, 它们都将取得明显进展。

4.集成电路应用领域

4.1在计算机的应用 随着集成了上千甚至上万个电子元件的大规模集成电路和超大规模集成电路的出现,电子计算机发展进入了第四代。第四代计算机的基本元件是大规模集成电路,甚至超大规模集成电路,集成度很高的半导体存储器替代了磁芯存储器,运算速度可达每秒几百万次,甚至上亿次基本运算。

计算机主要部分几乎都和集成电路有关,CPU、显卡、主板、内存、声卡、网卡、光驱等等,无不与集成电路有关。并且专家通过最新技术把越来越多的元件集成到一块集成电路板上,并使计算机拥有了更多功能,在此基础上产生许多新型计算机,如掌上电脑、指纹识别电脑、声控计算机等等。随着高新技术的发展必将会有越来越多的高新计算机出现在我们面前。

4.2在通信上的应用

集成电路在通信中应用广泛,诸如通信卫星,手机,雷达等,我国自主研发的“北斗”导航系统就是其中典型一例。

“北斗”导航系统是我国具有自主知识产权的卫星定位系统,与美国G P S、俄罗斯格罗纳斯、欧盟伽利略系统并称为全球4 大卫星导航系统。它的研究成

功,打破了卫星定位导航应用市场由国外GPS 垄断的局面。前不久,我国已成功发射了第二代北斗导航试验卫星,未来将形成由5颗静止轨道卫星和30 颗非静止轨道卫星组成的网络,我国自主卫星定位导航正在由试验向应用快速发展。 将替代“北斗”导航系统内国外芯片的“领航一号”,还可广泛应用于海陆空交通运输、有线和无线通信、地质勘探、资源调查、森林防火、医疗急救、海上搜救、精密测量、目标监控等领域。

近年来,随着高新技术的迅猛发展,雷达技术有了较大的发展空间,雷达与反雷达的相对平衡状态不断被打破。有源相控阵是近年来正在迅速发展的雷达新技术,它将成为提高雷达在恶劣电磁环境下对付快速、机动及隐身目标的一项关键技术。有源相控阵雷达是集现代相控阵理论、超大规模集成电路、高速计算机、先进固态器件及光电子技术为一体的高新技术产物。

相比之下毫米波雷达具有导引精度高、抗干扰能力强、多普勒分辨率高、等离子体穿透能力强等特点;因此其广泛的用于末制导、引信、工业、医疗等方面。无论是军用还是民用,都对毫米波雷达技术有广泛的需求,远程毫米波雷达在发展航天事业上有广泛的应用前景,是解决对远距离、多批、高速飞行的空间目标的精细观测和精确制导的关键手段。可以预料各种战术、战略应用的毫米波雷达将逐渐增多。

4.3在医学上的应用

随着社会的发展和科学技术的不断进步,人们对医疗健康、生活质量、疾病护理等方面提出了越来越高的要求。同时,依托于高新领域电子技术的各种治疗和监护手段越来越先进,也使得医疗产品突破了以往观念的约束和限制,在信息化、微型化、实用化等方面得到了长足发展。诸多专家从医疗健康领域的需求分析入手,从集成电路技术的角度对医疗健康领域的应用的关键技术(现状和前景)做了大致的分析探讨。

随着集成电路越来越多的渗入现代医学,现代医学有了长足进步。在医学管理方面IC卡医疗仪器管理系统就是典型代表。IC卡医疗仪器管理系统集I C 卡、监控、计算机网络管理于一体,凭卡检查,电子自动计时计次,可实现充值、打印,报表功能。系统性能稳定,运行可靠;控制医疗外部关键部位,不

与医疗仪器内部线路连接,不影响医疗仪器性能, 不产生任何干扰;管理机与智能床有机结合,分析计次;影像系统自动识别,有效解决病人复查问题;轻松实现网络化管理,可随时查阅档案记录,统计任意时间内的就医人数。

在健康应用方面,临时心脏起搏器作为治疗各种病因导致的一过性缓慢型心律失常及植入永久心脏起搏器前的过渡性治疗,已广泛应用于临床工作,技术成熟。在非心脏的外科手术患者中合并有心动过缓及传导阻滞者,在围手术期可因为麻醉、药物及手术的影响,加重心动过缓及传导阻滞,增加了手术风险,限制了外科手术的开展,而植入临时心脏起搏器可有效解决上述问题,增加此类患者围手术期的安全性。

磁振造影仪是一种新型医疗设备,对于治疗许多疾病有它独特的功效。磁振造影仪(MRI)是利用磁振造影的原理,将人体置于强大均匀的静磁场中,透过特定的无线电波脉冲来改变区域磁场,藉此激发人体组织内的氢原子核产生共振现象,而发生磁矩变化讯号。因为身体中有不同的组织及成份,性质也各异,所以会产生大小不同的讯号,再经由计算机运算及变换为影像,将人体的剖面组织构造及病灶呈现为各种切面的断层影像。

身体几乎任何部位皆可执行MRI检查,影像非常清晰与细腻,尤其是对软组织的显影,不是任何其它医学影像系统所能比拟的。目前常用的MRI影像乃是依据各组织内核磁共振讯号所建立的,氢是人体组织中最多的成份,因此MRI影像可诊断各种疾病,包括脑部癌病、水肿、血梗,神经的脱鞘与脂肪不正常分布,铁成份的沉积性疾病、出血,以及心肌不正常收缩等。

MRI的优点除了不须要侵入人体,即可得人体各种结构组织之任意截面剖面图,且可获取其它众多的物理参数信息,MRI检查在国内外十几年来至今尚未发现对人体有任何副作用。

4.4在生活中的应用

提到集成电路我们就不得不提到我们的日常生活,在我们生活中与集成电路有关的产品随处可见。手机、电视、数码相机、摄像机等都与我们的生活关系越来越近。

随着技术的进步和社会的发展,手机以其独特的传播功能,日益成为人们

获取信息、学习知识、交流思想的重要工具,成为文化传播的重要平台。目前,我国已有手机用户5亿多,形成以手机为载体的网站、报纸、出版物等新的文化。手机功能和手机款式也在不断更新,以适应现代人们生活的要求。各种各样的手机接连问世,从小灵通到具有摄像功能的高新手机,手机行业正在以惊人冲击人们的思维和眼界。

在科学技术与信息同步变革的社会发展过程中,电视传播对整个社会的支配影响作用十分明显。由于电视是一种变化多端的实践、技巧和技术,于是家庭本身也变成了一种家庭技术的复杂网络。正如电通过电视、电脑、电信技术与外部重新建立新的联系一样,电视重组了家庭的时间、空间、家庭闲暇和家庭角色。正因此,电视传播逐步地融入了大众生活,使人们生活方式和价值观均发生了深刻的变化。伴随着现代社会节奏的加快,外界娱乐费用的增涨,电视传播的普及,已经为人们呆在家中提供了充足的理由和条件,足不出户却可以感受社会交谈带来的人际交际感觉。 此外,电视传播对于农村家庭的经济发展、社会的信息流通和大众家庭的教育都有很大的作用,电视传播也影响了家庭的装修风格与布局,由于电视装置在家庭中占据空间的原因,出现了电视装修墙以求美观。

4.5未来应用

应用是集成电路产业链中不可或缺的重要环节,是集成电路最终进入消费者手中的必经之途。除众所周知的计算机、通信、网络、消费类产品的应用外,集成电路正在不断开拓新的应用领域。诸如微机电系统,微光机电系统、生物芯片(如DNA芯片)、超导等,这些创新的应用领域正在形成新的产业增长点。

【结束语】:

以集成电路为基础电子信息产业成为当今世界第一大产业,在全球集成电路产业中,中国仍然处于比较弱小的地位,随着国内外半导体制现代化工艺线的不断建设和扩展,产生人才需求较大缺口,我国又是集成电路应用(消费)大国,这给我国集成电路设计和制造提供着广阔应用前景,给毕业生就业提供了难得的机遇。另外,学习集成电路技术,对于培养多学科交叉的创新型高水平人才是非常要的。

本文来源:https://www.bwwdw.com/article/jv6j.html

Top