Matlab模拟退火算法

更新时间:2023-06-07 14:30:01 阅读量: 实用文档 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

Matlab模拟退火算法——走过数模
模拟退火算法

模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。根据Metropolis准则,粒子在温度T时趋于平衡的概率为e-ΔE(kT),其中E为温度T时的内能,ΔE为其改变量,k为Boltzmann常数。用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,对当前解重复“产生新解→计算目标函数差→接受或舍弃”的迭代,并逐步衰减t值,算法终止时的当前解即为所得近似最优解,这是基于蒙特卡罗迭代求解法的一种启发式随机搜索过程。退火过程由冷却进度表(Cooling Schedule)控制,包括控制参数的初值t及其衰减因子Δt、每个t值时的迭代次数L和停止条件S。

模拟退火算法的模型

模拟退火算法可以分解为解空间、目标函数和初始解三部分。

 模拟退火的基本思想

  (1) 初始化:初始温度T(充分大),初始解状态S(是算法迭代的起点), 每个T值的迭代次数L

  (2) 对k=1,……,L做第(3)至第6步:

  (3) 产生新解S′

  (4) 计算增量Δt′=C(S′)-C(S),其中C(S)为评价函数

  (5) 若Δt′0则接受S′作为新的当前解,否则以概率exp(-Δt′T)接受S′作为新的当前解.

  (6) 如果满足终止条件则输出当前解作为最优解,结束程序。

终止条件通常取为连续若干个新解都没有被接受时终止算法。

  (7) T逐渐减少,且T-0,然后转第2步。

算法对应动态演示图:

模拟退火算法新解的产生和接受可分为如下四个步骤:

  第一步是由一个产生函数从当前解产生一个位于解空间的新解;为便于后续的计算和接受,减少算法耗时,通常选择由当前新解经过简单地变换即可产生新解的方法,如对构成新解的全部或部分元素进行置换、互换等,注意到产生新解的变换方法决定了当前新解
的邻域结构,因而对冷却进度表的选取有一定的影响。

  第二步是计算与新解所对应的目标函数差。因为目标函数差仅由变换部分产生,所以目标函数差的计算最好按增量计算。事实表明,对大多数应用而言,这是计算目标函数差的最快方法。

  第三步是判断新解是否被接受,判断的依据是一个接受准则

,最常用的接受准则是Metropo1is准则

若Δt′0则接受S′作为新的当前解S,否则以概率exp(-Δt′T)接受S′作为新的当前解S。

  第四步是当新解被确定接受时,用新解代替当前解,这只需将当前解中对应于产生新解时的变换部分予以实现,同时修正目标函数值即可。此时,当前解实现了一次迭代。可在此基础上开始下一轮试验。而当新解被判定为舍弃时,则在原当前解的基础上继续下一轮试验。

  模拟退火算法与初始值无关,算法求得的解与初始解状态S(是算法迭代的起点)无关;模拟退火算法具有渐近收敛性,已在理论上被证明是一种以概率l

收敛于全局最优解的全局优化算法;模拟退火算法具有并行性。

模拟退火算法的简单应用

  作为模拟退火算法应用,讨论货郎担问题(Travelling Salesman Problem,简记为TSP):

设有n个城市,用数码1,…,n代表。城市i和城市j之间的距离为d(i,j)

i, j=1,…,n.TSP问题是要找遍访每个域市恰好一次的一条回路,且其路径总长度为最短.。

  求解TSP的模拟退火算法模型可描述如下:

  解空间 解空间S是遍访每个城市恰好一次的所有回路,是{1,……,n}的所有循环排列的集合,S中的成员记为(w1,w2 ,……,wn),并记wn+1= w1。初始解可选为(1,……,n)目标函数 此时的目标函数即为访问所有城市的路径总长度或称为代价函数:   我们要求此代价函数的最小值。

  新解的产生 随机产生1和n之间的两相异数k和m,若km,则将

  (w1, w2 ,…,wk , wk+1 ,…,wm ,…,wn)

  变为:

  (w1, w2 ,…,wm , wm-1 ,…,wk+1 , wk ,…,wn).

  如果是km,则将

  (w1, w2 ,…,wk , wk+1 ,…,wm ,…,wn)

  变为:

  (wm, wm-1 ,…,w1 , wm+1 ,…,wk-1 ,wn , wn-1 ,…,wk).

  上述变换方法可简单说成是“逆转中间或者逆转两端”。

  也可以采用其他的变换方法,有些变换有独特的优越性,有时也将它们交替使用,得到一种更好方法。

  代价函数差 设将(w1, w2 ,……,wn)变换为(u1, u2 ,……,un), 则代价函数差为:

根据上述分析,可写出用模拟退火算法求解TSP
问题的伪程序:

Procedure TSPSA

 begin

  init-of-T; { T为初始温度}

  S={1,……,n}; {S为初始值}

  termination=false;

  while termination=false


 begin

    for i=1 to L do

      begin

        generate(S′form S); { 从当前回路S产生新回路S′}

        Δt=f(S′))-f(S);{f(S)为路径总长}

        IF(Δt0) OR (EXP(-ΔtT)Random-of-[0,1])

        S=S′;

        IF the-halt-condition-is-TRUE THEN

        termination=true;

      End;

    T_lower;

   End;

 End

  模拟退火算法的应用很广泛,可以较高的效率求解最大截问题(Max Cut Problem)、0-1背包问题(Zero One

Knapsack Problem)、图着色问题(Graph Colouring Problem)、调度问题(Scheduling

Problem)等等。



----------------------------------------------





模拟退火算法的参数控制问题

  模拟退火算法的应用很广泛,可以求解NP完全问题,但其参数难以控制,其主要问题有以下三点:

  (1) 温度T的初始值设置问题。

  温度T的初始值设置是影响模拟退火算法全局搜索性能的重要因素之一、初始温度高,则搜索到全局最优解的可能性大,但因此要花费大量的计算时间;反之,则可节约计算时间,但全局搜索性能可能受到影响。实际应用过程中,初始温度一般需要依据实验结果进行若干次调整。

(2) 退火速度问题。

模拟退火算法的全局搜索性能也与退火速度密切相关。一般来说,同一温度下的“充分”搜索(退火)是相当必要的,但这需要计算时间。实际应用中,要针对具体问题的性质和特征设置合理的退火平衡条件。

(3) 温度管理问题。

 温度管理问题也是模拟退火算法难以处理的问题之一。实际应用中,由于必须考虑计算复杂度的切实可行性等问题,常采用如下所示的降温方式:

T(t+1)=k×T(t)

式中k为正的略小于1.00的常数,t为降温的次数。








Matlab源代码:
main.m
zuobiao=[0.37 0.75 0.45 0.76 0.71 0.07 0.42 0.59 0.32 0.6 0.3 0.67 0.62 0.67 0.20 ...
0.35 0.27 0.94 0.82 0.37 0.61 0.42 0.6 0.39 0.53 0.4 0.63 0.5 0.98 0.68;
0.91 0.87 0.85 0.75 0.72 0.74 0.71 0.69 0.64 0.64 0.59 0.59 0.55 0.55 0.5...
0.45 0.43 0.42 0.38 0.27 0.26 0.25 0.23 0.19 0.19 0.13 0.08 0.04 0.02 0.85]
plot(zuobiao(1,),zuobiao(2,),'g'),hold on
plot(zuobiao(1,),zuobiao(2,))

length=max(size(zuobiao));
%求初始距离..

zhixu=randperm(length) %随机生成一个路线经过点的顺序
temp=zuobiao(1,);
newzuobiao(1,)=temp(zhixu);
temp=zuob

iao(2,);
newzuobiao(2,)=temp(zhixu);
newzuobiao
f=juli(newzuobiao)


%参数定义区--------------------------------------
%初始温度为10000
tmax=100;
tmin=0.001;
%温度下降速率
down=0.95;


%退火算法的函数..
figure
t=tmax;
while ttmin

for n=1500
newzuobiao=newpath(zuobiao,length);
newf=juli(newzuobiao);
if newff
zuobiao=newzuobiao;
f=newf;
elseif randexp(-(newf-f)t)
zuobiao=newzuobiao;
f=newf;
end
end
huatu=[zuobiao,zuobiao(,1)];
plot(huatu(1,),huatu(2,)),hold on
plot(huatu(1,),huatu(2,),'ro'),hold off
pause(0.00001)
t=tdown
f
end



newpath.m
function zuobiao=newpath(zuobiao,length)
%随机交换两个点的坐标..
a=ceil(rand(1,2)length);
qian=a(1);
hou=a(2);
temp=zuobiao(,qian);
zuobiao(,qian)=zuobiao(,hou);
zuobiao(,hou)=temp;

juli.m
function lucheng=juli(zuobiao)
length=max(size(zuobiao));
s=0;
for i=2length
s=s+sqrt(sum((zuobiao(,i)-zuobiao(,i-1)).^2));
end
if length~=2
s=s+sqrt(sum((zuobiao(,1)-zuobiao(
,length)).^2));
end
lucheng=s;



为了您的安全,请只打开来源可靠的网址
打开网站 取消
来自 ycdoitblogitemf8d7df2b68a00192023bf6fd.html

本文来源:https://www.bwwdw.com/article/jui1.html

Top