数学思维训练导引(四年级)

更新时间:2024-06-15 12:42:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

第1讲 整数计算综合

内容概述

熟练运用已学的各种方法解决复杂的整数四则运算问题;学会利用加减抵消、分组计算方法处理各种数列的计算问题。学会处理“定义新运算”的问题,初步体会用字母表示数。

典型问题 兴趣篇

1. 计算:(1) 121×32÷8; (2) 4×(250÷8) (3) 25×83×32×125 2. 计算:(1) 56×22+56×33+56×44 (2) 222×33+889×66. 3. 计算:(1) 37×47+36×53 (2) 123×76-124×75。 4. 计算:100-99+98-97+96-95+?+12-11+10.

5. 计算:50+49-48-47+46+45-44-43+?-4-3+2+1. 6. 计算:(1+3+5+7+?+199+201) -(2+4+6+8+?+198+200). 7. 计算:1+2+3+4+?+48+49+50+49+48+?+4+3+2+1.

8. 下面是一个叫做“七上八下”的数字游戏。游戏规则是:对一个给定的数,按照由若干个7和8组成的口令进行一连串的变换。口令“7”是指在这个数中插入一个数字,使得新生成的数尽量大;口令“8”是指将这个数中的一个数字去掉,也要使新生成的数尽量大。例如:给出的数是1995,口令是“8→7,”在第一个口令“8”发出后变成995,在第二个口令“7”发出后变成9995。 如果给出数“6595”以及口令“8→7→8→7→8→8”,问:变换后依次得到的6个数的和是多少? 9. 规定运算“?”为:a?b= (a+1) ×(b-1), 请计算:(1)8?10; (2) 10?8. 10. 规定运算“?”为:a?b=a×b-(a+b), 请计算: (1) 5?8; (2) 8?5; (3) (6?5)4; (4)6? (54) 拓展篇

1. 计算:(1)72×27×88÷(9×11×12); (2) 31×121-88×125÷(1000÷121). 2. 计算:(1) 555×445-556×444; (2) 42×137-80÷15+58×138-70÷15. 3. 计算:20092009×2009-20092008×2008-20092008. 4. 计算:1+2-3+4+5-6+7+8-9+??+97+98-99.

5. 计算:100×99-99×98-98×97-97×96-96×95-95×94+?+4×3-3×2-2×1.

6. 在不大于1000的自然数中,A为所有个位数字为8的数之和,B为所有个位数字为3的数之和. A与B的差是多少?

7. 求图1-1中所有数的和.

8. 已知平方差公式:a?b?(a?b)?(a?b),计算:

22202?192?182?172?162?152???22?12

1 / 104

9. 计算:951×949-52×48.

10. 规定运算“?”为:a?b=a+2b-2, 计算:(1) (8?7) ?6;

(2) 8?(7?6)

11. 规定运算“?”为:a?b=(a+1) ×(b-2). 如果6? (??5)=91, 那么方格内应该填入什么数?

12. 规定:符号“?”为选择两数中较大的数的运算,“?”为选择两数中较小的数的运算,例如:3?5=5,3?5=3请计算:1?2?3?4?5?6?7???100.(运算的顺序是从左至右)

超越篇

1. 观察下面算式的规律:

2000+1991-1988-1982+1976+1970-1964-1958+1952+1946-1940-1934+??一直这样写下去,那么最后4个自然数分别是哪4个?符号分别是加还是减?算式最终的结果为多少?

2. 从1, 2, ??, 9, 10 中任意选取一个奇数和一个偶数,并将两数相乘,可以得到一个乘积,把所有这样的乘积全部加起来,总和是多少?

3. 计算:1-3+6-10+15-21+28-??+4950.

4. 已知平方差公式:a2?b2?(a?b)?(a?b), 计算:

1002?992?982?972?962?952?942?932???42?32?22?12

5. a?b表示从a开始依次增加的b个连续自然数的和,例如:4?3=4+5+6=15, 5?4=5+6+7+8=26, 请计算:(1) 4?15 (2) 在算式(??7)?11=1056中,方框里的数应该是多少?

6. 定义两种运算:a?b=a-b+1, a?b=a×b+1, 用“?”、“?”和括号填入下面的式子,使得等式成立(不能用别的计算符号):7 3 4 5=2

2 / 104

7.现定义四种操作的规则如下: ①“一分为二”:如果一个自然数是偶数,就把它除以2;如果是奇数,就先加上1, 然后除以2. 例如从16可以得到8,从27可以得到14. ②“丢三落四”:如果一个自然数中包含数字 “3”或“4”,就将其划掉,例如从5304可以得到50,从408可以得到8. (不含数字3和4的自然数不能进行“丢三落四”操作) ③“七上八下”:如果一个自然数中包含数字“7”,就将所有“7”移到最左边;如果一个自然数中包含数字“8”,就将所有“8”移到最右边。例如从98707可以得到77908,从802可以得到28. (不含数字7和8的自然数不能进行“七上八下”操作) ④“十全十美”:将一个自然数的个位数字换成0. 例如从111可以得到110,从905可以得到900. (个位是0的自然数不能进行“十全十美”操作)

(1) 请写出对4176依次进行③①③②④操作后的结果: (2) 从655687开始,最少经过几次操作以后可以得到0?

(3) 一个三位数除了“丢三落四”外,其他三个操作各进行一次之后得到的结果是

8. 求有多少个这样的三位数.

图1-2是同学们都很熟悉的九九乘法口诀表,表中所有乘积的总和是多少?

第2讲 和差倍问题三

内容概述

数量关系复杂,需要深入分析的和差倍问题;由于数量大小改变,而产生倍数关系变化的问题;需要利用比较或分组的方法进行分析的问题。 典型问题

兴趣篇

1. 有长、短两根竹竿,长竹竿的长度是短竹竿长度的3倍. 将它们插入水塘中,插入水中的长度都是40厘米,而露出水面部分的总长为160厘米. 请问:短竹竿露在外面的长度是多少厘米?

2. 李师傅某天生产了一批零件,他把它们分成了甲、乙两堆.如果从甲堆中拿出15个放到乙堆中,则两堆零件的个数相等;如果从乙堆中拿出15个放到甲堆中,则甲堆零件的个数是乙堆的3倍. 问:甲堆原来有零件多少个?李师傅这一天共生产零件多少个?

3. 一个六边形广场的边界上插有336面红旗和黄旗. 六边形的每个顶点处都插有红旗,每条边上的红旗数目一样多,并且每两面红旗间插有相同数目的黄旗. 已知每条边上黄旗比红旗的2倍还多12面,那么每两面红旗间插有几面共旗?

3 / 104

4. 爸爸和冬冬一起搬砖,爸爸所搬的砖头数是冬冬的3倍. 冬冬觉得自己搬的砖头太少了,又搬了24块砖头,于是爸爸所搬的砖头数是科科的2倍. 请问:最后爸爸和冬冬各搬了多少块砖?

5. 四年级三班买来单价为5角的练习本若干. 如果将这些练习本只分给女生,平均每人可得15本;如果将这些练习本只分给男生,平均每人可得10本. 请问:将这些练习本平均分给全班同学,每人可以得到多少本?此时每人应付多少钱?

6. 有甲、乙、丙三所小学的同学来参加幼苗杯数学邀请赛,其中甲校参赛人数比乙校多5人,比丙校多7人. 如果乙、丙两校一共有40人参加比赛,那么三所学校各有多少人参加比赛?

7. 有三个箱子,如果两箱两箱地称它们的重量,分别是83千克、85千克和86千克. 问:其中最轻的箱子重多少千克?

8. 小悦和妈妈一起去家具城挑选客厅的桌椅. 她们看中了两款,这两款桌椅都包含一张桌子和若干把椅子.其中桌子的价钱一样,每把椅子的价钱也一样. 第一款桌椅中有6把椅子,总价为700元;第二款桌椅中有9把椅子,总价为970元. 请问:一张桌子的价钱是多少元?

9. 小白兔与小黑兔一块去森林里采摘了一些胡萝卜,回家后它们就把胡萝卜平分了. 小白兔当天吃了4个胡萝卜,小黑兔则一口气吃了12个胡萝卜. 小白免往后每天都吃4个胡萝卜;小黑兔因为第一天吃得太多,往后每天只吃2个胡萝卜,最后它俩同时把自己的胡萝卜吃完. 小白兔与小黑兔一共采摘了多少个胡萝卜?

10. 一家汔车销售店有若干部福特汽车和丰田汽车等待销售. 福特汽车的数量是丰田汽车的3倍.如果每周销售2辆丰田汽车和4辆福特汽车,丰田汽车销售完时还剩下30辆福特汽车. 请问:原有丰田汽车和福特汽车各多少辆?

拓展篇

1. 李师傅将甲、乙两种零件加工成产品,开始时甲零件的数量乙零件的2倍,每件产品需要5个甲零件和2个乙零件,生产30件产品后,剩下的甲、乙零件数量相等,请问:李师傅还可以生产几件产品?

4 / 104

2. 学校门口放有红、黄、蓝三种颜色的花. 其中黄花的盆数最多,既是红花盆数的4倍,也是蓝花盆数的3倍,如果蓝花比红花多20盆,请问:学校门口一共有多少盆花?

3. 动物园的饲养员给三群猴子分花生. 如果只分给第一群,则每只猴子可得12粒;如果只分给第二群,则每只猴子可得15粒;如果只分给第三群,则每只猴子可得20 粒,试问:现在将这些花生平均分给三群猴子,每只可得多少粒?

4. 养鸡场有东、西两院,西院鸡的只数是东院的3倍. 一天有10只鸡从西院跑到东院,这时西院鸡的数是是东院的2倍,那么现在东、西两个院子各有多少只鸡?

5. 爸爸和冬冬一起搬砖,原计划爸爸搬其中的一些,冬冬搬剩余的砖头,父子二人发现,如果爸爸帮冬冬搬10块,那么爸爸所搬的砖头数是冬冬的5倍;如果冬冬帮爸爸搬10 块,那么爸爸所搬的砖头数是冬冬的2倍. 请问:原计划爸爸搬多少块砖,冬冬搬多少块砖?

6. 甲班和乙班共83人,乙班和丙班共86人,丙班和丁班共88人. 问:甲班和丁班共多少人?

7. 小悦、冬冬、阿奇三人去称体重,由于秤出了点问题,只能准确称出60千克与90千克之间的重量,因此他们三人只能两个两个称重. 如果小悦和冬冬一起称,总重量是73千克;冬冬和阿奇一起称,总重量是80千克;阿奇和小悦一起称,总重量是75千克,三人的体重分别是多少千克?

8. 四年级有甲、乙、丙、丁四个班,不算甲班,其余三个数的总人数是131人;不算丁班,其余三个班的总人数是134人;乙、丙两班的总人数比甲、丁两班的总人数少1人. 问:这四个班共有多少人?

9. 某学生到工厂勤工俭学,按合同规定,干满30天,工厂将给他一套工作服和70玩钱,但由于学校另有安排,他工作了20天后便中止了合同,工厂只给他一套工作服和20元钱. 请问:这套工作服值多少元?

5 / 104

本文来源:https://www.bwwdw.com/article/juc3.html

Top