纳米传感器中英文对照外文翻译文献

更新时间:2023-11-25 07:56:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

中英文对照外文翻译

(文档含英文原文和中文翻译)

生物分子-功能性纳米线:从纳米传感器到纳米载体

摘要:纳米线特别的属性为设计新一代具有新奇功能的设备及系统提供了极佳前景。这篇回顾总结了近期在制备纳米线-生物材料混合物和他们作为纳米传感器,纳米制动器和纳米载体方面的科学研究成果。纳米线可以通过与各种生化药剂发生不同的化学反应来实现功能化。纳米线与生化药剂如此的结合获得了前所未有的混合系统,这种系统结合了生化药剂的催化剂特性和纳米线显著的电子和结构特性。受体-功能化的纳米线在实时无标记电子检测生物分子的相互作用方面的优点是格外显著的。这种独一无二的属性决定了纳米线的微结构,特别是多节纳米线的设计,为确定不同生物分子结构提供了准确的空间领域。这使得获得的纳米线能同时操作几项任务,并使得其在纳米生物电子和纳米医药方面的重要运用成为可能。例如,运用于纳米医药方面的多节纳米线可以选择目标,治疗和成像。不同生物识别的这种空间定位也提供了一种极大的可能:在先决设计中实现纳米线的自组。这种设计纳米线-生物材料混合系统和设备的可能性和挑战性将在接下来的部分中讨论。 1.为什么是纳米线

纳米线在构建纳米技术中发挥了极其重要的作用。例如一维纳米线最近获得了极

1

大的关注因为他们在不同领域的应用潜力。这种关注主要体现在纳米线的高厚径比(和新奇的电子传导和光学特性)与极大的外表面有关的多功能性(多节)——因为包含了各种材料所以具备了各种功能。不同厚径比的纳米线很好的协调了他们的光电特性。其中一个制备多节纳米线的常用途径包括电沉积进一个主要多孔薄膜样板的圆柱形纳米孔,然后样板溶解。这种样板主导的电沉积代表了一种先进的方法去制备直径10-300nm长度50-2000nm的纳米线。可以电镀的材料包括金属,高分子或者金属氧化物,他们可以作为所获得纳米线的一部分。这种样板辅助电化学综合体对于制备广泛的化学组成成分非常有用,包括一种金属-半导体-聚合物纳米线。多节纳米线可以通过几种材料有序的电沉积来制备,通过放入样板孔中实现不同的先决长度(图1)。每个纳米线的不同片段具有独特的化学物理性质。这样还可以用不同材料(因此还有特性)的单元纳米线段来设计复合纳米线。这种特性决定了多节或者复合纳米线的微结构,使得获得的纳米线能同时进行多个任务,还可以制备各种纳米级设备例如感应器,燃料细胞,制动器和纳米发动机。

图1.多节纳米线的薄膜样板电化学制备

纳米线和生物分子的结合产生了新型混合系统:结合了生物材料催化特性和纳米线良好的电子和结构特点。使用准确绑定于不同片段的分子连接体,可以沿着含有不同生物分子和其他材料的纳米线寻找特定功能的单一片段。这种修改不同生物材料组成的纳米线表面的能力,和各种生物分子的空间定位特性,为设计多功能纳米线-生物材料混合系统提供了极大的保证,包括从纳米感应器到纳米传送汽车的多种重要应用。它还为纳米线自组成先决结构和先进纳米循环中的控制定位提供了极大的可能。

这篇回顾总结了具有生物分子的纳米线的功能,最近制备纳米线-生物材料混合物的科学成果,和这种混合物在不同重要领域的可能运用,包括纳米感应器,纳米制动器,和纳米医药。

2

2.表面功能化的纳米线

纳米线通过各种建立的过程可以携带不同的生物分子,包括酶、抗体、核酸。这种功能化传授催化和识别/绑定属性到这些一维纳米材料。根据特定的纳米线材料,不同的功能化方案可以用于限制不同的生物分子到表面。而分子连接器(与捕获的生物分子发生交联作用)是最常用的,与生物分子直接功能化也可以使用。由于不同的相应部分的表面化学,运用样板制造的多节纳米线会导致空间控制功能化。单个片段可以按预先设计的空间控制顺序被修改。这种定位功能依赖于单一材料片段的不同反应和沿着纳米线精确绑定于不同片段的分子连接器。样板制备方法促进了纳米线边缘的生物功能化,满足了各种(端到端)组装应用的需要。

各种连锁化学反应可以用来使具有不同生物分子的单一片段依照相应段材料的特定表面化学反应实现功能化(图2)。例如,烷基硫醇与金易结合,组氨酸与镍易结合,而氰化物与铂易结合。多节纳米线的这种选择性功能化需要注意相应绑定的亲和力和功能化的顺序。使用烷基硫醇的多功能性形成自组装层源于它们的能力,可以进一步修改为化学或生物表面活性层(通过共价耦合不同材料的功能末端)。例如,不同的羧基或氨基功能团可用于交联胺或通过碳水化合物调节的酯化或酰胺化反应捕获的生物分子的羧基酸基团。生物素连接器可以嵌入传导聚合物段而醛组可以被整合到硅纳米线的表面。

直接与生物分子功能化的纳米线(没有链接器)也可以实现。例如,硫醇化的DNA自组装在金表面,而酶可以在聚合物纳米线的电聚合生长期间被截留。在后一种情况下, 用于溶解膜模板的苛刻化学条件可能对生物催化反应的结果产生深远的(不良)影响。此外,导电聚合物纳米线可以在电聚合化和样板溶解步骤之后(通过某些群体,如。,羧基单体) 功能化。各种生物医学应用将受益于纳米线表面上大量的亲水基团(比如半个。聚(乙二醇),乙醇胺),从而使其抗蛋白质。表面化学还应该确保正确的方向,因此需要一个具有良好生物活性和可接受的受体(特别是在生物亲和性实验中)。在黄金纳米线上的硫烷混合层尤其具有吸引力,它控制受体取向而减少非特异性吸附的影响。

图2. 选择性功能化的多节的金属纳米线与寡核苷酸和蛋白质通过不同的连接器连接。这样的空间局部功能化给予以纳米线为基础的设备多功能性。

3

3.以纳米线生物材料为基础的亲和力生物传感器

纳米线独特的性质为生物识别接口从电子信号转导到强大的生物电信号传感器的设计提供出色的前景。一维(1 d)半导体或导电聚合物纳米线等电子检测尤其具有吸引力,他们能无标签实时监测生物分子的相互作用。因为纳米线的表面体积比高和新颖的电子传递性能,他们的电子电导受到轻微的表面扰动的强烈影响。把目标生物分子绑定到功能化受体的半导体纳米线从而导致在“大部分”纳米线结构中载体的损耗或积累, 因此产生了不同的电导率信号。与其相反的是,平面薄膜半导体器件只有表面受到绑定事件的影响。这样的纳米线传感器从而直接提供对生物亲和力相互作用的无标签的实时电检测。实时监控功能还能通过高度可逆的电导率变化显示来自表面受限受体的目标分析物的绑定(捕获)和解脱(释

放)(图3)。

图3. 单个病毒从一个硅纳米线设备的抗体受体上绑定和解脱并随时间变化产生相应的电导率变化。

纳米线的极小规模也显示出对大量减少纳米传感器阵列的极大潜力。它能把大量的传感元件安装到一小块地方用于创建高度密集阵列设备。尽管仍然面临挑战,就装配可控性和连接性来讲,纳米线是优于类似的1 (D) 碳纳米管的。单个纳米线感应器元件和不同表面受体的功能化导致不同的目标生物分子多组分生物检测和为疾病生物标志物的筛选提供了广阔的前景。2001年的前辈的开创性工作说明了这些功能:利用掺硼硅纳米线来监控不同的生物分子的相互作用。这种半导体纳米线的使类型和掺杂剂级别相适应并控制焊丝直径的能力,尤其引人瞩目,这优化他们的电气性能,因此还优化灵敏度。

4.基于纳米线的DNA检测和组装

功能化的半导体纳米线传感器与寡核苷酸探针提供一个有吸引力的方案用于无标记电子检测DNA杂交。Lieber的团队修改硅纳米线与肽核酸(PNA)受体用来

4

检测基因突变,其占囊性纤维化病例诱发率的75%左右。由于提高了PNA探针识别不匹配的能力,这种PNA功能化的纳米线能够区分在囊性纤维化跨膜受体(CFTR)基因中的野生型DF508突变体。通过干预一个亲和素蛋白质层,PNA受体连接到纳米线表面。这个概念被GAO et al扩展用来设计一种依赖浓度的电阻来显示PNA捕捉探针-功能化硅纳米线阵列,其可以在一个大动态范围内响应,检测极限高达10fm。表面固定通过末端为氨基的PNA探针与硅烷化的硅纳米线阵列的醛基结合来实现。

Ozkan的团队报道了三段式纳米线的使用,由碲化铬-黄金-碲化铬组成和电化学有序沉积而成, 作为场效应晶体管(FET)用于DNA杂交的超灵敏检测。黄金段提供了有利的表面功能化属性用于连接硫醇化的 ssDNA探针,在半导体CdSe段显示出引人瞩目的电气性能和调变纳米线电导性。希斯的小组报道了使用烷基化无氧硅纳米线在一个生理相关的媒介内实时测量DNA杂交。这些DNA化验使用的末端为氨基的烷基层是直接产生在末端为氢基的硅纳米线上的。实时DNA检测功能如图4所示。

图4.在硅纳米线传感器上不同浓度DNA目标物的实时监测。

除了用作电子传感器, 携带ssDNA的纳米线可以用作放大标记杂交检测。例如,我们的团队展示了使用金-铟纳米线的电化学检测DNA杂交。在这里,长段铟提供了一个高度敏感的剥离伏安法探针检测而短的黄金段用于耦合二次硫醇化的DNA探针。

DNA—功能化纳米线的杂交和空间定位表面功能化的多节纳米线在提供表面图案的设计和创建预定的两或三维纳米线的架构方面也大有前途。秩序井然的纳米结构的创建是以纳米线为基础的微型设备的许多成功应用的关键。Mallouk的团队发布了金纳米线的杂交-诱导DNA组装成预定设计的图案。这种DNA为向导的纳米线组装应该使他们作为构建微型设备模块和纳米循环元素的使用更容易。在最近来自宾夕法尼亚州大学的另一个贡献中,Keating的组描述了使用电场力来把寡核苷酸官能化的纳米线的不同部分导到一个微芯片的特定区域同时提供

本文来源:https://www.bwwdw.com/article/jqst.html

Top