模糊数学+变分法+Matlab基础教程

更新时间:2023-10-01 14:29:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

绪言

任何新生事物的产生和发展,都要经过一个由弱到强,逐步成长壮大的过程,一种新理论、一种新学科的问世,往往一开始会受到许多人的怀疑甚至否定。模糊数学自1965年L.A.Zadeh教授开创以来所走过的道路,充分证实了这一点,然而,实践是检验真理的标准,模糊数学在理论和实际应用两方面同时取得的巨大成果,不仅消除了人们的疑虑,而且使模糊数学在科学领域中,占有了自己的一席之地。

经典数学是适应力学、天文、物理、化学这类学科的需要而发展起来的,不可能不带有这些学科固有的局限性。这些学科考察的对象,都是无生命的机械系统,大都是界限分明的清晰事物,允许人们作出非此即彼的判断,进行精确的测量,因而适于用精确方法描述和处理。而那些难以用经典数学实现定量化的学科,特别是有关生命现象、社会现象的学科,研究的对象大多是没有明确界限的模糊事物,不允许作出非此即彼的断言,不能进行精确的测量。清晰事物的有关参量可以精确测定,能够建立起精确的数学模型。模糊事物无法获得必要的精确数据,不能按精确方法建立数学模型。实践证明,对于不同质的矛盾,只有用不同质的方法才能解决。传统方法用于力学系统高度有效,但用于对人类行为起重要作用的系统,就显得太精确了,以致于很难达到甚至无法达到。

精确方法的逻辑基础是传统的二值逻辑,即要求符合非此即彼的排中律,这对于处理清晰事物是适用的。但用于处理模糊性事物时,就会产生逻辑悖论。如判断企业经济效益的好坏时,用“年利税在100万元以上者为经济效益好的企业”表达,否则,便是经济效益不好的企业。根据常识,显而易见:“比经济效益好的企业年利税少1元的企业,仍是经济效益好的企业”,而不应被划为经济效益不好的企业。这样,从上面的两个结论出发,反复运用经典的二值逻辑,我们最后就会得到,“年利税为0者仍为经济效益好的企业”的悖论。类似的悖论有许多,历史上最著名的有“罗素悖论”。它们都是在用二值逻辑来处理模糊性事物时产生的。

客观实际中存在众多的模糊性事物和现象,促使人们寻求建立一种适于描述模糊事物和现象的逻辑模式。模糊集合理论便是在这种形势下应运而生的。模糊方法的逻辑基础是连续值逻辑,它是建立在[0,1]上的。如若我们把年利

税在100万元以上者的属于“经济效益好”的企业的隶属度规定为1,那末,相比之下,年利税少1元的企业,属于“经济效益好”的企业的隶属度就应相应减少一点,比如为0.99999,依此类推,企业的年利税每减少1元,它属于“经济效益好”的企业的隶属度就要相应减少一点。这样下去,当企业的年利税为0时,它属于“经济效益好”的企业的隶属度也就为0了,显然,模糊方法的这种处理方式,是符合于人们的认识过程的,连续值逻辑是二值逻辑的合理推广。

现代科学发展的总趋势是,从以分析为主对确定性现象的研究,进到以综合为主对不确定性现象的研究。各门科学在充分研究本领域中那些非此即彼的典型现象之后,正在扩大视域,转而研究那些亦此亦彼的非典型现象。自然科学不同学科之间,社会科学不同学科之间,自然科学和社会科学之间,相互渗透的趋势日益加强,原来截然分明的学科界限一个个被打破,边缘科学大量涌现出来。随着科学技术的综合化、整体化,边界不分明的对象,亦即模糊性对象,以多种多样的形式普遍地、经常地出现在科学的前沿。

模糊集合理论自诞生以来,获得了长足的发展,每年全世界发表的研究论文的数量,以指数级速度增长。研究范围从开始时的模糊集合,发展为模糊数、模糊代数、模糊测度、模糊积分、模糊规划、模糊图论、模糊拓扑??等众多的分枝。

和模糊集合理论的发展速度相比,模糊技术的应用虽稍迟一步,但也取得了令人可喜的进展。自1980年第一例应用模糊技术的产品问世以来,有关这方面的研究报告已逾7000多篇,制造出近千种模糊产品,如计算机、电饭煲、摄像机、微波炉、洗衣机、空调器等。如日本松下公司研制的智能化家用空调器,可根据内置的传感器提供的室内空气温度数据,在室温高或低于25℃时,会自动地“稍稍”调节空调器的阀门,进行4608种不同状态设定选择,从而获得最佳开启状态和尽可能少的消耗。而这种“稍稍”的程度,只有通过有经验的人的感觉来决定。

模糊技术方法不是对精确的摒弃,而是对精确更圆满的刻画。它通过模糊控制规划,利用人类常识和智慧,理解词语的模糊内涵和外延,将各方面专家的思维互相补充。虽然,目前要使模糊技术接近于人的思维,尚难以做到,但正如日本夏普公司电子专家日吉考庄所说:一个普遍应用模糊技术的时代,不久就会到来。

我国自70年代开始模糊数学研究以来,成就突出,已形成了2000至3000

人的世界最庞大的研究队伍,并在高速模糊推理研究等领域,居世界领先地位。但同时在其它方面,也存在着一些差距,尤其突出的是实验室里的成果,还有许多未转化成经济效益。需要在政府和工业界的支持和参与下,成立专门的开发实体,制定规划,并积极开展国际交流,为我国21世纪的技术发展和科学腾飞奠定基础。

第二章 模式识别

§2-1模式识别及识别的直接方法

在日常生活中生活中,经常需要进行各种判断、预测。如图象文字识别、故障(疾病)的诊断、矿藏情况的判断等,其特点就是在已知各种标准类型前提下,判断识别对象属于哪个类型的问题。这样的问题就是模式识别。

一、模糊模式识别的一般步骤

模式识别的问题,在模糊数学形成之前就已经存在,传统的作法主要用统计方法或语言的方法进行识别。但在多数情况下,标准类型常可用模糊集表示,用模糊数学的方法进行识别是更为合理可行的,以模糊数学为基础的模式识别方法称为模糊模式识别。 模式识别主要包括三个步骤:

第一步:提取特征,首先需要从识别对象中提取与识别有关的特征,并度量这些特征,设x1,?,xn分别为每个特征的度量值,于是每个识别对象x就对应一个向量(x1,x2,?,xn),这一步是识别的关键,特征提取不合理,会影响识别效果。

第二步:建立标准类型的隶属函数,标准类型通常是论域

U??(x1,?xn)?的模糊集,xi是识别对象的第i个特征。

第三步:建立识别判决准则,确定某些归属原则,以判定识别对象属于哪一个标准类型。常用的判决准则有最大隶属度原则(直接法)和择近原则(间接法)两种。 二、最大的隶属度原则

若标准类型是一些表示模糊概念的模糊集,待识别对象是论域中的某一元素(个体)时,往往由于识别对象不绝对地属于某类标准类型,因而隶属度不为1,这类问题人们常常是采用称为“最大隶属度原则”的方法

加以识别,这种方法(以及下面的“阈值原则”)是处理个体识别问题的,称为直接法。

最大隶属度原则:设A1,A2?An?F(U)是n个标准类型,x0?U,若

Ai(x0)?max? Ak(x0) 1?k?n?

则认为x0相对隶属于Ai所代表的类型。 例1 通货膨胀识别问题

通货膨胀状态可分成五个类型:通货稳定;轻度通货膨胀;中度通货膨胀;重度通货膨胀;恶性通货膨胀.以上五个类型依次用R(非负实数域,下同)上的模糊集A1,A2,A3,A4,A5 表示,其隶属函数分别为:

?1, 0?x?5?? A1(x)??x?52exp[?[]], x?5?3?x?102A2(x)?exp(?())

5x?202A3(x)?exp(?())

7x?302A4(x)?exp(?())

9x?502??exp[?()), 0?x?50 A5(x)??15? x?50? 1,

其中对x?0,表示物价上涨x%。问x?8,40时,分别相对隶属于哪种类型?

解 A1(8)?0.367,9A2(8)?0.852 1A3(8)?0.0529,A4(8)?0.0032 A5(8)?0.0000

A1(40)?0.0000,A2(40)?0.0000

A3(40)?0.0003,A4(40)?0.1299 A5(40)?0.6412

由最大隶属原则,x?8应相对隶属于A2,即当物价上涨8%时,应视

本文来源:https://www.bwwdw.com/article/jpvd.html

Top