DMD Implementation of a Single Pixel Camera Based on Compressed Sensing
更新时间:2023-08-31 06:44:01 阅读量: 教育文库 文档下载
- dmd是什么病推荐度:
- 相关推荐
The ideas presented here can be used to illustrate the links between data acquisition, linear algebra,basis expansions, inverse problems, compression, dimensionality reduction, and optimization in avariety of courses, from undergraduate or graduate digital signal processing to statistics and appliedmathematics.
DMDI mlempntaeiotn o f aSigln ePixelCam rae aBsdeo nCompessedrS eninsDgahmralp TkahrECaED partemnetR iec nUievrsti yds.rpie.cde/uc
The ideas presented here can be used to illustrate the links between data acquisition, linear algebra,basis expansions, inverse problems, compression, dimensionality reduction, and optimization in avariety of courses, from undergraduate or graduate digital signal processing to statistics and appliedmathematics.
srPesurs eis on iDgiatlS inalg Prcosesign ShanonnNyq/usi tasmpilg theorenm–onin fromaitn loso sf iewsam pleat 2 signal baxdnwdthi
DSP r veoluion: stampl fires atdn sakqu steonsi ltaer Incearsngi pesrureso nDSP h adrwaer,a gorlihmst––– ––––– e vref saetr asplimg andnpr coesisn ratge sevre algre rynadmicr nag ever elrager,igher-dihmensoinl aadatever l owe enrrgeyc onsmupton eiev srmlaler orm fafcorts mltu-noied, ditsrbuiedt, entworke opedatrin ordicallyanew se nsng iodmaliiet csmmuonicaito onevre er mvroe dfiicflutch aneln
The ideas presented here can be used to illustrate the links between data acquisition, linear algebra,basis expansions, inverse problems, compression, dimensionality reduction, and optimization in avariety of courses, from undergraduate or graduate digital signal processing to statistics and appliedmathematics.
Ssneisn by Sampgling Lon-egtsbliahsed arpaigm dfor igdialt dtaa cqaisuiiotn–sa pmel dtaa A(-otD-c onervte,rdi itgalc meara,…)– co prmssedat asi(ganld-epednnte,onnlinear–) bicr wkallto pe rormfacenof moedr naqcuisitoin ystsmesasmpelcompessrtrnamsit
psrsa wavelee ttrnasformrecevi
deeomcpress
The ideas presented here can be used to illustrate the links between data acquisition, linear algebra,basis expansions, inverse problems, compression, dimensionality reduction, and optimization in avariety of courses, from undergraduate or graduate digital signal processing to statistics and appliedmathematics.
paSritsy Manysgianslc an eb parsesl repreysente di snom reperesntetaoin/abss (Fouriir, wevealts,…e
)ixepls
larg ewveaeltc ofeicieftsn
widbaed nsginalsamp lselareg Gbor aoecffciiets
nSens
The ideas presented here can be used to illustrate the links between data acquisition, linear algebra,basis expansions, inverse problems, compression, dimensionality reduction, and optimization in avariety of courses, from undergraduate or graduate digital signal processing to statistics and appliedmathematics.
in bygSamp lngi Long-stebailhsd paraeigm dof drgiitlad ta acaqisiuiont s–malpe dat a(-At-oD ocvertenr,digtail aceram…,–)c oprmses daa t(sgian-ledpednen,t noninealr)– br ckiwal lo terfpomancr oefmo drn acquisitieonsy tsesm
smpleacmorpssetansritm
parss waveeel ttranfsomreceriv
decomepres
The ideas presented here can be used to illustrate the links between data acquisition, linear algebra,basis expansions, inverse problems, compression, dimensionality reduction, and optimization in avariety of courses, from undergraduate or graduate digital signal processing to statistics and appliedmathematics.
sFor Sampmes to Measulementr Ssannhn/oNyuiqtssamp lin tgheorem– mut ssmpae lt 2a sxgnailb andwdth i to– opessmisitcif o rmay snigan llasses– wcosrtc sa bounedfo rnyab adnlimitedda ta C ompersivse ensisg (nCS )rpicnipel[Dnoooh;C anes,dR mboeg,r aTo;Rice,…]“sarps eisganlsta tsiits ccn ae recovbredef rom amasl nlmuebro fon-anaptdive lniar measurements e–––––– interaget ssnesig, ncopmrsseon,i procssing enealbse sb-Nyuqius t“eamsrunig”leevraesg ne wpasrs eadta rpeesertnaiotn sbsea do nnweu cernainty trincpilps tehtae txnedH isenebeg’sr efautes rradom nrpjectoino/msasueermnest sgian relcvorye vai ptomiziatino l(neiar proragmimng)
The ideas presented here can be used to illustrate the links between data acquisition, linear algebra,basis expansions, inverse problems, compression, dimensionality reduction, and optimization in avariety of courses, from undergraduate or graduate digital signal processing to statistics and appliedmathematics.
ncIohreetnBa ess pikeS asdns ien (sFuoirr)e (Hesenierb)g
The ideas presented here can be used to illustrate the links between data acquisition, linear algebra,basis expansions, inverse problems, compression, dimensionality reduction, and optimization in avariety of courses, from undergraduate or graduate digital signal processing to statistics and appliedmathematics.
Inohecernt asesB pSies kand r“anod basism”
The ideas presented here can be used to illustrate the links between data acquisition, linear algebra,basis expansions, inverse problems, compression, dimensionality reduction, and optimization in avariety of courses, from undergraduate or graduate digital signal processing to statistics and appliedmathematics.
Inochreetn aBess Sikpseand“andrm oseqeuncs”e(cod se
)
The ideas presented here can be used to illustrate the links between data acquisition, linear algebra,basis expansions, inverse problems, compression, dimensionality reduction, and optimization in avariety of courses, from undergraduate or graduate digital signal processing to statistics and appliedmathematics.
IncoehrnteB seas
The ideas presented here can be used to illustrate the links between data acquisition, linear algebra,basis expansions, inverse problems, compression, dimensionality reduction, and optimization in avariety of courses, from undergraduate or graduate digital signal processing to statistics and appliedmathematics.
Sensing y Sabmplngi Lo gnest-bliashedpar diagm or fdgitai dalt aaqucisition–sampe dalat (A-otD -cnvertoer digit,l caamear…), co–mrpes sdaat (igsal-nepeddnen,tn noineal) r–brickw lla tope formanrce o mfdore anqucistion sisytms
sampeel
omprcssetanrsimtsprsea awelvettr anform
rsceiveeecdompres
s
The ideas presented here can be used to illustrate the links between data acquisition, linear algebra,basis expansions, inverse problems, compression, dimensionality reduction, and optimization in avariety of courses, from undergraduate or graduate digital signal processing to statistics and appliedmathematics.
Coprmesise Sevnisgn M eaure linsaerpro ejtconi sontoi ncoheert bnais whser edta isan to psares– arnodm w“hte noise” ii usivnrsaleyl inocerhnt e–mild“o vr-esapmlign”
porejcttrnamits
rceeiev
ercnotrustc Reoncsturt via cnnloin
earo ptimiatizno(liner aporrgmamni)
The ideas presented here can be used to illustrate the links between data acquisition, linear algebra,basis expansions, inverse problems, compression, dimensionality reduction, and optimization in avariety of courses, from undergraduate or graduate digital signal processing to statistics and appliedmathematics.
gS HaCllmakrs C Sc ahneg she rtluse o fte hatd acauiqsitoin agme–baest te hyqNiustlim t–i xeplois atp iroirsi ngl apsarisy tifonramtoi n–sloga n:s s“amplele s, csmpuoetmore”
Unverias–ls mae random proejctonsi/ ahdrawreca nb e uesd orf na yomprecsisbl segnalicla ss( gneeir)c
D emcraotci–– – e–cah emsuareemtn crairse he tsmea aount mf iofnomatirn siopmel enocdig robusn tto maseuemenrt oss ald qnuatinzation naurtla d“meisionnlity redauctino” or posifgnvi sin toska
s sAymemticra l(ost procmesins ag dtcodere) Rndao mprojceionstweak l yecnrptyd
e
The ideas presented here can be used to illustrate the links between data acquisition, linear algebra,basis expansions, inverse problems, compression, dimensionality reduction, and optimization in avariety of courses, from undergraduate or graduate digital signal processing to statistics and appliedmathematics.
DL
The ideas presented here can be used to illustrate the links between data acquisition, linear algebra,basis expansions, inverse problems, compression, dimensionality reduction, and optimization in avariety of courses, from undergraduate or graduate digital signal processing to statistics and appliedmathematics.
/PSPDC S ameCrasiglne hotpnod etcteorrnaom pdatetn ro nDDMarrayimag reconseructtio
nT
The ideas presented here can be used to illustrate the links between data acquisition, linear algebra,basis expansions, inverse problems, compression, dimensionality reduction, and optimization in avariety of courses, from undergraduate or graduate digital signal processing to statistics and appliedmathematics.
IDi itgal iMromcriorr Deviec(D D)M
LP D108p -0->1920 x 080 re1olstiuno
The ideas presented here can be used to illustrate the links between data acquisition, linear algebra,basis expansions, inverse problems, compression, dimensionality reduction, and optimization in avariety of courses, from undergraduate or graduate digital signal processing to statistics and appliedmathematics.
(seuPod R)naom OdptcialP rjectioosn B niay partertn saerloa dd ienotmi rorr arry:a–light erfletcde owardst het lne/sphtodiooed ()1 l–ihg rtfleceet eldsewehe (0r)– ixel-wisp proeudtc susmmde ybl es
n sPuedrandom onmber uegernatroo ututp smasueermnt beaiss vceotr s[Mtsumaoo/tisNihura, 199m] 7 MesenrenT iwster– inary Bseuqncee(0/ )1– eriPd o192937-
1…
Sin
The ideas presented here can be used to illustrate the links between data acquisition, linear algebra,basis expansions, inverse problems, compression, dimensionality reduction, and optimization in avariety of courses, from undergraduate or graduate digital signal processing to statistics and appliedmathematics.
ge Slenso Camrrea
MDDMDDPtentiol faor: n we odmailitseebyod nwha ctnabe sesen dbyC D or CMOSC migares low co t slowp oewr
DLP
The ideas presented here can be used to illustrate the links between data acquisition, linear algebra,basis expansions, inverse problems, compression, dimensionality reduction, and optimization in avariety of courses, from undergraduate or graduate digital signal processing to statistics and appliedmathematics.
DS/PCS Ca emarObjce LEDt (lght souice)rPhotodide ocicuitrLen s2Lns e1 DDMA+LPBo rad
- 1RTM - Design and Implementation
- 2Implementation of conformal covariance by diffeomorphism symmetry
- 3Mongolia electricity single buyer
- 4International Archives of the Photogrammetry, Remote Sensing
- 5Mongolia electricity single buyer
- 6A multistage camera self-calibration algorithm
- 7Simulation of Heavily Irradiated Silicon Pixel Detectors
- 8Android Camera API2.0下全新的Camera FWHAL架构简述
- 9Zheng_2012_Remote-Sensing-of-Environment
- 10Camera驱动在Linux内核的移植
- exercise2
- 铅锌矿详查地质设计 - 图文
- 厨余垃圾、餐厨垃圾堆肥系统设计方案
- 陈明珠开题报告
- 化工原理精选例题
- 政府形象宣传册营销案例
- 小学一至三年级语文阅读专项练习题
- 2014.民诉 期末考试 复习题
- 巅峰智业 - 做好顶层设计对建设城市的重要意义
- (三起)冀教版三年级英语上册Unit4 Lesson24练习题及答案
- 2017年实心轮胎现状及发展趋势分析(目录)
- 基于GIS的农用地定级技术研究定稿
- 2017-2022年中国医疗保健市场调查与市场前景预测报告(目录) - 图文
- 作业
- OFDM技术仿真(MATLAB代码) - 图文
- Android工程师笔试题及答案
- 生命密码联合密码
- 空间地上权若干法律问题探究
- 江苏学业水平测试《机械基础》模拟试题
- 选课走班实施方案
- Implementation
- Compressed
- Sensing
- Single
- Camera
- Pixel
- Based
- DMD
- 中医药在国际市场发展的困难、挑战和对策
- 城市轨道交通客运组织期末考试试卷1
- 鉴定糖类_脂肪_蛋白质_淀粉
- 汽车基础知识试题
- 江苏译林版牛津初中英语9A词组句型复习
- 如何做好班组长考试试题
- 中央电大机电专业本科机械CADCAM历年考题
- 画个火柴人2第二关拼图怎么得 图文位置的获得方法介绍
- 中学配送图书目录
- 奉节县兴隆观光休闲农业园园项目建议书
- 侠盗飞车密码
- 八年级语文《剃头匠》
- 2020年保险基础知识考试题库及答案
- 施工工程明细表
- 贸易公司采购部规划思路
- 企业会计准则第37号——金融工具列报试题(修改)
- 西南大学《环境与资源保护法学》网上作业及参考答案
- 青岛版四年级《环境教育》(上册)教学计划
- 地震反演及Jason软件学习体会
- 2017-2018小学二年级上册数学第八单元数学广角搭配教案教学设计教学反思导学案(4页)