2016年中考数学第二轮专题复习专题七

更新时间:2024-06-07 14:30:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

专题七 归纳猜想型问题

一、中考专题诠释

归纳猜想型问题在中考中越来越被命题者所注重。这类题要求根据题目中的图形或者数字,分析归纳,直观地发现共同特征,或者发展变化的趋势,据此去预测估计它的规律或者其他相关结论,使带有猜想性质的推断尽可能与现实情况相吻合,必要时可以进行验证或者证明,依此体现出猜想的实际意义。 二、解题策略和解法精讲

归纳猜想型问题对考生的观察分析能力要求较高,经常以填空等形式出现,解题时要善于从所提供的数字或图形信息中,寻找其共同之处,这个存在于个例中的共性,就是规律。其中蕴含着“特殊——一般——特殊”的常用模式,体现了总结归纳的数学思想,这也正是人类认识新生事物的一般过程。相对而言,猜想结论型问题的难度较大些,具体题目往往是直观猜想与科学论证、具体应用的结合,解题的方法也更为灵活多样:计算、验证、类比、比较、测量、绘图、移动等等,都能用到。

由于猜想本身就是一种重要的数学方法,也是人们探索发现新知的重要手段,非常有利于培养创造性思维能力,所以备受命题专家的青睐,逐步成为中考的持续热点。 三、中考考点精讲

考点一:猜想数式规律

通常给定一些数字、代数式、等式或者不等式,然后猜想其中蕴含的规律。一般解法是先写出数式的基本结构,然后通过横比(比较同一等式中不同部分的数量关系)或纵比(比较不同等式间相同位置的数量关系)找出各部分的特征,改写成要求的格式。

例1 (2013?巴中)观察下面的单项式:a,-2a2,4a3,-8a4,…根据你发现的规律,第8个式子是 .

思路分析:根据单项式可知n为双数时a的前面要加上负号,而a的系数为2(n-1),a的指数为n.

解:第八项为-27a8=-128a8.

点评:本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.

对应训练

1.(2013?株洲)一组数据为:x,-2x2,4x3,-8x4,…观察其规律,推断第n个数据应为 . 1.(-2)n-1xn 考点二:猜想图形规律

根据一组相关图形的变化规律,从中总结通过图形的变化所反映的规律。其中,以图形为载体的数字规律最为常见。猜想这种规律,需要把图形中的有关数量关系列式表达出来,再对所列式进行对照,仿照猜想数式规律的方法得到最终结论。 例2 (2013?牡丹江)用大小相同的小三角形摆成如图所示的图案,按照这样的规律摆放,则第n个图案中共有小三角形的个数是 .

思路分析:观察图形可知,第1个图形共有三角形5+2个;第2个图形共有三角形5+3×2-1个;第3个图形共有三角形5+3×3-1个;第4个图形共有三角形5+3×4-1个;…;则第n个图形共有三角形5+3n-1=3n+4个;

解答:解:观察图形可知,第1个图形共有三角形5+2个;

第2个图形共有三角形5+3×2-1个; 第3个图形共有三角形5+3×3-1个; 第4个图形共有三角形5+3×4-1个; …;

则第n个图形共有三角形5+3n-1=3n+4个;故答案为:3n+4

点评:此题考查了规律型:图形的变化类,解决这类问题首先要从简单图形入手,抓住随着“编号”或“序号”增加时,后一个图形与前一个图形相比,在数量上增加(或倍数)情况的变化,找出数量上的变化规律,从而推出一般性的结论.

例3 (2013?绥化)如图所示,以O为端点画六条射线后OA,OB,OC,OD,OE,O后F,再从射线OA上某点开始按逆时针方向依次在射线上描点并连线,若将各条射线所描的点依次记为1,2,3,4,5,6,7,8…后,那么所描的第2013个点在射线 上.

思路分析:根据规律得出每6个数为一周期.用2013除以3,根据余数来决定数2013在哪条射线上. 解:∵1在射线OA上, 2在射线OB上, 3在射线OC上, 4在射线OD上, 5在射线OE上, 6在射线OF上, 7在射线OA上, …

每六个一循环, 2013÷6=335…3,

∴所描的第2013个点在射线和3所在射线一样, ∴所描的第2013个点在射线OC上. 故答案为:OC.

点评:此题主要考查了数字变化规律,根据数的循环和余数来决定数的位置是解题关键.

对应训练

2.(2013?娄底)如图,是用火柴棒拼成的图形,则第n个图形需 根火柴棒.

2.2n+1

3.(2013?江西)观察下列图形中点的个数,若按其规律再画下去,可以得到第n个图形中所有点的个数为 (用含n的代数式表示). 3.(n+1)2 解:第1个图形中点的个数为:1+3=4, 第2个图形中点的个数为:1+3+5=9, 第3个图形中点的个数为:1+3+5+7=16, …, 第n个图形中点的个数为:1+3+5+…+(2n+1)=故答案为:(n+1)2.

考点三:猜想坐标变化规律

(1?2n?1)(n?1)=(n+1)2. 2例3 (2013?威海)如图,在平面直角坐标系中,点A,B,C的坐标分别为(1,0),(0,1),(-1,0).一个电动玩具从坐标原点0出发,第一次跳跃到点P1.使得点P1与点O关于点A成中心对称;第二次跳跃到点P2,使得点P2与点P1关于点B成中心对称;第三次跳跃到点P3,使得点P3与点P2关于点C成中心对称;第四次跳跃到点P4,使得点P4与点P3关于点A成中心对称;第五次跳跃到点P5,使得点P5与点P4关于点B成中心对称;…照此规律重复下去,则点P2013的坐标为 .

思路分析:计算出前几次跳跃后,点P1,P2,P3,P4,P5,P6,P7的坐标,可得出规律,继而可求出点P2013的坐标.

解:点P1(2,0),P2(-2,2),P3(0,-2),P4(2,2),P5(-2,0),P6(0,0),P7(2,0), 从而可得出6次一个循环,

∵2013=335…3, 6∴点P2013的坐标为(0,-2). 故答案为:(0,-2). 点评:本题考查了中心对称及点的坐标的规律变换,解答本题的关键是求出前几次跳跃后点的坐标,总结出一般规律.

对应训练

3.(2013?兰州)如图,在直角坐标系中,已知点A(-3,0)、B(0,4),对△OAB连续作旋转变换,依次得到△1、△2、△3、△4…,则△2013的直角顶点的坐标为 .

3.(8052,0) 考点四:猜想数量关系

数量关系的表现形式多种多样,这些关系不一定就是我们目前所学习的函数关系式。在猜想这种问题时,通常也是根据题目给出的关系式进行类比,仿照猜想数式规律的方法解答。

例4 (2013?黑龙江)正方形ABCD的顶点A在直线MN上,点O是对角线AC、BD的交点,过点O作OE⊥MN于点E,过点B作BF⊥MN于点F.

(1)如图1,当O、B两点均在直线MN上方时,易证:AF+BF=2OE(不需证明) (2)当正方形ABCD绕点A顺时针旋转至图2、图3的位置时,线段AF、BF、OE之间又有怎样的关系?请直接写出你的猜想,并选择一种情况给予证明.

思路分析:(1)过点B作BG⊥OE于G,可得四边形BGEF是矩形,根据矩形的对边相等可得EF=BG,BF=GE,根据正方形的对角线相等且互相垂直平分可得OA=OB,∠AOB=90°,再根据同角的余角相等求出∠AOE=∠OBG,然后利用“角角边”证明△AOE和△OBG全等,根据全等三角形对应边相等可得OG=AE,OE=BG,再根据AF-EF=AE,整理即可得证;

(2)选择图2,过点B作BG⊥OE交OE的延长线于G,可得四边形BGEF是矩形,根据矩形的对边相等可得EF=BG,BF=GE,根据正方形的对角线相等且互相垂直平分可得OA=OB,∠AOB=90°,再根据同角的余角相等求出∠AOE=∠OBG,然后利用“角角边”证明△AOE和△OBG全等,根据全等三角形对应边相等可得OG=AE,OE=BG,再根据AF-EF=AE,整理即可得证;选择图3同理可证. 解:(1)证明:如图,过点B作BG⊥OE于G, 则四边形BGEF是矩形, ∴EF=BG,BF=GE,

在正方形ABCD中,OA=OB,∠AOB=90°, ∵BG⊥OE,

∴∠OBG+∠BOE=90°,

又∵∠AOE+∠BOE=90°, ∴∠AOE=∠OBG, ∵在△AOE和△OBG中,

??AOE??OBG???AEO??OGB?90?, ?OA?OB?∴△AOE≌△OBG(AAS), ∴OG=AE,OE=BG,

∵AF-EF=AE,EF=BG=OE,AE=OG=OE-GE=OE-BF, ∴AF-OE=OE-BF, ∴AF+BF=2OE;

(2)图2结论:AF-BF=2OE, 图3结论:AF-BF=2OE.

对图2证明:过点B作BG⊥OE交OE的延长线于G, 则四边形BGEF是矩形, ∴EF=BG,BF=GE,

在正方形ABCD中,OA=OB,∠AOB=90°, ∵BG⊥OE,

∴∠OBG+∠BOE=90°, 又∵∠AOE+∠BOE=90°, ∴∠AOE=∠OBG, ∵在△AOE和△OBG中,

??AOE??OBG???AEO??OGB?90?, ?OA?OB?∴△AOE≌△OBG(AAS), ∴OG=AE,OE=BG,

∵AF-EF=AE,EF=BG=OE,AE=OG=OE+GE=OE+BF, ∴AF-OE=OE+BF, ∴AF-BF=2OE;

若选图3,其证明方法同上.

点评:本题考查了正方形的性质,矩形的判定与性质,全等三角形的判定与性质,同角的余角相等的性质,作辅助线构造出全等三角形与矩形是解题的关键,也是本题的难点.

对应训练 4.(2013?锦州)如图1,等腰直角三角板的一个锐角顶点与正方形ABCD的顶点A重合,将此三角板绕点A旋转,使三角板中该锐角的两条边分别交正方形的两边BC,DC于点E,F,连接EF. (1)猜想BE、EF、DF三条线段之间的数量关系,并证明你的猜想; (2)在图1中,过点A作AM⊥EF于点M,请直接写出AM和AB的数量关系; (3)如图2,将Rt△ABC沿斜边AC翻折得到Rt△ADC,E,F分别是BC,CD边上的点,∠EAF=1∠BAD,连接EF,过点A作AM⊥EF于点M,试猜想AM与AB之2间的数量关系.并证明你的猜想.

4.(1)EF=BE+DF,

证明:如答图1,延长CB到Q,使BQ=DF,连接AQ,

∵四边形ABCD是正方形,

∴AD=AB,∠D=∠DAB=∠ABE=∠ABQ=90°, 在△ADF和△ABQ中

?AB?AD???ABQ??D, ?BQ?DF?∴△ADF≌△ABQ(SAS), ∴AQ=AF,∠QAB=∠DAF, ∵∠DAB=90°,∠FAE=45°, ∴∠DAF+∠BAE=45°, ∴∠BAE+∠BAQ=45°, 即∠EAQ=∠FAE, 在△EAQ和△EAF中

?AE?AE???EAQ??EAF, ?AQ?AF?∴△EAQ≌△EAF,

∴EF=BQ=BE+EQ=BE+DF.

(2)解:AM=AB, 理由是:∵△EAQ≌△EAF,EF=BQ, ∴11×BQ×AB=×FE×AM, 22∴AM=AB. (3)AM=AB, 证明:如答图2,延长CB到Q,使BQ=DF,连接AQ, ∵折叠后B和D重合, ∴AD=AB,∠D=∠DAB=∠ABE=90°,∠BAC=∠DAC=在△ADF和△ABQ中 1∠BAD, 2?AB?AD???ABQ??D, ?BQ?DF?∴△ADF≌△ABQ(SAS), ∴AQ=AF,∠QAB=∠DAF, ∵∠FAE=1∠BAD, 2∴∠DAF+∠BAE=∠BAE+∠BAQ=∠EAQ=即∠EAQ=∠FAE, 在△EAQ和△EAF中 1∠BAD, 2?AE?AE???EAQ??EAF ?AQ?AF?∴△EAQ≌△EAF, ∴EF=BQ, ∵△EAQ≌△EAF,EF=BQ, ∴11×BQ×AB=×FE×AM, 22∴AM=AB.

考点五:猜想变化情况

随着数字或图形的变化,它原先的一些性质有的不会改变,有的则发生了变化,而且这种变化是有一定规律的。比如,在几何图形按特定要求变化后,只要本质不变,通常的规律是“位置关系不改变,乘除乘方不改变,减变加法加变减,正号负号要互换”。这种规律可以作为猜想的一个参考依据。

例5 (2013?张家界)如图,OP=1,过P作PP1⊥OP,得OP1=2;再过P1作P1P2⊥OP1且P1P2=1,得OP2=3;又过P2作P2P3⊥OP2且P2P3=1,得OP3=2;…依此法继续作下去,得OP2012= . 思路分析:首先根据勾股定理求出OP4,再由OP1,OP2,OP3的长度找到规律进而求出OP2012的长. 解:由勾股定理得:OP4=22?1=5, ∵OP1=2?1?1;得OP2=3?2?1;OP3=2=4?3?1; 依此类推可得OPn=n?1, ∴OP2012=2012?1?2013, 故答案为:2013. 点评:本题考查了勾股定理的运用,解题的关键是由已知数据找到规律.

对应训练

5.(2013?黑龙江)已知等边三角形ABC的边长是2,以BC边上的高AB1为边作等边三角形,得到第一个等边三角形AB1C1,再以等边三角形AB1C1的B1C1边上的高AB2为边作等边三角形,得到第二个等边三角形AB2C2,再以等边三角形AB2C2的边B2C2边上的高AB3为边作等边三角形,得到第三个等边AB3C3;…,如此下去,这样得到的第n个等边三角形ABnCn的面积为 .

5.

33 4考点六:猜想数字求和 例6 (2013?广安)已知直线y=?(n?1)1x?(n为正整数)与坐标轴围成的三角n?2n?2形的面积为Sn,则S1+S2+S3+…+S2012= . 思路分析:令x=0,y=0分别求出与y轴、x轴的交点,然后利用三角形面积公式列式表示出Sn,再利用拆项法整理求解即可. 1, n?2n?11令y=0,则-x+=0, n?2n?21解得x=, n?1111111g?), 所以,Sn=g=(2n?1n?22n?1n?2111111111?) 所以,S1+S2+S3+…+S2012=(??????L?223344520132014解:令x=0,则y=1503)=. 20142014503故答案为:. 2014=(?点评:本题考查的是一次函数图象上点的坐标特点,表示出Sn,再利用拆项法写成两个数的差是解题的关键,也是本题的难点. 对应训练

6.(2013?黔东南州)观察规律:1=12;1+3=22;1+3+5=32;1+3+5+7=42;…,则1+3+5+…+2013的值是 . 6.1014049

1122

5.

33 4考点六:猜想数字求和 例6 (2013?广安)已知直线y=?(n?1)1x?(n为正整数)与坐标轴围成的三角n?2n?2形的面积为Sn,则S1+S2+S3+…+S2012= . 思路分析:令x=0,y=0分别求出与y轴、x轴的交点,然后利用三角形面积公式列式表示出Sn,再利用拆项法整理求解即可. 1, n?2n?11令y=0,则-x+=0, n?2n?21解得x=, n?1111111g?), 所以,Sn=g=(2n?1n?22n?1n?2111111111?) 所以,S1+S2+S3+…+S2012=(??????L?223344520132014解:令x=0,则y=1503)=. 20142014503故答案为:. 2014=(?点评:本题考查的是一次函数图象上点的坐标特点,表示出Sn,再利用拆项法写成两个数的差是解题的关键,也是本题的难点. 对应训练

6.(2013?黔东南州)观察规律:1=12;1+3=22;1+3+5=32;1+3+5+7=42;…,则1+3+5+…+2013的值是 . 6.1014049

1122

本文来源:https://www.bwwdw.com/article/jmv6.html

Top