物理学(第五版)马文蔚第1至8章习题答案

更新时间:2023-12-26 22:50:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

1 -1 质点作曲线运动,在时刻t 质点的位矢为r,速度为v ,速率为v,t 至(t +Δt)时间内的位移为Δr, 路程为Δs, 位矢大小的变化量为Δr ( 或称Δ|r|),平均速度为v,平均速率为v.

(1) 根据上述情况,则必有( ) (A) |Δr|= Δs = Δr

(B) |Δr|≠ Δs ≠ Δr,当Δt→0 时有|dr|= ds ≠ dr (C) |Δr|≠ Δr ≠ Δs,当Δt→0 时有|dr|= dr ≠ ds (D) |Δr|≠ Δs ≠ Δr,当Δt→0 时有|dr|= dr = ds (2) 根据上述情况,则必有( )

(A) |v|= v,|v|= v (B) |v|≠v,|v|≠ v (C) |v|= v,|v|≠ v (D) |v|≠v,|v|= v

分析与解 (1) 质点在t 至(t +Δt)时间内沿曲线从P 点运动到P′点,各量关系如图所示, 其中路程Δs =PP′, 位移大小|Δr|=PP′,而Δr =|r|-|r|表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当Δt→0 时,点P′无限趋近P点,则有|dr|=ds,但却不等于dr.故选(B).

(2) 由于|Δr |≠Δs,故

ΔrΔs,即|v|≠v. ?ΔtΔt但由于|dr|=ds,故

drds?,即|v|=v.由此可见,应选(C). dtdt1 -2 一运动质点在某瞬时位于位矢r(x,y)的端点处,对其速度的大小有四种意见,即

drdrds?dx??dy?(1); (2); (3); (4)?????.

dtdtdtdtdt????下述判断正确的是( )

(A) 只有(1)(2)正确 (B) 只有(2)正确 (C) 只有(2)(3)正确 (D) 只有(3)(4)正确 分析与解

22dr表示质点到坐标原点的距离随时间的变化率,在极坐标系中叫径向速率.通常用dt

符号vr表示,这是速度矢量在位矢方向上的一个分量;

dr表示速度矢量;在自然坐标系中速度大小dt22ds?dx??dy?可用公式v?计算,在直角坐标系中则可由公式v??????求解.故选(D).

dtdtdt????1 -3 质点作曲线运动,r 表示位置矢量, v表示速度,a表示加速度,s 表示路程, at表示切向加速度.对下列表达式,即

(1)d v /dt =a;(2)dr/dt =v;(3)ds/dt =v;(4)d v /dt|=at. 下述判断正确的是( )

(A) 只有(1)、(4)是对的 (B) 只有(2)、(4)是对的 (C) 只有(2)是对的 (D) 只有(3)是对的

dv表示切向加速度at,它表示速度大小随时间的变化率,是加速度矢量沿速度方向dtdrds的一个分量,起改变速度大小的作用;在极坐标系中表示径向速率vr(如题1 -2 所述);在自

dtdt分析与解

然坐标系中表示质点的速率v;而达是正确的.故选(D).

1 -4 一个质点在做圆周运动时,则有( ) (A) 切向加速度一定改变,法向加速度也改变 (B) 切向加速度可能不变,法向加速度一定改变 (C) 切向加速度可能不变,法向加速度不变 (D) 切向加速度一定改变,法向加速度不变

分析与解 加速度的切向分量at起改变速度大小的作用,而法向分量an起改变速度方向的作用.质点作圆周运动时,由于速度方向不断改变,相应法向加速度的方向也在不断改变,因而法向加速度是一定改变的.至于at是否改变,则要视质点的速率情况而定.质点作匀速率圆周运动时, at恒为零;质点作匀变速率圆周运动时, at为一不为零的恒量,当at改变时,质点则作一般的变速率圆周运动.由此可见,应选(B).

*1 -5 如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动.设该人以匀速率v0 收绳,绳不伸长且湖水静止,小船的速率为v,则小船作( )

(A) 匀加速运动,v?dv表示加速度的大小而不是切向加速度at.因此只有(3) 式表dtv0 cosθ(B) 匀减速运动,v?v0cosθ (C) 变加速运动,v?v0 cosθ(D) 变减速运动,v?v0cosθ (E) 匀速直线运动,v?v0

分析与解 本题关键是先求得小船速度表达式,进而判断运动性质.为此建立如图所示坐标系,设定滑轮距水面高度为h,t 时刻定滑轮距小船的绳长为l,则小船的运动方程为x?l2?h2,其中

dldxdt,式中dl表示绳长l 随时间的变化率,其大小?绳长l 随时间t 而变化.小船速度v?dtdtl2?h2l即为v0,代入整理后为v?速运动.故选(C).

讨论 有人会将绳子速率v0按x、y 两个方向分解,则小船速度v?v0cosθ,这样做对吗? 1 -6 已知质点沿x 轴作直线运动,其运动方程为x?2?6t?2t,式中x 的单位为m,t 的单位为 s.求:

(1) 质点在运动开始后4.0 s内的位移的大小; (2) 质点在该时间内所通过的路程;

(3) t=4 s时质点的速度和加速度.

分析 位移和路程是两个完全不同的概念.只有当质点作直线运动且运动方向不改变时,位移的大小才会与路程相等.质点在t 时间内的位移Δx 的大小可直接由运动方程得到:Δx?xt?x0,而在求路程时,就必须注意到质点在运动过程中可能改变运动方向,此时,位移的大小和路程就不同

23v0l2?h2/l?v0,方向沿x 轴负向.由速度表达式,可判断小船作变加cosθdx?0来确定其运动方向改变的时刻tp ,求出0~tp 和tp~t 内的位移大小Δx1 、dtdxΔx2 ,则t 时间内的路程s??x1??x2,如图所示,至于t =4.0 s 时质点速度和加速度可用和

dt了.为此,需根据

d2x两式计算. 2dt解 (1) 质点在4.0 s内位移的大小Δx?x4?x0??32m (2) 由

dx?0 dt得知质点的换向时刻为tp?2s (t=0不合题意)

则Δx1?x2?x0?8.0m Δx2?x4?x2??40m

所以,质点在4.0 s时间间隔内的路程为s?Δx1?Δx2?48m (3) t=4.0 s时

v?dx??48m?s?1

dtt?4.0sd2xa?2??36m.s?2

dtt?4.0s1 -7 一质点沿x 轴方向作直线运动,其速度与时间的关系如图(a)所示.设t=0 时,x=0.试根据已知的v-t 图,画出a-t 图以及x -t 图.

分析 根据加速度的定义可知,在直线运动中v-t曲线的斜率为加速度的大小(图中AB、CD 段斜率为定值,即匀变速直线运动;而线段BC 的斜率为0,加速度为零,即匀速直线运动).加速度为恒量,在a-t 图上是平行于t 轴的直线,由v-t 图中求出各段的斜率,即可作出a-t 图线.又由速度的定义可知,x-t 曲线的斜率为速度的大小.因此,匀速直线运动所对应的x -t 图应是一直线,而匀变速直线运动所对应的x–t 图为t 的二次曲线.根据各段时间内的运动方程x=x(t),求出不同时刻t 的位置x,采用描数据点的方法,可作出x-t 图.

解 将曲线分为AB、BC、CD 三个过程,它们对应的加速度值分别为

aAB?vB?vA?20m?s?2 (匀加速直线运动)

tB?tAaBC?0 (匀速直线运动)

aCD?vD?vC??10m?s?2 (匀减速直线运动)

tD?tC根据上述结果即可作出质点的a-t 图[图(B)].

在匀变速直线运动中,有

1x?x?v0t?t2

2由此,可计算在0~2s和4~6s时间间隔内各时刻的位置分别为

用描数据点的作图方法,由表中数据可作0~2s和4~6s时间内的x -t 图.在2~4s时间内, 质点是作v?20m?s的匀速直线运动, 其x -t 图是斜率k=20的一段直线[图(c)].

1 -8 已知质点的运动方程为r?2ti?(2?t)j,式中r 的单位为m,t 的单位为s.求: (1) 质点的运动轨迹;

(2) t =0 及t =2s时,质点的位矢;

(3) 由t =0 到t =2s内质点的位移Δr 和径向增量Δr;

*

?12(4) 2 s 内质点所走过的路程s.

分析 质点的轨迹方程为y =f(x),可由运动方程的两个分量式x(t)和y(t)中消去t 即可得到.对于r、Δr、Δr、Δs 来说,物理含义不同,可根据其定义计算.其中对s的求解用到积分方法,先在轨迹上任取一段微元ds,则ds?(dx)2?(dy)2,最后用s??ds积分求s.

y?2?12x 4解 (1) 由x(t)和y(t)中消去t 后得质点轨迹方程为

这是一个抛物线方程,轨迹如图(a)所示.

(2) 将t =0s和t =2s分别代入运动方程,可得相应位矢分别为

r0?2j , r2?4i?2j

图(a)中的P、Q 两点,即为t =0s和t =2s时质点所在位置. (3) 由位移表达式,得

Δr?r2?r1?(x2?x0)i?(y2?y0)j?4i?2j

其中位移大小Δr?(Δx)2?(Δy)2?5.66m

2222x2?y2?x0?y0?2.47m

而径向增量Δr?Δr?r2?r0?*(4) 如图(B)所示,所求Δs 即为图中PQ段长度,先在其间任意处取AB 微元ds,则

1ds?(dx)2?(dy)2,由轨道方程可得dy??xdx,代入ds,则2s内路程为

2s??ds??PQ404?x2dx?5.91m

1 -9 质点的运动方程为

x??10t?30t2 y?15t?20t2

式中x,y 的单位为m,t 的单位为s.

试求:(1) 初速度的大小和方向;(2) 加速度的大小和方向.

分析 由运动方程的分量式可分别求出速度、加速度的分量,再由运动合成算出速度和加速度的大小和方向.

解 (1) 速度的分量式为

vx?dx??10?60t dtdyvy??15?40t

dt-1

当t =0 时, vox =-10 m·s , voy =15 m·s ,则初速度大小为

-1

v0?v0x?v0y?18.0m?s?1

设vo与x 轴的夹角为α,则

22tanα?v0yv0x3??

2α=123°41′

(2) 加速度的分量式为

ax?则加速度的大小为

dvdvx?60m?s?2 , ay?y??40m?s?2

dtdt

a?ax?ay?72.1m?s?2

设a 与x 轴的夹角为β,则

22tanβ?ay2?? ax3-1

β=-33°41′(或326°19′)

1 -10 一升降机以加速度1.22 m·s上升,当上升速度为2.44 m·s时,有一螺丝自升降机的天花板上松脱,天花板与升降机的底面相距2.74 m.计算:(1)螺丝从天花板落到底面所需要的时间;(2)螺丝相对升降机外固定柱子的下降距离.

分析 在升降机与螺丝之间有相对运动的情况下,一种处理方法是取地面为参考系,分别讨论升降机竖直向上的匀加速度运动和初速不为零的螺丝的自由落体运动,列出这两种运动在同一坐标系中的运动方程y1 =y1(t)和y2 =y2(t),并考虑它们相遇,即位矢相同这一条件,问题即可解;另一种方法是取升降机(或螺丝)为参考系,这时,螺丝(或升降机)相对它作匀加速运动,但是,此加速度应该是相对加速度.升降机厢的高度就是螺丝(或升降机)运动的路程.

解1 (1) 以地面为参考系,取如图所示的坐标系,升降机与螺丝的运动方程分别为

-2

1y1?v0t?at2

21y2?h?v0t?gt2

2当螺丝落至底面时,有y1 =y2 ,即

11v0t?at2?h?v0t?gt2

22t?2h?0.705s g?a (2) 螺丝相对升降机外固定柱子下降的距离为

1d?h?y2??v0t?gt2?0.716m

2解2 (1)以升降机为参考系,此时,螺丝相对它的加速度大小a′=g +a,螺丝落至底面时,有

10?h?(g?a)t2

2t?2h?0.705s g?a(2) 由于升降机在t 时间内上升的高度为

1h??v0t?at2

2则 d?h?h??0.716m

1 -11 一质点P 沿半径R =3.0 m的圆周作匀速率运动,运动一周所需时间为20.0s,设t =0 时,质点位于O 点.按(a)图中所示Oxy 坐标系,求(1) 质点P 在任意时刻的位矢;(2)5s时的速度和加速度.

分析 该题属于运动学的第一类问题,即已知运动方程r =r(t)求质点运动的一切信息(如位置矢量、位移、速度、加速度).在确定运动方程时,若取以点(0,3)为原点的O′x′y′坐标系,并采用参数方程x′=x′(t)和y′=y′(t)来表示圆周运动是比较方便的.然后,运用坐标变换x =

x0 +x′和y =y0 +y′,将所得参数方程转换至Oxy 坐标系中,即得Oxy 坐标系中质点P 在任意

时刻的位矢.采用对运动方程求导的方法可得速度和加速度.

解 (1) 如图(B)所示,在O′x′y′坐标系中,因θ?2πt,则质点P 的Tx??Rsin参数方程为

2πt, T2πy???Rcost

T坐标变换后,在Oxy 坐标系中有

2πt, T2πy?y??y0??Rcost?RTx?x??Rsin

则质点P 的位矢方程为

r?Rsin2π2π??ti???Rcost?R?jTT???3sin(0.1πt)i?3[1?cos(0.1πt)]j

(2) 5s时的速度和加速度分别为

v?dr2π2π2π2π?Rcosti?Rsintj?(0.3πm?s?1)jdtTTTTd2r2π2π2π2πa?2??R()2sinti?R()2costj?(?0.03π2m?s?2)i 1 -12 地面上垂直竖立

dtTTTT一高20.0 m 的旗杆,已知正午时分太阳在旗杆的正上方,求在下午2∶00 时,杆顶在地面上的影子的速度的大小.在何时刻杆影伸展至20.0 m?

分析 为求杆顶在地面上影子速度的大小,必须建立影长与时间的函数关系,即影子端点的位矢方程.根据几何关系,影长可通过太阳光线对地转动的角速度求得.由于运动的相对性,太阳光线对地转动的角速度也就是地球自转的角速度.这样,影子端点的位矢方程和速度均可求得.

解 设太阳光线对地转动的角速度为ω,从正午时分开始计时,则杆的影长为s=htgωt,下午2∶00 时,杆顶在地面上影子的速度大小为

v?当杆长等于影长时,即s =h,则

dshω??1.94?10?3m?s?1 2dtcosωt1sπarctan??3?60?60s ωh4ω2

-2

t?即为下午3∶00 时.

1 -13 质点沿直线运动,加速度a=4 -t ,式中a的单位为m·s ,t的单位为s.如果当t =3s时,x=9 m,v =2 m·s ,求质点的运动方程.

分析 本题属于运动学第二类问题,即已知加速度求速度和运动方程,必须在给定条件下用积分方法解决.由a?-1

dvdx和v?可得dv?adt和dx?vdt.如a=a(t)或v =v(t),则可两边直接dtdt积分.如果a 或v不是时间t 的显函数,则应经过诸如分离变量或变量代换等数学操作后再做积分.

解 由分析知,应有

vt?

v0dv??adt

0得 v?4t?t?v0 (1)

133?dx??vdt

x002xt得 x?2t?-1

14t?v0t?x0 (2) 12-1

将t=3s时,x=9 m,v=2 m·s代入(1) (2)得v0=-1 m·s,x0=0.75 m.于是可得质点运动方程为

v?v0e?by/m?2ghe?by/m

(2) 将已知条件b/m =0.4 m ,v =0.1v0 代入上式,则得

-1

y??mvln?5.76m bv0 *2 -17 直升飞机的螺旋桨由两个对称的叶片组成.每一叶片的质量m=136 kg,长l=3.66 m.求当它的转速n=320 r/min 时,两个叶片根部的张力.(设叶片是宽度一定、厚度均匀的薄片)

分析 螺旋桨旋转时,叶片上各点的加速度不同,在其各部分两侧的张力也不同;由于叶片的质量是连续分布的,在求叶片根部的张力时,可选取叶片上一小段,分析其受力,列出动力学方程,然后采用积分的方法求解.

解 设叶片根部为原点O,沿叶片背离原点O 的方向为正向,距原点O 为r处的长为dr一小段叶片,其两侧对它的拉力分别为FT(r)与FT(r+dr).叶片转动时,该小段叶片作圆周运动,由牛顿定律有

dFT?FT?r??FT?r?dr??由于r =l 时外侧FT =0,所以有

m2ωrdr l?tFT?r?dFT??lrmω2rdr lmω2222πmn222FT?r???l?r??l?r

2ll????上式中取r =0,即得叶片根部的张力

FT0 =-2.79 ×105 N

负号表示张力方向与坐标方向相反.

2 -18 一质量为m 的小球最初位于如图(a)所示的A 点,然后沿半径为r的光滑圆轨道ADCB下滑.试求小球到达点C时的角速度和对圆轨道的作用力.

分析 该题可由牛顿第二定律求解.在取自然坐标的情况下,沿圆弧方向的加速度就是切向加速度at,与其相对应的外力Ft是重力的切向分量mgsinα,而与法向加速度an相对应的外力是支持力

FN 和重力的法向分量mgcosα.由此,可分别列出切向和法向的动力学方程Ft=mdv/dt和Fn=man .由

于小球在滑动过程中加速度不是恒定的,因此,需应用积分求解,为使运算简便,可转换积分变量. 倡该题也能应用以小球、圆弧与地球为系统的机械能守恒定律求解小球的速度和角速度,方法比较简便.但它不能直接给出小球与圆弧表面之间的作用力.

解 小球在运动过程中受到重力P 和圆轨道对它的支持力FN .取图(b)所示的自然坐标系,由牛顿定律得

Ft??mgsinα?mdv (1) dtmv2Fn?FN?mgcosα?m (2)

R由v?分,有

rdαdsrdα?,得dt?,代入式(1),并根据小球从点A 运动到点C 的始末条件,进行积

vdtdt?得 v?则小球在点C 的角速度为

vv0vdv??α90o??rgsinα?dα

2rgcosα

ω?v?2gcosα/r r

mv2?mgcosα?3mgcosα 由式(2)得 FN?mr由此可得小球对圆轨道的作用力为

???FN??3mgcosα FN负号表示F′N 与en 反向.

2 -19 光滑的水平桌面上放置一半径为R 的固定圆环,物体紧贴环的内侧作圆周运动,其摩擦因数为μ,开始时物体的速率为v0 ,求:(1) t 时刻物体的速率;(2) 当物体速率从v0减少到12 v0时,物体所经历的时间及经过的路程.

分析 运动学与动力学之间的联系是以加速度为桥梁的,因而,可先分析动力学问题.物体在作圆周运动的过程中,促使其运动状态发生变化的是圆环内侧对物体的支持力FN 和环与物体之间的摩擦力Ff ,而摩擦力大小与正压力FN′成正比,且FN与FN′又是作用力与反作用力,这样,就可通过它们把切向和法向两个加速度联系起来了,从而可用运动学的积分关系式求解速率和路程.

解 (1) 设物体质量为m,取图中所示的自然坐标,按牛顿定律,有

mv2FN?man?

RFf??mat??dv dt由分析中可知,摩擦力的大小Ff=μFN ,由上述各式可得

v2dvμ?? Rdt取初始条件t =0 时v =v 0 ,并对上式进行积分,有

?t0dt??Rvdv

μ?v0v2v?Rv0

R?v0μt(2) 当物体的速率从v 0 减少到1/2v 0时,由上式可得所需的时间为

t??物体在这段时间内所经过的路程

R μv0s??vdt??0t?t?0Rv0dt

R?v0μts?Rln2 μ-1

2 -20 质量为45.0 kg 的物体,由地面以初速60.0 m·s 竖直向上发射,物体受到空气的阻力为Fr =kv,且k =0.03 N/( m·s ).(1) 求物体发射到最大高度所需的时间.(2) 最大高度为多少?

分析 物体在发射过程中,同时受到重力和空气阻力的作用,其合力是速率v 的一次函数,动力学方程是速率的一阶微分方程,求解时,只需采用分离变量的数学方法即可.但是,在求解高度时,则必须将时间变量通过速度定义式转换为位置变量后求解,并注意到物体上升至最大高度时,速率应为零.

解 (1) 物体在空中受重力mg和空气阻力Fr =kv 作用而减速.由牛顿定律得

-1

?mg?kv?m根据始末条件对上式积分,有

dv (1) dt?t0dt??m?vv0vdv

mg?kvt?m?kv0??ln?1??6.11s ??k?mg?(2) 利用

dvdv?v的关系代入式(1),可得 dtdy?mg?kv?mvdv dy分离变量后积分

?故 y??y0dy???v00mvdv

mg?kv?m?mg?kv0???ln1??v??0??183m k?k?mg???

vv讨论 如不考虑空气阻力,则物体向上作匀减速运动.由公式t?0和y?0分别算得

g2gt≈6.12s和y≈184 m,均比实际值略大一些.

2 -21 一物体自地球表面以速率v0 竖直上抛.假定空气对物体阻力的值为Fr =kmv ,其中m 为物体的质量,k 为常量.试求:(1) 该物体能上升的高度;(2)物体返回地面时速度的值.(设重力加速度为常量.)

2

2

分析 由于空气对物体的阻力始终与物体运动的方向相反,因此,物体在上抛过程中所受重力P 和阻力Fr 的方向相同;而下落过程中,所受重力P 和阻力Fr 的方向则相反.又因阻力是变力,在解动力学方程时,需用积分的方法.

解 分别对物体上抛、下落时作受力分析,以地面为原点,竖直向上为y 轴(如图所示).(1) 物体在上抛过程中,根据牛顿定律有

?mg?kmv2?m依据初始条件对上式积分,有

dvvdv?m dtdy?y0dy???0v0vdv 2g?kv1?g?kv2?? y??ln?2??2k?g?kv0?物体到达最高处时, v =0,故有

2?1?g?kv0?h?ymax?ln? ??2k?g?(2) 物体下落过程中,有

?mg?kmv2?mvdv dy

对上式积分,有

?y0dy????1/20v0vdv 2g?kv?kv2?则 v?v0??1?g????

2 -22 质量为m 的摩托车,在恒定的牵引力F的作用下工作,它所受的阻力与其速率的平方成正比,它能达到的最大速率是vm .试计算从静止加速到vm/2所需的时间以及所走过的路程.

分析 该题依然是运用动力学方程求解变力作用下的速度和位置的问题,求解方法与前两题相似,只是在解题过程中必须设法求出阻力系数k.由于阻力Fr =kv ,且Fr又与恒力F 的方向相反;故当阻力随速度增加至与恒力大小相等时,加速度为零,此时速度达到最大.因此,根据速度最大值可求出阻力系数来.但在求摩托车所走路程时,需对变量作变换.

解 设摩托车沿x 轴正方向运动,在牵引力F和阻力Fr 同时作用下,由牛顿定律有

2

F?kv2?m当加速度a =dv/dt =0 时,摩托车的速率最大,因此可得

dv (1) dtk=F/vm2 (2)

由式(1)和式(2)可得

?v2?dv? (3) F?1??m?v2?dtm??根据始末条件对式(3)积分,有

?1?则 t?又因式(3)中mt0dt?mF?1vm20?v2???1?v2??dv

m??mvmln3 2Fdvmvdv,再利用始末条件对式(3)积分,有 ?dtdx1m2vm?v2??0dx?F?0??1?v2??dv

m??x?122mvm4mvmln?0.144则 x? 2F3F*2 -23 飞机降落时,以v0 的水平速度着落后自由滑行,滑行期间飞机受到的空气阻力F1=-k1 v2 ,升力F2=k2 v2 ,其中v为飞机的滑行速度,两个系数之比k1/ k2 称为飞机的升阻比.实验表明,物

体在流体中运动时,所受阻力与速度的关系与多种因素有关,如速度大小、流体性质、物体形状等.在速度较小或流体密度较小时有F∝v,而在速度较大或流体密度较大的有F∝v ,需要精确计算时则应由实验测定.本题中由于飞机速率较大,故取F∝v 作为计算依据.设飞机与跑道间的滑动摩擦因数

2

2

为μ,试求飞机从触地到静止所滑行的距离.以上计算实际上已成为飞机跑道长度设计的依据之一.

分析 如图所示,飞机触地后滑行期间受到5 个力作用,其中F1为空气阻力, F2 为空气升力, F3 为跑道作用于飞机的摩擦力,很显然飞机是在合外力为变力的情况下作减速运动,列出牛顿第二定律方程后,用运动学第二类问题的相关规律解题.由于作用于飞机的合外力为速度v的函数,所求的又是飞机滑行距离x,因此比较简便方法是直接对牛顿第二定律方程中的积分变量dt 进行代换,将dt 用

dx代替,得到一个有关v 和x 的微分方程,分离变量后再作积分. v FN?k1v?m解 取飞机滑行方向为x 的正方向,着陆点为坐标原点,如图所示,根据牛顿第二定律有

dv (1) dtFN?k2v2?mg?0 (2)

2将式(2)代入式(1),并整理得

?μmg??k1?μk2?v2?m分离变量并积分,有

dvdv?mv dtdx?得飞机滑行距离

vv0?mvdv??dx 2?0μmg??k1?μk2?v?μmg??k1?μk2?v2?mx?ln? (3)

2?k1?μk2??μmg??考虑飞机着陆瞬间有FN=0 和v=v0 ,应有kv0 =mg,将其代入(3)式,可得飞机滑行距离x 的另一表达式

2?k1?k2v0?x?ln?? 2g?k1?μk2??μk?2?2

2

讨论 如飞机着陆速度v0=144 km·h,μ=0.1,升阻比560 m,设计飞机跑道长度时应参照上述计算结果.

-1

k1

?5,可算得飞机的滑行距离x =k2

2 -24 在卡车车厢底板上放一木箱,该木箱距车箱前沿挡板的距离L =2.0 m,已知刹车时卡车的加速度a =7.0 m·s ,设刹车一开始木箱就开始滑动.求该木箱撞上挡板时相对卡车的速率为

-2

多大?设木箱与底板间滑动摩擦因数μ=0.50.

分析 如同习题2 -5 分析中指出的那样,可对木箱加上惯性力F0 后,以车厢为参考系进行求解,如图所示,此时木箱在水平方向受到惯性力和摩擦力作用,图中a′为木箱相对车厢的加速度.

解 由牛顿第二定律和相关运动学规律有

F0 -Ff=ma -μmg=ma′ (1) v′ 2 =2a′L (2)

联立解(1)(2)两式并代入题给数据,得木箱撞上车厢挡板时的速度为

v??2?a?μg?L?2.9m?s?2

*2 -25 如图(a)所示,电梯相对地面以加速度a 竖直向上运动.电梯中有一滑轮固定在电梯顶部,滑轮两侧用轻绳悬挂着质量分别为m1 和m2 的物体A和B.设滑轮的质量和滑轮与绳索间的摩擦均略去不计.已知m1 >m2 ,如以加速运动的电梯为参考系,求物体相对地面的加速度和绳的张力.

分析 如以加速运动的电梯为参考系,则为非惯性系.在非惯性系中应用牛顿定律时必须引入惯性力.在通常受力分析的基础上,加以惯性力后,即可列出牛顿运动方程来.

解 取如图(b)所示的坐标,以电梯为参考系,分别对物体A、B 作受力分析,其中F1 =m1a,F2 =

m2a 分别为作用在物体A、B 上的惯性力.设ar为物体相对电梯的加速度,根据牛顿定律有

m1g?m1a?FT1?m1ar(1) m2g?m2a?FT2??m2ar (2)

FT2?FT2 (3)

由上述各式可得

ar?m1?m2?g?a?

m1?m22m1m2?g?a?

m1?m2FT2?FT2?由相对加速度的矢量关系,可得物体A、B 对地面的加速度值为

a1?ar?a??m1?m2?g?2m2a

m1?m22m1a??m1?m2?g

m1?m2a2???ar?a???a2 的方向向上, a1 的方向由ar 和a 的大小决定.当ar <a,即m1g -m2g -2m2 a>0 时,a1 的方

向向下;反之, a1 的方向向上.

*2 -26 如图(a)所示,在光滑水平面上,放一质量为m′的三棱柱A,它的斜面的倾角为α.现把一质量为m 的滑块B 放在三棱柱的光滑斜面上.试求:(1)三棱柱相对于地面的加速度;(2) 滑块相对于地面的加速度;(3) 滑块与三棱柱之间的正压力.

分析 这类问题可应用牛顿定律并采用隔离体法求解.在解题的过程中必须注意:

(1) 参考系的选择.由于牛顿定律只适用于惯性系,可选择地面为参考系(惯性系).因地面和斜面都是光滑的,当滑块在斜面上下滑时,三棱柱受到滑块对它的作用,也将沿地面作加速度为aA 的运动,这时,滑块沿斜面的加速度aBA ,不再是它相对于地面的加速度aB 了.必须注意到它们之间应满足相对加速度的矢量关系,即aB =aA +aBA .若以斜面为参考系(非惯性系),用它求解这类含有相对运动的力学问题是较为方便的.但在非惯性系中,若仍要应用牛顿定律,则必须增添一惯性力F,且有

F =maA .

(2) 坐标系的选择.常取平面直角坐标,并使其中一坐标轴方向与运动方向一致,这样,可使解题简化.

(3) 在分析滑块与三棱柱之间的正压力时,要考虑运动状态的影响,切勿简单地把它视为滑块重力在垂直于斜面方向的分力mgcos α,事实上只有当aA =0 时,正压力才等于mgcos α.

解1 取地面为参考系,以滑块B 和三棱柱A 为研究对象,分别作示力图,如图(b)所示.B 受重力P1 、A 施加的支持力FN1 ;A 受重力P2 、B 施加的压力FN1′、地面支持力FN2 .A 的运动方向为

Ox 轴的正向,Oy 轴的正向垂直地面向上.设aA 为A 对地的加速度,aB 为B 对的地加速度.由牛顿

定律得

?FN1sinα?m?aA (1)

?FN1sinα?maBx (2) FN1cosα?mg?maBy (3)

?FN1?FN1 (4)

设B 相对A 的加速度为aBA ,则由题意aB 、aBA 、aA 三者的矢量关系如图(c)所示.据此可得

aBx?aA?aBAcosα (5) aBy??aBAsinα (6)

解上述方程组可得三棱柱对地面的加速度为

aA?mgsinαcosα

m??msin2αm?gsinαcosα 2?m?msinαm??msin2α

滑块相对地面的加速度aB 在x、y 轴上的分量分别为

aBx?aBy?m??m?gsin2α??则滑块相对地面的加速度aB 的大小为

aB?a?a其方向与y 轴负向的夹角为

2Bx2Bym?2?2mm??m2sin2α ?gsinαm??msin2αaBxm??cotα?arctan aBym??m??θ?arctanA 与B 之间的正压力

FN1?m?mgcosα

m??msin2α

本文来源:https://www.bwwdw.com/article/jk0x.html

Top