高考数学一轮复习第二章函数概念与基本初等函数I2-5指数与指数函
更新时间:2024-06-01 12:42:01 阅读量: 综合文库 文档下载
- 高考数学复习推荐度:
- 相关推荐
...............................................................................................
高考数学一轮复习第二章函数概念与基本初等函数I2-5指数
与指数函数课时作业理练习
基础巩固题组
(建议用时:40分钟)
一、填空题
1.×0+×-=________.
解析 原式==2.答案 2
2.已知正数a满足a2-2a-3=0,函数f(x)=ax,若实数m,n满足
f(m)>f(n),则m,n的大小关系为________.
解析 ∵a2-2a-3=0,∴a=3或a=-1(舍).函数f(x)=3x在R上递增,由f(m)>f(n),得m>n. 答案 m>n
3.(2017·衡水中学模拟改编)若a=x,b=x2,c=x,则当x>1时,a,
b,c的大小关系是________(从小到大).
解析 当x>1时,01,c=x<0,所以c
1 / 7
...............................................................................................
4.函数f(x)=ax-b的图象如图所示,其中a,b为常数,给出下列结
论:
①a>1,b<0; ②a>1,b>0; ③00; ④0
其中判断正确的结论有________(填序号).
解析 由f(x)=ax-b的图象可以观察出,函数f(x)=ax-b在定义域上单调递减,所以0
函数f(x)=ax-b的图象是在f(x)=ax的基础上向左平移得到的,所以b<0. 答案 ④
5.(2017·南京、盐城一模)已知c=则a,b,c的大小关系是
________.
解析 ∵y=x在R上为减函数,>,∴b
f(x1)),Q(x2,f(x2))为端点的线段的中点在y轴上,那么f(x1)·f(x2)=________.
解析 ∵以P(x1,f(x1)),Q(x2,f(x2))为端点的线段的中点在y轴上,
2 / 7
...............................................................................................
∴x1+x2=0. 又∵f(x)=ax,
∴f(x1)·f(x2)=ax1·ax2=ax1+x2=a0=1. 答案 1
7.(2017·南通调研)若函数f(x)=a|2x-4|(a>0,且a≠1),满足
f(1)=,则f(x)的单调递减区间是________.
解析 由f(1)=,得a2=,解得a=或a=-(舍去),即f(x)=|2x-4|.由于y=|2x-4|在(-∞,2]上递减,在[2,+∞)上递增,所以f(x)在(-∞,2]上递增,在[2,+∞)上递减. 答案 [2,+∞)
8.(2017·安徽江南十校联考)已知max(a,b)表示a,b两数中的最大
值.若f(x)=max{e|x|,e|x-2|},则f(x)的最小值为________. 解析
??ex,x≥1,
f(x)=?
?e|x-2|,x<1.?
当x≥1时,f(x)=ex≥e(x=1时,取等号), 当x<1时,f(x)=e|x-2|=e2-x>e, 因此x=1时,f(x)有最小值f(1)=e. 答案 e 二、解答题
9.已知f(x)=x3(a>0,且a≠1).
(1)讨论f(x)的奇偶性;
(2)求a的取值范围,使f(x)>0在定义域上恒成立. 解 (1)由于ax-1≠0,则ax≠1,得x≠0, 所以函数f(x)的定义域为{x|x≠0}.
3 / 7
...............................................................................................
对于定义域内任意x,有
f(-x)=(-x)3
=(-x)3 =(-x)3 =x3=f(x). ∴f(x)是偶函数.
(2)由(1)知f(x)为偶函数,
∴只需讨论x>0时的情况,当x>0时,要使f(x)>0,即x3>0, 即+>0,即>0,则ax>1. 又∵x>0,∴a>1. 因此a>1时,f(x)>0.
10.已知定义域为R的函数f(x)=是奇函数.
(1)求a,b的值;
(2)解关于t的不等式f(t2-2t)+f(2t2-1)<0. 解 (1)因为f(x)是定义在R上的奇函数, 所以f(0)=0, 即=0,解得b=1, 所以f(x)=.
又由f(1)=-f(-1)知=-,解得a=2. (2)由(1)知f(x)==-+.
由上式易知f(x)在(-∞,+∞)上为减函数(此处可用定义或导数法证明函数f(x)在R上是减函数).
又因为f(x)是奇函数,所以不等式f(t2-2t)+f(2t2-1)<0等价于f(t2-2t)<
4 / 7
...............................................................................................
-f(2t2-1)=f(-2t2+1).
因为f(x)是减函数,由上式推得t2-2t>-2t2+1, 即3t2-2t-1>0,解不等式可得t>1或t<-, 故原不等式的解集为.
能力提升题组 (建议用时:20分钟)
11.若存在正数x使2x(x-a)<1成立,则a的取值范围是________.
解析 因为2x>0,所以由2x(x-a)<1得a>x-x, 令f(x)=x-x,
则函数f(x)在(0,+∞)上是增函数, 所以f(x)>f(0)=0-0=-1,所以a>-1. 答案 (-1,+∞)
12.已知函数f(x)=|2x-1|,af(c)>f(b),则下列结论:
①a<0,b<0,c<0;②a<0,b≥0,c>0; ③2-a<2c;④2a+2c<2.
其中一定成立的是________(填序号). 解析
作出函数f(x)=|2x-1|的图象如图中实线所示, ∵af(c)>f(b),结合图象知a<0,0 ∴f(a)=|2a-1|=1-2a<1, ∴f(c)=|2c-1|=2c-1, 又f(a)>f(c),即1-2a>2c-1,∴2a+2c<2. 答案 ④ 5 / 7 ............................................................................................... 13.(2017·北京丰台一模)已知奇函数y=如果f(x)=ax(a>0,且 a≠1)对应的图象如图所示,那么g(x)=________. 解析 依题意,f(1)=,∴a=, ∴f(x)=x,x>0.当x<0时,-x>0. ∴g(x)=-f(-x)=--x=-2x. 答案 -2x(x<0) 14.(2017·××市教育学会期末)已知函数f(x)=ex-e-x(x∈R,且 e为自然对数的底数). (1)判断函数f(x)的单调性与奇偶性; (2)是否存在实数t,使不等式f(x-t)+f(x2-t2)≥0对一切x∈R都成立?若存在,求出t;若不存在,请说明理由. 解 (1)∵f(x)=ex-x, ∴f′(x)=ex+x, ∴f′(x)>0对任意x∈R都成立, ∴f(x)在R上是增函数. 又∵f(x)的定义域为R,且f(-x)=e-x-ex=-f(x), ∴f(x)是奇函数. (2)存在.由(1)知f(x)在R上是增函数和奇函数,则f(x-t)+f(x2-t2)≥0对一切x∈R都成立, ?f(x2-t2)≥f(t-x)对一切x∈R都成立, ?x2-t2≥t-x对一切x∈R都成立, ?t2+t≤x2+x=2-对一切x∈R都成立, ?t2+t≤(x2+x)min=-?t2+t+=2≤0, 又2≥0,∴2=0,∴t=-. 6 / 7 ............................................................................................... ∴存在t=-,使不等式f(x-t)+f(x2-t2)≥0对一切x∈R都成立. 7 / 7
正在阅读:
高考数学一轮复习第二章函数概念与基本初等函数I2-5指数与指数函06-01
第四章层流和紊流及水流阻力和水头损失05-24
河南省南阳市邓州市白牛高中2022-2022学年高二上学期开学化学试04-16
共青团团歌,歌词,串词,朗诵词,报幕词02-08
2012-2013学年度个人发展规划05-23
1.医嘱、护嘱执行制度题库(2016)09-13
下山口隧道围岩施工技术交底10-04
第23课科学专业技术上教学设计07-22
- 多层物业服务方案
- (审判实务)习惯法与少数民族地区民间纠纷解决问题(孙 潋)
- 人教版新课标六年级下册语文全册教案
- 词语打卡
- photoshop实习报告
- 钢结构设计原理综合测试2
- 2014年期末练习题
- 高中数学中的逆向思维解题方法探讨
- 名师原创 全国通用2014-2015学年高二寒假作业 政治(一)Word版
- 北航《建筑结构检测鉴定与加固》在线作业三
- XX县卫生监督所工程建设项目可行性研究报告
- 小学四年级观察作文经典评语
- 浅谈110KV变电站电气一次设计-程泉焱(1)
- 安全员考试题库
- 国家电网公司变电运维管理规定(试行)
- 义务教育课程标准稿征求意见提纲
- 教学秘书面试技巧
- 钢结构工程施工组织设计
- 水利工程概论论文
- 09届九年级数学第四次模拟试卷
- 函数
- 指数
- 一轮
- 初等
- 复习
- 概念
- 数学
- 第二章
- 基本
- 高考
- 祝陈小学《小学刻纸校本课程资源开发与学生能力发展的研究》课题
- 高中军训总结会学生代表发言稿
- 俄国近代思想史尔雅最新答案
- 罐及其它设备基础土建施工方案(污水处理厂核五)
- 中山大学2010考研参考书目
- 隧道技术交底
- 精品云浮市新兴县水台镇云端花岗岩石场水土保持方案报告书-定
- 第一章+行列式+目标检测练习题
- 2007年第二季度全国教育科学“十五”规划立项课题结题鉴定一览表
- 外国文学史知识点
- 会计基础_第五章_会计分录练习题
- 海底捞选址分析
- 1中国有色金属工业科学技术奖励推荐书doc
- 江苏省乡镇卫生院示范中医科建设标准与评分细则
- 深圳公司注册流程及需要准备材料
- 巴玉雅鲁藏布江三线大桥墩身施工专项方案(2017.6.27)
- 麦芽糖醇液项目可行性研究报告
- 第五届医疗安全知识竞赛试题题库
- 五年级上册_语文课堂作业本答案
- 小学科学实验操作步骤