3 New-Product Strategy and Industry Clockspeed
更新时间:2023-06-10 20:52:01 阅读量: 实用文档 文档下载
- 3d开奖结果推荐度:
- 相关推荐
Industrial Engineering
Vol.50,No.4,April2004,pp.537–549
issn0025-1909 eissn1526-5501 04 5004 0537
MANAGEMENT SCIENCE
inf®
doi10.1287/mnsc.1030.0172
©2004INFORMS
New-ProductStrategyandIndustryClockspeed
TheRobertH.SmithSchoolofBusiness,UniversityofMaryland,CollegePark,Maryland20742-1815,gsouza@umd.eduKenan-FlaglerBusinessSchool,TheUniversityofNorthCarolinaatChapelHill,ChapelHill,NorthCarolina27599
{barry_bayus@unc.edu,harvey_wagner@unc.edu}
GilvanC.Souza
BarryL.Bayus,HarveyM.Wagner
W
estudyhowindustryclockspeed,internal rmfactors,suchasproductdevelopment,production,andinventorycosts,andcompetitivefactorsdeterminea rm’soptimalnew-productintroductiontimingandproduct-qualitydecisions.Weexplicitlymodelmarketdemanduncertainty,a rm’sinternalcoststructure,andcompetition,usinganin nite-horizonMarkovdecisionprocess.Basedonalarge-scalenumericalanalysis,we ndthatmorefrequentnew-productintroductionsareoptimalunderfasterclockspeedconditions.Inaddition,we ndthata rm’soptimalproduct-qualitydecisionisgovernedbya rm’srelativecostsofintroducingnewproductswithincrementalversusmoresubstantialimprovements.Weshowthatatime-pacingproductintroductionstrategyresultsinaproductionpolicywithasimplebase-stockformandperformswellrelativetotheoptimalpolicy.Ourresultsthusprovideanalyticalsupportforthemanagerialbeliefthatindustryclockspeedandtimetomarketarecloselyrelated.
Keywords:speedtomarket;timepacing;Markovdecisionprocesses
History:AcceptedbyTeckH.HoandChristopherS.Tang,specialissueeditors;receivedJune2001.Thispaperwaswiththeauthors7monthsfor2revisions.
Intoday’smarketplace, rmscompeteinadynamicenvironmentinwhichthevelocityofchangeisoftenswift.Notsurprisingly,timeasastrategicsourceofcompetitiveadvantageisreceivingincreasingatten-tionfromresearchersinoperations,marketing,andstrategy(e.g.,Blackburn1991,Dataretal.1997,EisenhardtandBrown1998,Hult2002).
Onerecentlineofresearchinthisareaarguesthatindustriesarecharacterizedbyaninternalclock-speedthatin uencesa rm’snew-productdevel-opmentactivities(e.g.,MendelsonandPillai1999).Althoughvariousindustrycharacteristicshavebeenproposedtocaptureclockspeed,changesinindustrypriceplayaprominentroleinallmeasures.1Thus,rapidlydecliningpricesareconsideredtobecloselyassociatedwithfast-clockspeedindustries.
AsoriginallyproposedbyFine(1996,1998),fast-clockspeedindustries(personalcomputers,semi-conductors,cosmetics)requiredifferentproduct,process,andsupplychaindesigndecisionsthanmedium-clockspeed(computeroperatingsystems,
Forexample,Williams(1992)empiricallyde nesfast-,medium-,andslow-cycleindustriesintermsofaverageobservedchangesinindustryprices.MendelsonandPillai(1999)includechangesinindustrypricesintheircompositemeasure.Fine(1998)proposesthatcompetitiveintensity,whichisoftenre ectedindownwardpressureonindustryprices,isamajorcomponentofindustryclockspeed.
537
1
1.Introduction
pharmaceuticals,automobiles)andslow-clockspeed(aircraft,petrochemicals,steel)industries.Becausesustainingacompetitiveadvantageisdif cultintur-bulentenvironments,thefrequentintroductionofincrementallynewproductsisgenerallyobservedinfast-clockspeedindustries(e.g.,Williams1992,Hult2002).Basedonself-reportedsurveysofmanufactur-ersintheelectronicsindustry,MendelsonandPil-lai(1999)con rmthatmanagersbelievethatfasterindustryclockspeedisrelatedtoshorterdevelop-mentcycletimesandreducedtimebetweenproductredesigns.Weareunawareofanypublishedresearch,however,thatanalyticallyestablishesalinkbetweenindustryclockspeedanda rm’sdecisiontobringnewproductstomarket.Consequently,thereisanincompleteunderstandingoftheconditionsinwhicha rmshouldfrequentlyintroducenewproducts.
Ourworkbuildsonprioreffortsaddressingthetrade-offsbetweenthetimingofnew-productintro-ductions,productquality,andproductdevelopmentcosts(Cohenetal.1996,Bayus1997,Bayusetal.1997,Morganetal.2001).2Studyingtheintroductiontiming
Thereareotherindirectlyrelatedpapersaswell.Emphasizingtheimportanceofcannibalizationwithinaproductline,WilsonandNorton(1989)andMoorthyandPng(1992)studythetimingofasinglenew-productintroduction.Machinereplacementmodels(seeNairandHopp1992,Nair1995forreviews)andtechnologyadop-tionmodels(e.g.,BalcerandLippman1984,McCardle1985)focusontheroleofobsolescenceintheproductreplacementdecision.
2
Industrial Engineering
Souza,Bayus,andWagner:New-ProductStrategyandIndustryClockspeed
538
ofandasingleproduct,Cohenetal.(1996),Bayus(1997), rmBayusshouldshouldet“takeal.its(1997)timeessentiallyconcludethatatialintroduceanewproductanddowithitright”;i.e.,a rmsituationqualityaspossible.Extendingthesetheeffortshighesttoini-theuctconditionsgenerationsinwhichovera rmtime,canMorganintroducemultipleprod-mal;whena“rapidinch-up”etstrategyal.(2001)isopti- ndwithi.e., ndincrementala rmshouldimprovements.frequentlyintroduceInparticular,productstheyproductthatintroductionslargelya rm’sdeterminesinternalcostofintroducinganewresultand,asaresult,thefrequencyproductquality.ofproductThistionations,(priceisnotmarginssurprisingareconstantgiventheiracrossmodelformula-butnouslynotmarketshareisafunctionofproductproductqualitygener-tantly,improvingprice,andindustryataconstantproductrate).qualityisexoge-forsuchthethesebeliefresultsdonotprovideanalyticMoresupportimpor-timingasthatexternalindustrycharacteristics,decision.
clockspeed,drivetheproductintroductionsiderUnlikeortheroletheexistingofexternalliterature,industryweanalyticallycon-development,changesincompetitiveproduction,price),internalfactors(clockspeedand rmfactors(productintroductionfactorsBasedtimingininventorycosts),andanddetermininga rm’soptimalthattionsa rm’sonalarge-scaleoptimalpacenumericalproduct-qualityofnew-productanalysis,decisions.introduc-we ndconditions:isprimarilydeterminedbyexternalindustryareaddition,optimalMore-frequentqualityweundernew-productintroductions ndfasterclockspeedconditions.Insuchdecisionisgovernedthata rm’sbyitsoptimalinternalproduct-factors,withasments.incrementaltherelativeversuscostsofmoreintroducingnewproductsfor(1999).theOursuchFinally,basicresultssurveythusprovidesubstantialanalyticalimprove-supportweshowresultsthatofaMendelsontime-pacingandstrategyPillai(1998)asperformisthewellnotonenecessarilyproposedbyEisenhardtandBrownundermanyoptimal,conditions.
butgenerallydoes2.
InModelFormulation
malthissection,etnew-productwestrategies.developaInmodelcontrasttostudytoopti-weal.cessstudy(1996),Bayus(1997),andBayusetal.Cohen(1997),bythatallowsanin nite-horizona rmtomaximizeMarkovdiscounteddecisionpro-Morganintroducingnew-productetal.(2001),multipleweexplicitlyproductgenerations.Unlikepro tityproducttobeintroductiondecisionintroductionvariables.timingconsiderandproductthe rm’squal-underdemandInaddition,uncertainty,weconsiderand
ManagementScience50(4),pp.537–549,©2004INFORMS
thereforeandmodeltheeffectsofproduction,inventory,effectsobsolescence. rms,ConsiderinourFinally,weincludecompetitiveamodel.
marketcomprisedoftwocompetingfromunboundedFirmAandA’sB.perspective.WeformulateThetheplanningdecisionhorizonproblemlengthanddividedintotimeperiodsofisEvery(e.g.,considerperiodlengthsasquarters).equalcompetingperiod,levelproduct rmsthatmakeischaracterizedavailableunitsbyofitsaqualitysingleperiodsandrespectively.anditsdenotedtimeinbymarket,iandwhichismeasuredinproductTherearetwopossiblejforlevelsFirmsforAFirmandA’sB,byintroductionq=qqualitysandqq=:standardqpandpremium,denotedimprovementofimprovement.andastandard,respectively.Weidentifytheaproductasanincremental(1997),FirmandMorganSimilarpremiumtoCohenproductetal.as(1996),asubstantialBayusassumptionB’sproductqBatetanyal.(2001),periodtheisqualitylevelforgenerationetinthatanyeachperiod rmaparameter.3TheismarketsasingleproductMorganal.(1996),etBayus(1997),Bayusinkeepingetal.with(1997),Cohenanducts,Our rms’andfocusal.henceis(2001).
onwethetimingandqualityofnewprod-timeanddimensionalFirminproductsmarketareconsidergivenfunctionsthattheofpricestheproducts’forbothB’spriceandquality.policyPFirmA’spricepolicyPqijB
qij
binationcompetitiveofqarrayscompetitiveprice,qB,thatassigndesignateapriceforgiveneachmulti-com-policyi,andisj.Thus,eventhoughtheframework(e.g.,isenvironment.moregeneralThisexogenous,thanaspectofitre ectsourmodeltheandMorganCohenetetal.1996,Bayus1997,theBayusrelatedetliteratureal.1997,policy.Wemakeal.2001treatpricesasconstant).
productFirst,onlytwoassumptionsregardingapriceproductpriceweisatassumeleastthataslargeFirmasA’sitspremium-standard-thatreasonablePprice,isgivenqB,i,andj.Second,weassumeqijresearchassumptiondecreasingini,givenq,qB,andj.This(e.g.,tionsKrishnanonoptimaliswellgroundedinanalyticaletpricingpoliciesfornewproductsobservations(e.g.,Bayusal.1999)andnew-productgenera-andof1992),aswellasthroughempiricalBayusthe1992).
pricesofnew-productsuccessiveproductprices(e.g.,generationsBayus1993)(e.g.,3
itlyForningmodelreasonsproductofmodelqualitytractabilityasacumulativeandparsimony,wedonotexplic-dohorizon.Wenotethatourconclusions,functiontobediscussedovertheinplan-§3,improvingnotchangeingoveriftimethe(i.e.,overallqqualityofallproductsisconstantlythetimetrend).Wefocusourisananalysisexogenousonthefunctionofanincreas-petitorrelativeremainqualityconstant.
levelsbetweenstandard,premium,situationandinthewhichcom-
Industrial Engineering
Souza,Bayus,andWagner:New-ProductStrategyandIndustryClockspeed
ManagementScience50(4),pp.537–549,©2004INFORMS
prices,Consideringhaveweconsidertheprecedingassumptionsaboutuesingofaprobabilitydistributionmarketdemandthatinre ectsanyperiodtheval-topotentialvaluesq,qB,i,andj,and,implicitly,thecorrespond-thatdemandforprices.forWeeachpostulate rmisthatthetheproductexpectedofmarket rm’seraturedemandmarketforsharetheperiod.multipliedInlinebythewithexpected1997)etandinoperationsmarketing(e.g.,(e.g.,CohenBayus1997,Bayustheetlit-al.shareal.1999,Morganetal.2001),weetassumeal.1996,thatKrishnanmarket(i.e.,and qijisishigherpositivelyforrelatedq=toownproductqualityqijtoj andcompetitorprice,qpthanforq=qs,giveniically,own(1997), priceg andq competitorandnegativelyrelatedqij=qB Pqij PqijB
product ,where,quality.asinSpecif-BayustoinFirm Bis(ifFirm =A’s1,thenmarketingcompetitorseffectivenessrelativeisfromstrictlytermsofandjour.Firmassumptionincreasingmarketingineffectiveness).Wearenotesymmetricthat qijB’smarketthati,sharePgivenqandj;thisfollowsqijdecreasesis1 withigivenqqijsimultaneouslyAtthestartofintroduceandeachwithoutperiod,Firms.
collusion,AandwhetherBdecide,soldopmentintheafollowingnewproductperiod.thatThus,wouldbeproducedandtomadeassumetotimekeepis xedatoneperiod;thethisproductassumptiondevel-isproductthattheourmaximumanalysistimefocusedinmarketandtractable.isnforWerateandtheproductdoesnotphysicallyanyforFirmoverAtime.
deterio-alsodecidesonFirmitsiblebetoB’scurrentFirmproductionproduct.WethedolevelnotofmakeproductionexplicitA.Productiondecision,occursasitquicklywouldnotenoughbevis-toassumeavailabletionthatforbothdemandproductinintroductionthecurrentandperiod.produc-Weanduncertainbeforedecisionsdemandinaoccursperiodinarethatmadeperiod.simultaneouslyBecauseofitlydoesincludemarketFirmA’sdemand,inventoryitisinnecessarythemodel.toexplic-FirmnotisBbehaveshaveknowledgeaccordingoftoFirmB’sinventoryFirmlevel.AassumptionknowableintoFirmA;weaelaboratecontingentmorestrategyonthatthisforTosummarize,§2.2.
thesequenceofdecisionsandis1.FirmAinaperiodis:
eventsjobservedTimein(amarketnewforproductFirmhasB’stimecurrentinproductreviewed=1).FirmandA’sholdinginventorycostsforthecurrentproductmarketisnext2.Firmthecurrentperiod,Aperiod.
itsdecidesquality,whetherareandhowtoincurred.
introducemuchtoproduceaproductinavailable.
3.Theproductionofthecurrentproductbecomes539
is4.demand lled,FirminventoryAobservesisitsreduced,potentialanddemand.anyDemandun llednext5.IfFirmislost.
Adecidestointroduceaproductinatperiod,thenitsellsitsthetoInasalvageend-of-periodinventorythevalue.
bypopulatenextsections,weprovidefunctionalformsproblemtheabovethemodelmathematicalrelationshipsimplied(§2.1),costFirmrequiresB’sstrategyspeci cationdescription.FirmA’sdecision(§2.2),ofmarketparametersrizedparametersinTable1.
(§2.3).Themodelandnotationitsownissumma-internal2.1.TotalDemand
amarketdemandinaperiodXqijismodeledasPrstochasticcomparison Xvariablewithprobabilitymassfunctiont=w =aqij w ,inministic.§3.3theEacheffectswiththew=0 1 Forpurposesofunitofpriorofallowingliterature,marketdemanddemandwealsorepresentstobeconsiderdeter-an
Table1Notation
Symbol
Description
StateqvariablesQualityofFirmA’sproduct:q=qs(standard)orq=qp
ijTime(premium)
xTimeinFirmA’sinmarketmarketforFirmA’sproductinperiodsinventoryforlevelFirmB’sproductinperiodsParametersnMMaximumtimeinmarketforaproduct MaximumqBFirmA’smarketinginventoryeffectivenessquantityKsQualityK
p
FirmA’sof(relativetoFirmB) xedFirmB’sproduct FirmDiscountA’s xedproductfactorproductintroductionperperiodintroductioncostcostforforaastandardpremiumproductproductArrays,Pfunctions,andrandomvariablesPqijB
PricePriceofofFirmFirmA’sB’sproductproductgivengivenqq,,ii,,andandjjhqij
qInventoryholdingcostperunitperperiodforsvq
Inventorygivenq
aproduct
salvagevalueperunitofaproductgivenqpqB
Variablecostperunitofqij
ProbabilitythatFirmBintroducesaproductagivenproductqnextperiod,givenpB
Arrayq,i,ofandpBj
qijXqijFirmqij
MarketA’sexpectedpotentialmarketsharegivenq,i,andj
probabilitydemandmassineachfunctionperiod,(p.m.f.)arandomPrvariablewith w=0 1 givenq,i,andj
Xqij=w =aqij w ,DqijMeanmarketdemandqij
FirmandA’sj
demandineachperperiod,period,aE Xrandomqij ,givenvariable,q,i,givenandj
q,i,Decisiondecisions)variable(inadditiontotheproductintroductionandqualityyFirmdecisionA’sinventoryisy xon),handwhereaftery≥productionx
(production
Industrial Engineering
Souza,Bayus,andWagner:New-ProductStrategyandIndustryClockspeed
540
opportunityproduct.
forFirmAorFirmBtosellaunitofFirmAsimpleassumesA’sdemandapproachDthatsplitsmarketdemandsetsqij= qijXqij.siderwhichXinteger-valued=3and =0demand.Our 5.ThenDFormodel,example,however,con-qijqijqij= qijXqij=1 5,integerWeuseisnotdemandvaluesanintegral.
alternativeforDformulationthatgeneratesqij.IfmialforFirmA’sproductmarketismodeleddemandisaswa,bino-thenThissimilarallocationrandomvariableofmarketwithdemandparameterstoFirmswAand qij.Lippmantothe2000).andincrementalMcCardlerandom-splittingandBis1997,SmithandruleAgrawal(e.g.,FirmA’sThedemandprobabilityis:massfunction(p.m.f.)forPr Dqij=d =
Pr Dqij=d Xqij=w Pr Xqij=w
w=0
= w d
qij 1 qij w daqij(1)
w=d
d w
Hereured qijis erbyFirmtheA,expectedsinceE Dpotentialmarketsharecapt-qij = qijmarketpotentialisappropriatebecause E Xqij .Thequali-qijistheexpected
inventoryshareonlyifFirmAalwayshassuf cientFirmtomeetdemand.WeassumethatwhendemandAthisishaslostinsuf cientanddoesnotinventory,gotoFirmitsnonsatis edB.RelaxingresultsassumptionmodelpresentedhasherenobecauseeffectonwethedomodelandthethenDFirmB’sinventory.WhenXnotexplicitlyqij~Poisson qij ,qij~Poisson qij qij (Kulkarni1995).
2.2.WeedgeassumeCompetitivethateachBehavior
seemsaboutConsequently,reasonableitsrival’s rmdoesnothaveknowl-inpracticeinventorylevel.Thisassumptionbehavioructsmodel i j basedFirmandFirmonA’stheAisonlyandableprovidestoassesstractability.FirmB’sexistingagesofproductthecompetingqualityprod-q.We
FirmgivenBFirmFirmqintroducesB’sstrategy,i,andj.Weaproductasallow0ofthequalityprobabilitypB
qijthatB
qBnextperiod,
inventoryAhasincompleteinformation≤pqij≤1abouttore ectFirmthatB’stolevel,whichmayimpactFirmB’sdecisionFirmTointroduceillustrate,aproduct.
supposethatforzeroBdecidestointroduce q i j = 1 1 2 ,tory.inventory,butnotwhenitahasproduct100unitswhenofinven-ithasisrepresentsrandom.ViewedbyFirmA,FirmB’sstrategyat 1 1 2 noteFirmThearrayB’splanpBofisactionacontingentforeverystrategy;ittheythatsomevaluesof q i j arevirtual q ini thatj ;decisionsmaynevertobein uencedberealized.byThus,FirmweA’spermitdecisions.
FirmB’sManagementScience50(4),pp.537–549,©2004INFORMS
assumeIncontrast,Cohenetal.(1996)anduct(2001)inthethatwindowthecompetitoroftimedoesstudied.notintroduceBayusMorgana(1997)
prod-etal.aassumethatthecompetitoractsaccordingtopendentperiodicegyofproductFirmA’ingstrategyacontingentthatisinde-strat-WepartassumepBforFirmthatBFirmpermitsamoregeneralscenario.incorporatesonobservedAhypothesizespBbasedinperspective.4
competitionhistoricalbehavior.fromadecision-theoreticThus,ourmodel2.3.Wediscounted-pro tformulatePro tMaximization
FirmA’soptimizationproblemasovervaluesanin nitehorizon.MarkovAdecisionstateisprocesscomprised(MDP)aof ciently0 1 for n 2 q × i 0 j 1x .ThestatespaceisS=2×resultslargesuchthat Firm M ,A’swhereoptimalMisstrategyavalueneversuf -theForininitialinventorythatexceedsM.
wherevalueeachwhethery≥ofstate,x(FirminventoryFirmAAproducesonhashandthreedecisions.Oneisy afterx).productionThey,qualityleveltointroduceqsanewproduct.Thethirdsecondistheisucts,respectively,orqpwhenforstandardaproductandisintroduced.
premiumprod-ETheexpectedperiodsalesquantityisS q i j y =is
Dqij min y Dqij .Thecurrentperiodexpectedpro tr q i j x y
PqijS q i j y vq y x hqx noproductintroduction; = PqijS q i j y vq y x hqx+s y S q i q
j y Ks
(2)
standard-productintroduction; PqijS q i j y vq y x hqx +sq y S q i j y Kp premium-productintroduction.
Thetermsqissalvagerevenueperunit;Ksthepremium xedproductandKpareuctunit;developmentproducts,introductionandrespectively,costsforstandardandlaunch;vwhichincludeprod-beginningandhqisproductioncostperofqistheholdingperiodcostbeforeperproduction.
unit,appliedatthe4
becauseWedonotconsideragame-theoreticmodelofnecessarynumerousandBayus(e.g.,pareadditional1997).SeetheSouzamodelssimplifying(2000,andassumptionsassumptionscompetitionwouldbe2004)forfurtherinBayusdetails.
1997
Industrial Engineering
Souza,Bayus,andWagner:New-ProductStrategyandIndustryClockspeed
ManagementScience50(4),pp.537–549,©2004INFORMS
pro tLetfTheextremalat q statei j x denotethetotalexpecteddiscountedequation q i j x is
overanunboundedhorizon.f q i j x
r · + E pBf+
Dqijqij q i+1 1 y Dqij + 1 pBqij f q i+1 j+1 y Dqij + =xmax r · + pBqijf qs 1 1 0
≤y≤M + 1 pBqij f qs 1 j+1 0
r · + pBp qijf q 1 1 0 + 1 pB qij f qp
1 j+1 0
forq=qs qp i=1 2 n 1 j=1 2 n
x=0 1 M
(3)
Ini(3),pB
qij=1forj=n.Theextremalequation rst=nofrowissimilarinsidetheto(3)bracesexceptin(3).fortheabsenceoftheforassumeDNotethatthep.m.f.qijgivenandthat by(1)requiresknowledgeB
of qij.We
componentsj.Weconsiderqijdependsspeci confunctionalqBandPqijforallq,i,(1997),inandMorganof(3)similaretal.(2001),toCohenandetweal.forms(1996),forthesespecifyBayusresultWedetailshouldin§3.2.
theseexampleinasimplepointdecisionoutthatthestructure,solutionastothe(3)followingdoesnotXExampleillustrates.
1.Considern=8,astationarymarketaqijproduct~Poisson(5)forandqBis0.6,periodicallyallandqprelativeeveryq,i,andtoq vej;Bis1;periods;FirmBintroducesPqstorelativeqij=i 0 1for0is 09,j;hPqijB
=j 0 1013forforallallqqand;Kpi=; 1= 00and 96,vallq
Kqs==00 35,81;sq =q=0 qijpetitorproportionalproductproductto(seepricerelativequalityproductqualityrelativetothecom-toandtheinverselycompetitorproportionalproducttopolicy(5)premiumdependsbelow).Theoptimumproductintroductionprice tion1 7 5 4 producton.Further,atinventory:inventory q i j x =Firmon 1hand 7 A5 introducesafter2 butproduc-notata 1 7 does5 · ,noty=5followforx=a4,base-stockbuty=3<policy:5forxFor=2.
states2.4.Inoptimalgeneral,TheOptimalProductionDecision
decisionproduction(3)mustbepolicy.solvedtodetermineFirmA’sisistrivial,however,ThewhenoptimalFirmA’sproductiondemandperiod.deterministic—producealwaysThisalsooccursaccordingtodemandinaronment.betheInmet—forthisspecialexample,whencase,inFirmA’sdemandcanxacanmake-to-orderbeenvi-ablestatebecausespaceFirmandA’syonlyisnodecisionslongeraremovedfromaredecisiontheproduct
vari-541
introductionindecisions.WefurtherstudythissituationductionIn§3.3.
addition,productpolicyifindependentFirmAusesofax xed,productintro-§3.6,introductionpolicythatwesuchstudyasafurtherperiodicinfollowsthenTheproofabase-stocktheconstrainedisavailableformintheasoptimalappendix.
describedproductioninTheorempolicy1.FirmTheoremtory,Ais xed1.andIfindependenttheproductofintroductionFirmA’spolicyforductionthenforeachy*theconstrainedoptimalinventorystartinglevelafterinven-pro-(q,ini,j).(3)Thatisabase-stockis,forstatepolicy(q,i,withj,x),parametery*satis es:
Rqij
y q i j x =Rqijifx≤Rqij
x ifx≥R(4)
qij
3.InAnalysisandstrategiesthissection,encebydeterminingweexploreResults
theoptimalconditionsnew-productqualityFirmnumberofitsA’sdecisionsaboutthefrequencythatin u-andTableinsights1,analyticofmodelnew-productparameters,introductions.assummarizedGiventheinapproachabouttheresultsimportantcannotbefactors,derived.weTodevelopofmodel.
conductingofBayusalarge-scale(1997)andnumericalMorgananalysisetfollowal.of(2001)theourweIn§3.1,wedescribeoursolutionapproach.buildingdescribeFirmatestafull-factorialIn§3.2,populationexperimentaldesignforofA;theseparametervaluesofoptimalcoverasolutionswidevarietyforbetweenconditions.ministicthestochasticWecomparedemandthedifferencemodelinresultsargumentdemandmodelin§3.3.Wemakeandaastrongdeter-tic,andespeciallyforinconsideringfast-clockspeeddemandindustries.tobestochas-In§§3.41995)3.5,thetowedetermineuseglobalthesensitivityfactorsanalysis(WagnermanceoptimalforFirmofsolution.In§3.6,wethatstudymostthein uenceperfor-A.
atime-pacingproductintroductionstrategy3.1.WePutermansolveSolutionApproach
program1994theMDPfordetails).(3)asWealinearprogram(seetionsusingaCprogram,andgeneratesolveitusingthelinearfunc-ageneratesgivenofthesetCplex7.0callablelibrary(Cplex1998).For1994).aofdiscrete-timeparameters,theMarkovoptimalchainsolution(Putermanof(3)variablesTheableiandstatejspaceis nitebecausethestatebilityxdistributionisboundedarebyboundedbyn,andthestatevari-canMbe.Thecomputedchain’sreadilystationary(Kulkarni
proba-
Industrial Engineering
Souza,Bayus,andWagner:New-ProductStrategyandIndustryClockspeed
542
1995).inWeuseGaussianeliminationasimplementedciatedForMATLABagiven(MATLABstationary1996).
techniqueswithperiodtoasolution,computeweprobabilitydistributionasso-equivalentusestandardMarkovchain1994),productand(Pro t)thestationaryoveranunboundedaveragepro tperprobabilitieshorizonof(Putermaninstateabestintroductionsproduct-introductionbyFirmA.decisionSolvingtime(3)betweenforresultseachtimeFirmbetween q i j x consecutiveoveranunboundedproductintroductionshorizon.ThebyoptimalA,however,isprobabilisticbecauseFirmA’sinventoryproductdemandxintroductiondecisiondependsonthe(see,whichSouzavaries2000asforadetails).resultofWestochasticdenoteETBPexpectedtimebetweenproductintroductionsasproduct.Similarly,introductionswedenotebyFirmtheAfractionasQP.
ofpremium-3.2.DuedemandtoStudycomputationalDesign
constraints,wechooseortheproductdistributionquality.ThisthatassumptiondoesnotdependamarketisonpricesBayusrelatedmodeletal.literature1997,Morgan(Cohenetetal.al.2001).1996,inkeepingToBayuskeep1997,withthetime inreasonablysized,wesetthemaximumproducttional=E X markettorysimplicity).=5(weatn=8andmeanmarketdemandatWedropsetthethesubscriptsmaximumonlevelXforofinven-nota-thatassuringstationaryatM=2 inventorybecauseourlevelsnumericalneverresultsindicateproblemthatthatisthethesamesolutionasthetotheboundedreachthisinventoryvalue,PWithimposesregardnotouppersolutiontotheproblemFirmA’sboundpricingoninventory.
policy,weusePqij=forqi withi ≤ijj,.whereHereP ij= fori>j,0< ≤1,and ij=1qistheinitialpriceofadeclinequalitycompetitivebythatq, isapricetrendparameternewproduct(pricesnewerpricefractiondiscountineachappliedperiod),whenandFirm1 isatotherebyFirmproductB’sthanFirmA.Thus,FirmAmayBhasreactasuresTheparameterincreasingproductintroductionbyreducingitsprice, itsresemblesmarketshare.
severalproposedspeed),ofandasindustryarguedclockspeedin§1.In(higher ~fasterclock-mea-developmentPillai(1999,correspondingofthep.underlying2)relateparticular,clockspeedMendelsontechnology,to“rapidfollowdoesMendelsonfallinandthePillaicost/performancebyassumingthatratio.”andtheWeqandnotj.FordependFirmonB,iprices,butpricesaresetdeclineaccordingwithtoiquality,given
PB
PBB
qij=
eterj Bforneedalli,whereFirmB’spricetrendparam-weSimilartonotCohenbeequaletal.to(1996) .
andBayus(1997),tionusethemarket.amarketTheshareapproachattractionissimplemodelandtointuitive,
appor-ManagementScience50(4),pp.537–549,©2004INFORMS
and,etqualityal.importantly,1992).hasempiricalsupport(e.g.,LilienThus,relativeFirst,todenoteFirm k,k=s p B,asproductk’sis p≡1;if B=1,thenA’spremium-qualityFirmB’sproductproduct.qualitymodelidenticalitstoitsrelativeFirmtoFirmA’spremium-qualityproduct.WerelativeproductA’smarketshareasbeingproportionaltoprice:
qualityandinverselyproportional
1
qij=1+1 BPqij
··forq=qs
(5)
qij
similarlystantToandvaluessimplifyforq=qp.
forourinventoryanalyses,weconsideronlycon-etervariableonlyvaluesdiffercostperbyproductunit.holdingOfcourse,cost,ifsalvagetheseparam-value,innaturethisthepaperspeci cwillnumericalchange,resultsquality,weexpectthatbutthatarereportedquality rmdecisionofourconclusions,willcontinuesuchnottobethatthequalitativedriventhebyproduct-internaluct’sIfwefactors.
Denotetimeassumeinmarketthateachdoesperiodisaquarter,aprod-1the/ 1+ /the4 .Weyearlysethinterestratenotbyexceed ,sotwothatyears. =q= vq/4forallq.(analysesfollowingfactor,notreportedparametersherefortheanalysis:Wealso(i) choose=0 15the(iii) rm’satreasonableproductPoptimalpolicy),levels,indicate(ii)hasthatthediscountvnegligible=0 35forimpactallq,andonqq=1forallq—althoughthedardhigherproducthasahigher(seebelow),introductionFirmA’scostpremium-qualitymarketthanthesharestan-productwithapremiumproductbecauseofidenticalisthecomplexityprices—thisoffocusestheanalysisandreducesPoisson.WeconsidersiderWithrespectdemandthenumericaltotoFirmbeA’sdeterministicstudy.
parameters,aswellasproduct:twoas slevels=0 6andofrelativequalityforthestandardwecon-marketafractiontwoshare):ofKnetp/ Prevenues0.8;twolevelsvforifor=1Kpgiven(expresseda50%q q /2 =0 5andTherelevelsforKsrelativetoKp Ks/Kp=0 1.0;and faster-clockspeed=0 1areandtwo0.3,levelsforthepricetrendparameter,3and0.7.pricingthestrategybyindustrywheretheFirmA.andlargervaluere ectsaWepossiblyanaggressiveWepricediscount1 =0 15,andassumenopricetwolevelsdiscount.forandconsiderproduces0.75forconsideronlyalltwotoq.levelsWeofsalvagevaluesq/vq=0 25disposenoteofthatthesq/vq<1,elsethe rmodicallyWeassumethreethatlevelsFirmfor B=introduces0 7 1product. 0,and1.3.
Finally,weB
pB
everyTperiods(thatis,pqij
=a0productifj=T,peri-andweqiTanalyze=1foralltheqcaseandwherei),whereFirmTB’s=1,actions5,anddepend7(in§3.6on
Industrial Engineering
Souza,Bayus,andWagner:New-ProductStrategyandIndustryClockspeed
ManagementScience50(4),pp.537–549,©2004INFORMS
thoserelativeofFirmofqualityA). WeB=study0.7,1.0,threeandlevelsforProductB’sFinally,FirmpriceweB’ssetprice-trendPB=1,soparameter,1.3,thatFirm Band=0 two1andlevels0.3.rizedTheisgenerateindesignequaltoB’snew-productTable2.ofFirmA’snew-productprice.
Theseournumericalselectionsforanalysesparameterissumma-valueshalfatotalof33×28=6 912halfoftalassumethesecellsPoissonassumeexperimentalcells;demand.deterministicdemandandhascellUltra1,248withstochasticdemand,Fortheeachlinearexperimen-program25station,variablesatypicalandsolution21,648constraints.timeforForaSuncomputingsecondsforthelinearprogram,and50eachsecondscellforisrelatedperformancethestationarymeasures.
probabilitydistributionand3.3.InDeterministicvs.StochasticDemand
productthisPoissonstrategiessection,webetweenconsiderthedeterministicdifferencesinnew-preferencedemandissuesforthecases.Thepurposeistojustifyandourtheperformrelativetoclockspeedstochasticassumptionandproductinquality.addressingWebetweenacasesthepairwisecaseswithcomparisondeterministicforthedemandvalueofETBPPro t.withwisetwocomparison.Tablestochastic3summarizesdemand,similarlyforQPandandtheThedifferencethestatisticsinETBPfortheforpair-theincreasedemanddifferencerepresentsmodels0.76issigni cant.periods;inOverallthe32%eachexceeds50%.Wealso nd25%thatofETBPcellstheforthancase.ETBPdeterministicAsindicatedforthecorrespondingdemandcaseinTable3,thestochasticisalwaysdifferencedemandsmallerinQP
Table2NumericalStudyDesign
Parameter
SymbolValuesMarketdemanddistributionDistributionofX
Deterministic,FirmPoissonFirmA’sA’sprice-trendrelative
parameter s
0.1,0.6,0.30.8Firmstandard-productpremium-productA’snormalizedqualitycostofaKp/ Pq vq /2
0.5,1.0Firmintroduction
standard-A’srelativevs.costofaKs/Kp0.3,0.7Firmqualitysq/vq0.25,0.75FirmfractionA’ssalvageproductpremium-introductionA’srelativeofvariablevalueasamarketingcost 0.7,1.0,1.3Firmeffectiveness
1 0,0.15FirmFirmA’sBpricehasdiscountwhenFirmB’sB’srelativeanewerproducttimebetweenproductproductquality BT0.7,1,1.0,5,71.3Firmintroductions
B’sprice-trendparameter
B
0.1,0.3
543
Table3
ComparingDemandModels
ModelResultsforthePoissonandDeterministicbetweenExpectedintroductionsproducttimepremium-productFractionofStatistic
FirmA(ETBP)
byintroductionsFirmA(QP)
byPro tMeanPoissonvalue
Deterministicdemand54 568000 73690modeldemandmodel1 8801MeanPoisson%differencerelativeto324 13Std.deterministicdifference
deviationof%58
21
5
betweenitstandardiszerotheinalmosttwodemand95%ofmodelscases.Theaveragesrelativelyonlylarge4%;cellsmalthetwodeviation,demandhowever,modelssuggeststhatinsomedetailsproduct-qualitydecisions.indicateWedonotoppositereportopti-thedeviationhere,andconditionsstochasticinbutETBPitisimportanttonotethatthelargestdemandandQPcasesbetweenoccurstheunderdeterministicrapidingly,obsolescenceoffastclockspeed(lowvalue(highofsvalueofindustry )andq/vq .Notsurpris-deterministicTable3showsdemandthatpro tsareusuallylargerfornew-productOverall,thesestochasticintroductionresultscases.
implystrategythataismoreconservativedemandinformulation.demandasThiscomparedtoapreferreddeterministicwithvalue.inventoryholdingcost,resultlostre ectssales,anduncertaintysalvagegiesdemandinEvenavariationassumptions,majoritythoughofthewecellsoptimalnew-productstrate-believearesimilarthatthereforisthetwoformulationtoapproachmendingisalsoinwarranttheconsistentremainderusingthestochasticdemandenoughwithoftheourliteratureanalyses.recom-Thisdecisionsthatimpactbemodeleda rm’sjointlynew-productbecauseandproductionBillingtonintroductionetal.1998).
timingandqualitydecisionsinventory(e.g.,can3.4.TheisationtoobjectiveSensitivityanswertheoftheAnalysisquestion:sensitivityofModelHowanalysisParameters
muchobservedinthissectionvari-Pro t)inofinthemodeliseachindependentlyperformancemeasure(ETBP,QP,andparameters?causedWeconsiderbyvariationineachstudywhichvalues,designdemandisPoisson.Giventheonlyfull-factorialanalysesincludeeffectivewherewayseachofvariableansweringhastwoorthreeR2(Wagner1995):(i)computingtthisstatisticsquestion(oreach)forpairsingle-variableofindependent-dependentsimplelinearregressionsvariables,and
for
Industrial Engineering
544
Table4
Souza,Bayus,andWagner:New-ProductStrategyandIndustryClockspeed
ManagementScience50(4),pp.537–549,©2004INFORMS
SensitivityAnalyses(AbsoluteValueoftStatisticsforSingle-VariableLinearRegressions)
ExpectedtimebetweenproductintroductionsbyFirmA(ETBP)
Fractionofpremium-productintroductionsbyFirmA(QP)t18 10 416 634 323 81 82 33 12 55 3
LargerLHLHLLLLHH
t33 98 44 94 03 64 836 77 836 93 7
Pro tLargerLLLLHHHLLL
NrParameterSymbol B
Kp/ Pq vq /2
Ks/Kp
ssq/vq 1 BT
t56 72 512 513 08 07 611 011 810 37 1
LongerLHHHLLLLHH
Industryclockspeed
1FirmA’sprice-trendparameter2FirmB’sprice-trendparameter
Internal rmfactors
3FirmA’snormalizedcostofapremium-productintroduction4FirmA’srelativecostofastandard-vs.premium-quality
productintroduction
5FirmA’srelativestandard-productquality
6FirmA’ssalvagevalueasafractionofvariablecostCompetitivefactors
7FirmA’srelativemarketingeffectiveness
8FirmA’spricediscountwhenFirmBhasanewerproduct9FirmB’srelativeproductquality
10FirmB’stimebetweenproductintroductions
(ii)computingtstatisticsinstandardizedmultipleregressionsforeachdependentvariableasafunc-tionofallindependentvariables.Weperformedbothanalyses;ourconclusionsarethesameusingeitherapproach—forbrevitywepresentonlytheresultsof(i)inTable4.Thetableentriesareinterpretedasfollows.ForRow1,thesimplelinearregressionETBPon hasanabsolutevalueoftequalto56.7,andalow(L)valueof impliesalongerETBP.Similarly,forRow7,theregressionPro ton hasanabsolutevalueoftof36.7,andahigh(H)valueof impliesalargerPro t.
Notethatallbuttwoofthetvaluesaresigni -cant(seeRows2and6).BasedontheabsolutevaluesofthemagnitudesinTable4,we ndthatindustryclockspeed,asre ectedby ,hasthegreatestin u-enceonETBP,followedbyotherinternal rmfactorsandcompetitivefactors.FromRow1,alowvalueof (lowerclockspeed)isassociatedwithlongerETBP.Thus,itisoptimalfor rmstofrequentlyintro-ducenewproductsinenvironmentswherepricesaresharplydeclining(i.e.,fast-clockspeedindustries).AssuggestedbyRow2 B ,deviationsofFirmBfromtheindustryclockspeed havelittleeffectonFirmA’sdecisions.
Theobservedin uenceofinternal rmfactorsonETBPisasexpected.Inparticular,less-frequentnew-productintroduction(longerETBP)isoptimalwhenintroductioncostsforpremium(Row3)andstandard(Row4)productsarehighandwhentheunitsalvagevalueforolderproductsislow(Row6).Inaddition,itisoptimaltoshortenthetimebetweennew-productintroductionswhenthequalitygapbetweenstandardandpremiumproductsishigh(low s,Row5).Finally,thein uenceofcompetitivefactorsonETBPisrelativelysmall—theeffectsaresimilartothe rm’sinternalcostfactors.Less-frequentproductintroduc-tionisoptimalifthe rmhasaninherentmarket-ingdisadvantage(Row7),ifthe rmoffersalowerpricediscountafterthecompetitorintroducesanewproduct(Row8),ifthecompetitorhasrelativelyhighproductquality(Row9),orifthecompetitorintro-ducesproductslessfrequently(Row10).
Table4alsoindicatesthatinternal rmfactorshavethegreatestimpactontheproduct-qualitydecisionQP.Itmakessensetointroducepremiumproducts(largerQP)whentheintroductioncostforapremiumproductislow(Row3),whenthe rm’sintroductioncostsforstandardandpremiumprod-uctsaresimilar(highKs/Kp,Row4),andwhenthequalitygapbetweenstandardandpremiumproductsishigh(low s,Row5).Also,itisoptimalfor rmsinslow-clockspeedindustriestoemphasizepremiumproducts(Row1),thatis,emphasizeproductswithsigni cantqualityimprovements.
Intermsofpro ts,Table4revealstheimportanceofindustryclockspeedandcompetitivefactors.FirmA’spro tsarelargerwhenitsclockspeedislow(Row1),whenFirmAhasaninherentmarketingadvantage(Row7),andwhenFirmBhasarelativelylow-qualityproduct(Row9).
Insummary,thesenumericalresultssupportman-agerialbeliefsabouttherelationshipbetweenindus-tryclockspeedandtimetomarket(e.g.,MendelsonandPillai1999).Ouranalysesdemonstratethatunderfast-clockspeedconditions(i.e.,sharplydecliningindustryprices),itisindeedoptimalfora rmtofrequentlyintroducenewproducts.Moreover,itisoptimaltointroduceincrementallyimproved(i.e.,standard)productsinthissituation.Concomitantly,we ndthatpro tsinfast-clockspeedindustriesarelowerthanthoseinslow-clockspeedindustries.
Industrial Engineering
Souza,Bayus,andWagner:New-ProductStrategyandIndustryClockspeed
ManagementScience50(4),pp.537–549,©2004INFORMS
3.5.InwiththeOptimalpreviousNew-Productsection,Strategies
mostPoissonWein uentialdemandtowedetermineexaminedthethefactors3,456thatcasesaredividingnowexaminewiththerespectrobustnesstoETBPof,theQP,andPro t.whetherthesepremium,the5optimalcasesintoqualityfourdecisionstrategiesinsightsbyisaccordingtoorWelongerthanandthewhethermediantheoptimalETBPstandardisshorterorfourexamineETBP,whichis5.2periods.impactcompetitivetheenvironmentscharacteristicsofthecorrespondingtimingTwodominantoffactorsstrategiesthataffectpro tandandassessmarkettherelativeshare.productofetintroductionproductintroductionwithrespecttoqualityandliterature.areprevalentintheaallyproductal.(1996)withandsubstantiallyBayus(1997)suggestForexample,thatintroducingCohentime.optimal,tionsIncontrast,despiteMorganthelongerimprovedqualityisusu-etproductdevelopmentimprovedwhentionalproductsthefrequental.(2001) ndcondi-isoptimal.introductionHereofincrementallyintroductioninsightsregardingthejointqualityweprovideandproductaddi-choiceTodeterminetimingdecisions.
employofoneofthethefourkeynew-productfactorsrelatedstrategies,toa rm’swelevel)enceforaeachbinomialmodeltest(atap<0 001signi cancetheirbetweenTablehighlow5.7Alevels.observedparameterbasedonthediffer-6andexpectedproportionsatsmalltThestatisticstatisticalinTableresults5indicatesareshowninoften,andofwhereashighparameteralargetvaluesstatisticoccurnearlythatequallytheoccurstheparametermorevalues(LforlowindicatesandHforthathigh)onestrategyBasedoninfrequentintheoften.
Tablenumber5,ourofresultsnumericalcasesforeachoccurswithmostintroductionoften.This ndingofpremium-qualityindicateisgenerallyconsistentproductsthatthemixourofCohenstrategies,etal.(1996)however,andBayusmaychange(1997).Therelativeunitassumptioneterscostareconstant(handinvtheexperimentalanalysisifwethatrelaxtheqwithq)andrespectsalvagetorevenuesqparam-theInfouraddition,strategiesthemagnitudeinTable5ofquality.
showsthetvaluesthatindustry
across5
productsFirmAfollowsverytoassignfewandcases.sometimesamixedstrategythemintoWeroundintroducing(sometimesintroducingpremiumoneofQPthetotwothealternatives.
neareststandardintegerproducts)fortheseinonlycasesa6parameterBecauseweportionhashavetwoaorfull-factorialthreevaluesstudy(seeTabledesign2),wheretheexpectedeachmodeleachlevels,new-productofcaseswhereaparameterisobservedatitshighlevelpro-inexperimentalwehavecasesconductedstrategyiswhereaa0.5parametersimilaror0.33.analysisForparameterswiththreeisobservedfortheatproportionitslowlevel.of7fromAlthoughamultivariatenotreporteddiscriminanthere,weanalysis.
alsoreachthesameconclusions545
clockspeedintroduction(Rowfactorstiming1)decision,isprimarilywhereasrelatedinternalto rmthe(Rowsdecision.3,like4,5)developmentareassociatedandwiththeintroductionproduct-qualitycostsarehigher-qualityassociatedInparticular,mentproductswithfast-clockspeedfrequentproductintroductionsarerelatedtosituations,andtheconclusionsandintroductionofMorgancosts.etThisal.resultlowerdiffersdevelop-fromtheAlthoughternumericalnotcasesreportedwherehere,thewe(2001).
price-trendcloselyexaminedparame- Firm=for BFirmAisnotequaltothatofFirmB(i.e.,higherA’s).Irrespectivecompetitiveofstrategy,FirmB’sFirmpricingApolicyanddroppingpro tsFirmitspricesfromaggressivefasterthanpricingneverFirm(i.e.,FirmobtainsAqualityA’svaluestrategyproduct-introductionremainunchangedtimingB).regardlessandMoreover,product-oftheFirmperformingA’sof Bprice.Wediscountalsoclosely1 examinedonPro ttheandimpactETBPbyofETBPapairwisecomparison.BothPro tandnopricepricearediscount.
discountalmostalwaysascomparedgreaterwhentowhenFirmitAoffersoffersa3.6.Induction,thisAsection,Time-PacingweconsiderProduct-IntroductionaperiodicPolicy1998).presentThisortime-pacingpolicyneedpolicynot(Eisenhardtproductbeoptimal,andBrownintro-simple.uctDenotetheattractivethenumberpropertyofperiodsofbeingbutdoesbetweenstructurallypolicy,introductionsductionETBP=FforFirmAasF.Foratime-pacingprod-remdecisionishasanaintegerbase-stocknumberformand(seetheTheo-pro-and1).slightly:
product-introductionGivenF,onecancomputedecisionsthebyoptimalmodifyingquality(3)f q i j x
r · + E pBf q i+1 1 y D + = Dqijqij
qij xmax≤y≤M
+ 1 pB
qij f q i+1 j+1 y Dqij + forq=qs qp i=1 2 F 1 j=1 2 n
x=0 1 M
(6)
f q F j x
B r · + pqijf qs 1 1 0
+ 1 pBqij f qs 1 j+1 xmax0
=≤y≤M r · + pBqijf qp 1 1 0
+ 1 pB f q 1 j+1 0
qijp
forq=qs qp j=1 2 n x=0 1 M
(7)
Industrial Engineering
546
Table5
Souza,Bayus,andWagner:New-ProductStrategyandIndustryClockspeed
ManagementScience50(4),pp.537–549,©2004INFORMS
KeyFactorsRelatedtoOptimalNew-ProductStrategies(AbsoluteValueoftStatisticsforBinomialProportionsTests)
Strategy1:Infrequentintroductionofpremium-qualityproducts
Strategy2:Frequentintroductionofpremium-qualityproductst18 41 121 013 49 43 0
LevelHLLHLH
Strategy3:Frequentintroductionofstandard-qualityproductst32 30 89 638 117 72 7
LevelHLHLHH
Strategy4:Infrequentintroductionofstandard-qualityproductst16 30 999 927 440 22 3
LevelLHHLHL
NrParameterSymbol B
Kp/ Pq vq /2
Ks/Kp ssq/vq
t30 01 13 010 37 73 5
LevelLHHHLL
Industryclockspeed
1FirmA’sprice-trendparameter2FirmB’sprice-trendparameter
Internal rmfactors
3FirmA’snormalizedcostofa
premium-productintroduction
4FirmA’srelativecostofastandard-vs.
premium-qualityproductintroduction5FirmA’srelativestandard-productquality6FirmA’ssalvagevalueasafractionof
variablecostCompetitivefactors
7FirmA’srelativemarketingeffectiveness8FirmA’spricediscountwhenFirmB
hasanewerproduct
9FirmB’srelativeproductquality
10FirmB’stimebetweenproductintroductionsNumericalcases
1 BT
4 37 73 59 8
LLHH
3 37 33 411 5
HHLL
3 04 02 86 8
HHLL
2 22 62 23 9
LLHH167(5%)
1 561 45% 957(28%)771(22%)
Weassesstheperformanceofatime-pacingpolicyasthepercentdeteriorationinaveragepro t: F Pro t =100% Pro topt/Pro tF 1 ,wherePro toptisPro tforanoptimalpolicy,computedfrom(3),andPro tFisPro tforthetime-pacingpolicythatintroducesaproducteveryFperiods,computedfrom(6)and(7).De netheoptimalFforatime-pacingpolicyasF =argminF F Pro t .
WeusethestudydesigninTable2withPoissondemandand1 =0,exceptthatnowweconsiderthatFirmBactsaccordingtoarandomizedproduct-introductionstrategywithaprobabilityofproduct
B
introductionnondecreasinginbothiandj pqij=min 0 1 i+j 1 1 0 forallq,i,j).
WeobservefromouranalysesthatthevalueofF isalmostthesameasroundingETBPtothenearestintegerfortheoptimalpolicyfrom(3).Furthermore,productqualityfortheoptimalandtime-pacingpoli-ciesisthesamein98%ofcases.Finally, F Pro t equals0.0%in89%ofthecasesandaverages0.1%withamaximumof2.2%.Thus,atime-pacingpolicyforFirmAtypicallyperformsverywellrelativetoanoptimalpolicy.FirmA’sperformancemaysufferconsiderably,8however,ifitusesatime-pacingpolicywithaperiodotherthanF .
Forexample,ifFirmAchoosesF 1,thenpro tdeteriorationaverages2.8%,withamaximumof18.4%;thesevaluesarehigherforthe288caseswhere =0 3at3.9%and18.4%,respectively.IfFirmAchoosesF 2,thenpro tdeteriorationhasamaximumvalueof26.5%;itaverages9.2%when =0 3and6.6%overall.
8
4.Conclusions
Shoulda rmfrequentlyintroduceastreamofnewproducts?Shoulda rmemphasizetheintroductionofincrementallyratherthansubstantiallyimprovedproducts?Doesindustryclockspeedhaveastrongin uenceona rm’sdecisiontospeednewprod-uctstomarket?Weexplorethesequestionsbystudy-ingtheroleofexternalindustryclockspeed(asre ectedbyindustrypricechanges),internal rmfac-tors(productdevelopment,production,andinven-torycosts),andcompetitivefactorsina rm’soptimalintroductionandproduct-qualitydecisions.
Usinganin nite-horizonMarkovdecisionprocess,wemodeltheeffectofmarketdemanduncertaintyonnew-productintroductions,productionandinven-torylevels,andconsequentproductobsolescence.Weconcludefromalarge-scalenumericalanalysisthattheintroductiontimingdecisionisprimarilydrivenbytheindustry’sclockspeedandtheproduct-qualitydecisionismostlybasedoninternal rmfactorslikeproductdevelopmentandintroductioncosts.We ndthatcompetitivefactorshavelimitedin uenceonthe rm’soptimalnew-productstrategy,althoughtheysigni cantlyin uencea rm’spro t.Also,weshowthatatime-pacingintroductionstrategyresultsinaproductionpolicywithasimplebase-stockformandperformswellrelativetotheoptimalpolicy,providedthatthetime-pacingdecisionsareoptimized.
Theseresultsaddtoourunderstandingofnew-productintroductionandspeedtomarketasastrat-
Industrial Engineering
Souza,Bayus,andWagner:New-ProductStrategyandIndustryClockspeed
ManagementScience50(4),pp.537–549,©2004INFORMS
egy.(1996),Extending ndBayus(1997),theresultsandreportedBayusetbyal.Cohen(1997),etweal.quentlyconditionsmentalintroducewhennewitproductsisoptimalandfortofocusa rmontoincre-fre-trastimprovements(standardproducts).Incon-nalproduct-quality rmtoMorgandevelopmentetal.costs(2001),we ndthatinter-videindustryanalyticalsupportdecision.forImportantly,primarilyourimpactresultspro-therelated.
clockspeedandtimethemanagerialtomarketarebeliefcloselythatnotIttallyimplyisimportantthatthetopointoutthatourresultsdoclockspeedimprovedproductsfrequentisintroductionalwaysoptimalofincremen-infast-thatpriseda rm’sindustries.optimalnew-productInstead,ouranalysesstrategyindicateiscom-introductionoftwoclockspeed,timingdistinctisbutdependentrelatedfactors.onWhereassubstantiallytheinternalimproveddecisionnewtointroducetheindustryproductsisincrementalormentlimitations.Asand rmwithintroductionfactorsrelatedtotheproductdependentdevelop-onallresearch,costsourofstudytheseproducts.
isnotwithoutsimplifyingForassumptionsInparticular,inweourhavemodelmadeformulation.severalatheoreticdecision-theoreticexample,weconsiderperspective,competitionnotfromonlyagame-fromallowspoliciesforviewpoint.analyzingAlthoughtheeffectourofgeneraldifferentframeworkpro t,tionouronFirmmodelA’sdoesproductintroductionpolicypricinganduct.Ourmodeldoesnotnotallowincludeforpricevariableoptimiza-resultsdevelopmentdoesassumeatotaltimemarket(crashing),ofandournumericalprod-onlynotre ectpriceelasticity.Inconstantaddition,size,wewhichhavenamely,consideredoneaspectofindustryclockspeed,research.Theseindustrylimitationspricearechanges.
thatperioda rmForexample,naturalextendingdirectionsourmodelforfuturesomayandcancandecideofferaonproductlineineachtimeempiricalgeneratepricesforeachproductgiesanalysesfurtheranalyticalinsights.Inaddition,speedsby rmsacrossofindustriesobservedwithnew-productdifferentstrate-clock-calSuchresultsshouldandtobepotentiallyconductedgeneratetovalidateouranalyti-appropriatelyanalyses rm-levelconstructedmayinvolvecross-industrymanagerialfurthersurveysinsights.datasetsanddotaltioninformationproductintroductionsuggeststhatdecisions.productWhileofprolifera-anec-QuelchisrelatedtestingandKennytohigh1994,costsandlowerpro ts(e.g.,triestrieshaveoflowerour ndingthatMcMathfast-clockspeed1994),empiricalindus-research.
willalsobepro tsaninterestingthanslow-clockspeeddirectionforfurtherindus-547
Acknowledgments
ThethreeauthorsearlieranonymousthankdraftsofthisrefereesChrisTang,paper.
fortheirthehelpfulassociatesuggestionseditor,andonAppendix
ofProoftheMDPof,Theoremasisstandard1.Considerpracticethein nite-horizonMDPtheory:
versionft q i j x
B
r q i j x y + ED qij pqijft 1 q i+1 1 y Dqij + + 1 pBqij ft 1 q i+1 j+1 y Dqij + = r q i j x y + pBqijft 1 qs 1 1 0
xmax≤y≤M B + 1 pqij ft 1 qs 1 j+1 0 r q i j x y + pBqijft 1 qp 1 1 0 + 1 pBqij ft 1 qp
1 j+1 0
forq=qs qP i=1 2 n 1 j=1 2 n x=0 1 M
wheref0 q i j x =maxx≤y≤M r q i j x y ,and
(A1)
PqijS q i j y vq y x h noproductintroduction;qx r q i j x y =
Pqij sq S q i j y vq sq y+ vq hq x Ks
standard-productintroduction; Pqij s S q i j y vq sq y+ vq hq x Kp premium-productq
introduction.(A2)
pendentNow,considera xedproduct-introductionpolicyinde-theproductproduct-introductionofinventory,and,decisionfornotationalbyzsimplicity,denote
qij,wherezqij=0ifduced,alsorewriteandisintroduced,zzstandardproductisintro-noqij=1ifa(A1)qij=2as:
ifapremiumproductisintroduced.Weft q i j x = vq hq x+maxy≥x
Ht q i j y
(A3)
where,fort>0,Ht q i j y =H0 q i j y
+ 1 1 z qij>0 pBqij
E
D Dijft 1 q i+1 1 y qij + + 1 pB
E
qij
Dqij ft 1 q i+1 j+1 y Dqij + + 1 z qij>0 pB
qij
ft 1 zqij 1 1 0 + 1 pB
qij ft 1 zqij 1 j+1 0
(A4)
and
H P
0 q i j y =qi sq1 zqij>0 S q i j y
v1 z q sqqij>0 y Kq1 zqij>0 (A5)thenFromabase-stock(A3),ifHt q i j y policywithisconcaveparameterinyfordependentany q i j on
,
Industrial Engineering
Souza,Bayus,andWagner:New-ProductStrategyandIndustryClockspeed
548
q i j concavityisoptimal(seeZipkin2000,p.377).WeproveWeWeknowproveofthatthatHthet q i j y S q i j y Husinginduction.
0 q i j y =Eisconcaveiny ,for,whereany q i j D.Dqij min y DqijqijistheisinconcavedemandinforyAforateachstateD q i j .Giventhatmin y Dqij qij,thenS q i j y isconcavePy(seeZipkin2000),forany q i j .From(A2),becausesequently,qij>sq,theHtermthatmultipliesconcaveS q i j y iny,forisanypositive. q i j Con-0 q i j y is;we
de neforWeitsnextunrestrictedprovethatmaximumfassqij
0=maxy H0 q i j y .maxany q i j .From(A3),0 q i j x itsuf cesisconcavetoshowinthatx,theymaxright-hand≥x H0 q i j y Hsideisofconcave(A3)islinear.inx,sincethat
De netheV rsttermin0 q i j x =y≥x0 q i j y .Weprove =V0 q i j x+1 V0 q i j x V0 q i j x
+V0 q i j x 1 ≤0
Considerthreecases:
(i)x≤sqij
qij
quently,0 1.ThenV =H0 q i j x =H0 q i j ssqij
=0 q i j sqijqij
0 .Conse-0 2H0 q i j s0 +H0 q i j (ii)x0 =sij0.
qijqij
0.Then =H0 q i j ss0+1 2H0 q i j sH q i j s0 since0qijqijqij
+
0 =H0 q i j concavity.
Hx isnonincreasing0+1 Hin0 q i j 0 q i j x≥sqij
s0 ≤0,
0duetoits(iii)x>sqij
0.Then,becauseH0 q i j x isnonincreasingin
xj ≥H q x sqij
0.,i Thus,V0 q i j x 1 =j ≤Hx =maxy≥x H0 q i j y =H0 q i 0,0 q fromi thej concavityx+1 2Hof0 q Hi j x +00 q i j x .inductionHencef0yhypothesis q i j x isisconcavethatHinxforany q i j .Thet 1 q i j y isconcaveinforforEt=all1, q i j yby q i j (A3),.Consequently, Dfaswehavejustprovedt 1 q i j x isconcaveinx,andsoDqij ft 1qij + isconcaveinyforany q i j .
Givenarethat 1 1 zqij>0 pBqij
and 1 1 zqij>0 · 1 pB
qij forhorizonanynonnegative, q i j ,whichthencompletesby(A4),Hthet q i j y argumentisconcaveforthe nite-inysiderToable.theextendMDP.
nite-horizontheresultMDPtothe(A1).in nite-horizonThestatespaceMDPiscount-,con-andfaboveTheone-periodby Ppro tr · isboundedbelowby Kpq1.Since0pletes q i j x ast→ (Puterman≤ <1994,1,ft q i j x p.150),convergeswhichcom-toonNotetheproof.
twox,functions,wethatareifnottheasinableproduct-introduction(A3),torewriteandthefpolicyisdependentprooft q i j x doesasnotthehold.sum
ofReferences
Balcer,tionY.,ofS.improvedLippman.technology.1984.TechnologicalJ.Econom.expectationsTheory34292–318.andadop-Bayus,durables.B.1992.MarketingThedynamicSci.11pricing(Summer)ofnext251–265.
generationconsumer
Bayus,castsB.1993.Highde nitiontelevision:Assessingdemandfore-39(11)for1319–1333.
anextgenerationconsumerdurable.ManagementSci.ManagementScience50(4),pp.537–549,©2004INFORMS
Bayus,trade-offs.B.1997.J.Speed-to-marketProductInnovationandManagementnewproduct14485–497.
development
Bayus,timingB.,S.Jain,A.Rao.1997.assistantandindustry.newproductJ.MarketingperformanceToolittle,tooRes.XXXIVintheearly:50–63.
personalIntroduction
digitalBillington,uctrollovers.C.,H.Lee,SloanC.ManagementTang.1998.SuccessfulRev.39(3)23–30.
strategiesforprod-Blackburn,inJ.1991.Time-BasedCompetition:TheIL.
AmericanManufacturing.BusinessOneIrwin,NextHomewood,Battleground
Cohen,TheM.,J.Eliashberg,T.Ho.42(2)performance173–186.
andtime-to-market1996.Newtradeoff.productManagementdevelopment:
Sci.Cplex.Inc.,1998.InclineUsingVillage,theCplexNV.
callablelibrary,version6.0.ILOG,
Datar,productS.,C.mentSci.developmentJordan,S.Kekre,43(4)452–464.
structuresS.Rajiv,andK.time-to-market.Srinivasan.1997.Manage-New
Eisenhardt,thatwon’tK.,S.standBrown.still.1998.HarvardTimeBus.pacing:peting76(2)59–69.
inmarkets
Fine,AnC.1996.IndustryclockspeedManagementintroductory,http:/essay./imvp.mit.edu/.
Proc.1996andManufacturingcompetencychainServicedesign:
Oper.Fine,poraryC.1998.AdvantageClockspeed:.PerseusWinningBooks,IndustryReading,ControlMA.
intheAgeofTem-Hult,ductionG.2002.287–290.
byCycletheguesttimeeditor.andindustrialIndust.Marketingmarketing:ManagementAnintro-31Krishnan,fornewT.,products.F.M.Bass,ManagementD.C.Jain.Sci.1999.45Optimal(12)1650–1663.
pricingstrategy
Krishnan,approachV.,basedforR.planningSingh,andD.developingTirupati.1999.afamilyAofmodel-based
132–156.
products.ManufacturingServiceOper.Managementtechnology-1(2)Kulkarni,ChapmanV.1995.&Hall,ModelingLondon,andU.K.
AnalysisofStochasticSystems.
Lilien,Hall,G.,EnglewoodP.Kotler,S.Cliffs,Moorthy.NJ.
1992.MarketingModels.Prentice
Lippman,Res.45S.,(1)K.54–65.
McCardle.1997.Thecompetitivenewsboy.Oper.
MATLAB.Natick,1996.MA.
Matlabreferenceguide.TheMathWorks,Inc.,
McCardle,newtechnology.K.F.1985.ManagementInformationSci.acquisition31(11)1372–1389.
andtheadoptionof
McMath,R.1994.Productproliferation.Mediaweek4(40)S34–S35.Mendelson,mentH.,R.R.Pillai.1999.Industryclockspeed:Measure-Managementandoperational1(1)1–20.
implications.ManufacturingServiceOper.Moorthy,tion,38(3)andK.S.,P.L.Png.1992.Marketsegmentation,cannibaliza-345–359.
thetimingofproductintroductions.ManagementSci.Morgan,andL.O.,R.M.Morgan,uct89–104.
generations.time-to-marketManufacturingtrade-offswhenW.L.ServicethereMoore.Oper.areManagementmultiple2001.Quality
prod-3(2)Nair,underS.K.1995.Modelingstrategicinvestmentdecisions
282–297.
sequentialtechnologicalchange.ManagementSci.41(2)Nair,mentS.K.,207–221.
dueW.J.toH.technologicalHopp.1992.obsolescence.AmodelforEur.equipmentJ.Oper.replace-Res.63Puterman,Inc.,NewM.1994.York.
MarkovDecisionProcesses.JohnWileyandSons
Quelch,HarvardJ.,D.Bus.Kenny.Rev.721994.(5)153–160.
Extendpro ts,notproductlines.
Industrial Engineering
Souza,Bayus,andWagner:New-ProductStrategyandIndustryClockspeed
ManagementScience50(4),pp.537–549,©2004INFORMS
549
Smith,S.,N.Agrawal.2000.Managementofmulti-itemretail
inventorysystemswithdemandsubstitution.Oper.Res.48(1)50–64.
Souza,G.C.2000.Atheoryofproductintroductionundercom-petition.Unpublisheddoctoraldissertation,TheUniversityofNorthCarolinaatChapelHill,ChapelHill,NC.
Souza,G.C.2004.Productintroductiondecisionsinaduopoly.Eur.
J.Oper.Res.152745–757.Wagner,H.1995.Globalsensitivityanalysis.Oper.Res.43(6)
948–969.
Williams,J.1992.Howsustainableisyourcompetitiveadvantage?
CaliforniaManagementRev.34(3)29–51.
Wilson,L.,J.Norton.1989.Optimalentrytimingforaproductline
extension.MarketingSci.8(1)1–17.
Zipkin,P.2000.FoundationsofInventoryManagement.McGraw-Hill,
NewYork.
正在阅读:
3 New-Product Strategy and Industry Clockspeed06-10
雕的自述作文600字07-06
追求教育的更高境界04-30
先秦史教案11-13
基础与地下室构造09-07
2014新人教版七年级上册数学期末测试卷含答案(精选5套)04-16
答案--东师公共事业管理15秋在线作业1满分答案(1)09-13
第3章整流电路习题详解03-15
- 1Industry Analysis - Management Consulting in China
- 2Autodesk Product Key 2010
- 3Little Field simulation Strategy and report
- 4Autodesk Product Key 2010
- 5田忌赛马 Tianjis horse racing strategy
- 6k-epower-product-description
- 7Corporate Social Responsibility in Hospitality industry
- 8软件工程Strategy策略模式
- 92_HK LED product seminar
- 102_HK LED product seminar
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- Clockspeed
- Strategy
- Industry
- Product
- New
- 露天管道外壁配套方案及施工工艺
- 航海英语词典之考证必备(超全)
- 单片机原理考试题目及答案
- 网店运营 企业实习报告 感想总结 3000字 网店推广 网络策划案 在学校实训
- 广东省汕头市高中信息技术奥林匹克信息学竞赛班第八课文件的综合应用第二阶段培训
- 医用气体工程技术规范
- 现场组织机构各主要岗位的职责概述
- 如何提高自控力中英版
- 《中小学心理健康教育指导纲要》解读
- 城市地下管线管理现状与对策
- 中国式管理之分层授权分层负责
- BOT建设的城市污水处理厂收费价格的形成
- 石榴花的养殖方法与功效作用.doc
- 一体化联合作战概论
- 超声诊断在下肢静脉血栓及后遗症的
- 微博“找人”传播社交媒体正能量
- 医用物理学答案第10
- 临沧市丽江文化研究会章程
- 39、临床危急值报告制度
- 山西省山大附中2014-2015学年高一下学期3月月考物理试卷 Word版含答案