职高高一上学期期末数学试题
更新时间:2023-12-31 02:39:01 阅读量: 教育文库 文档下载
学习好资料 欢迎下载
A.(11,+∞) B.(-?,-9) C.(9, 11) D.(-?,-9)∪(11,+∞) 2014至2015学年高一上学期301、302、303、304班数学
考试试卷
一.单选题(每题2分,共40分)
1.设集合M={1,2,3,4},集合N={1,3},则M?N的真子集个数是( )
A、16 B、15 C、7 D、8 2.a2=a是a>0 ( )
A.充分必要条件 B. 充分且不必要条件 C.必要且不充分条件 D.既不充分也不必要条件
3.下列各命题正确的( )
A、??{0} B、??{0} C、??{0} D、0?{0} 4.设集合M={x︱x?2},a=3,则( )
A. a?M B. a?M C. {a} ?M D.{a}=M 5.设集合M=??5,0,1? N=?0?则( )
A.M?N B.N?M C.N为空集 D.M?N
6.已知集合M={(x ,y)x?y?2},N={(x, y) x?y?4},那么M?N=( ) A. {(3,-1)} B. {3,-1} C. 3,-1 D. {(-1, 3)} 7. 设函数f(x)=k x +b(k?0),若f(1)=1,f(-1)=5,则f(2)=( ) A.1 B.2 C.-1 D.-2 8.函数y=?x2+6x+8的单调增区间是( )
A. (-?, 3] B. [3, +?) C.(-?,-3] D.[-3, +?)
9.已知关于x的不等式x2- ax+ a>0的解集为实数集,则a的取值范围是( ) A.(0,2) B.[2,+∞) C.(0,4) D.(- ∞,0)∪(4,+∞) 10.下列函数中,在(0,+∞)是减函数的是( )
A. y=-1 B. y=x C. y=-2x D. y=x2x
11.不等式x?15>2的解集是( )
12.下列各函数中,表示同一函数的是( )
A. y=x 与y?x2x B. y?xx与y=1
C. y=
?x?2与y=
x2 D. y=x与y?3x3
13.抛物线y??9(x?5)2?7的顶点坐标、对称轴分别是( )
A.(5,7),x=5 B.(-5,-7),x=-7 C.(5,7),x=7 D.(-5,-7),x=-5
14.如果a
A. ac2>bc2 B.a-c 15.若f(x)?x2?1x2,则下列等式成立的是( ) A .f (-a)=f (a) B. f(1a)?f(a) C .f(0)=0 D. f(1)=0 16.分式不等式2?xx?0的解集是( ) A.(0, 2] B. [0, 2) C.(-?,0]∪(2,+∞) D.(-?,0) ∪ [2,+∞) 17.下列函数图像关于原点对称的是 ( ) A .y=x3 B. y=x+3 C. y=?x?1?2 D. y=2x 18.若果一次函数y=ax+a2?1 图像经过第一、三、四象限,则a的取值范围是( A. a>0 B.0 34 ?x?1,x?20.若函数f?x???1?x2,1?x?3,则f(a)= ( ) ??2x,x?3A.a+1 B. a2 C.2a D .以上结论均不对 二、填空题(每题4分,,共20分) ) 学习好资料 欢迎下载 21.若f(x)?x?1x?1,则f(x?1x?1)= . y=1?x222.函数x?1的定义域是 (用区间表示)。 23.函数y=3x-1 (x?R)的反函数是 。 24.已知函数y=x2+2ax+3有最小值是-1,则a2= 。 25.若函数y=(x+1)(x-a)是偶函数,则a= . 三、解答题(5小题,共40分) 26.(7分)设有关x的一元二次方程2x2?x?m?0的解集为A,2x2?nx?2?0的解 集为B,A?B???1?2?,求A?B ?? 27(7分).某人把10000元投资到两个股票投资公司甲和乙,公司甲的年利润为15%,公司乙的年利润为25%,一年后的总共利润是1800元,问该投资人投资给每个公司个多少元? 28. (每小题4分,共8分)解不等式 (1)3≤8?2x (2)(2x?5)2<9 29、(8分)已知f?x?是二次函数,它的图象经过原点,且f??1??3,f?1??1,求f?x?的解析式 30、(10分)用长为100米的材料,一面靠墙围成矩形苗圃,当矩形的长、宽各为多少米时,苗圃的面积最大?最大面积是多少? 学习好资料 欢迎下载 2014至2015学年高一上学期301、302、303、304班数学 考试试卷答案 一、单选题(每题2分,共40分) 27.(7分)解:设投资给甲公司的为x元,则投资给乙公司的为10000-x元,据题意有: (2分) 15%x+25%(10000-x)=1800 (5分) 解得:x=7000(元),10000-x=3000(元) (7分) 题号 1 2 3 4 5 6 7 8 9 10 答案 B C A B B A C A C C 题号 11 12 13 14 15 16 17 18 19 20 答案 D D D B A D D B C D 二、填空题(每题4分,,共20分) 21. ?1x 22.[-1,1) 23. y?x?13(x?R) 24.4 25. 1 三、解答题(5小题,共40分) 26. (7分)解:已知A?B???1?2?,设有关x的一元二次方程2x2?x?m?0的另一 ??根为x11,由韦达定理得:x1+2=-12, 所以x1=-1 (3分) 2x2?nx?2?0的另一根为x22,由韦达定理得:x1. 12=2,所以x2=2 所以A ={-1, 112},B={2, 2} (6分) A?B={-1, 12,2} (7分) (注:解法不仅一种) 答:略 28、(每小题4分,共8分) 解:(1)由原不等式得: 8?2x≥3 ∴8-2x≥3或8-2x≤-3 解两个不等式得:x≥ 112或x≤52 ∴原不等式的解集为:{x| x≥112或x≤52} (2)原不等式可化为:(2x?5)2—32<0 (2x-5+3)(2x-5-3)<0 即(x-1)(x-4)<0 ??x?1?0?x?1?0原不等式等价于:①?x?4?0或②??x?4?0 ①的解集为:{x|1<x<4} ②的解集为:? ∴原不等式的解集为:{x|1<x<4} (1分) (2分) (3分) (4分) (1分) 2分) (3分) 4分) ( (学习好资料 欢迎下载 29.(8分)解:根据题意可设二次函数的解析式为: (注:解法不仅一种) y?ax2?bx?c (2分) ? f?c??0,f??1??3,f?1??1 ?0?a?02?b?0?c??2??3?a???1??b???1??c(5分) ?1?a?12?b?1?c??解方程组得: ?a?2??b??1 (7分) ?c?0?? 为:f?x??2x2?x (8分) 3、(10分)解:设矩形与墙垂直的一边长为x米,则另一边长为100-2x米,面积为y平方米, (2分) 则: y?x?100?2x? 2即y??2x?100x (5分) 由于a??2?0,因此上述二次函数在???,???上有最大值,将函数配方得; y??2x2?50x?252?252 y??2?x?25??1250 (8分) 2???当x=25米,y有最大值=1250 此时,100-2x=100-2×25=50(米) ( 10分) 答:略
正在阅读:
职高高一上学期期末数学试题12-31
智慧城市与无线城市08-30
MATLAB在数学教学中的应用08-10
广东商学院团委 - 图文06-21
高三一轮物理第八章第2讲04-14
浅谈企业人性化管理制度03-10
钢结构设计原理 张耀春版课后习题答案10-24
我的另一片天空作文500字02-05
第七章 工业用钢习题参考答案11-11
健康体检证明费用02-10
- exercise2
- 铅锌矿详查地质设计 - 图文
- 厨余垃圾、餐厨垃圾堆肥系统设计方案
- 陈明珠开题报告
- 化工原理精选例题
- 政府形象宣传册营销案例
- 小学一至三年级语文阅读专项练习题
- 2014.民诉 期末考试 复习题
- 巅峰智业 - 做好顶层设计对建设城市的重要意义
- (三起)冀教版三年级英语上册Unit4 Lesson24练习题及答案
- 2017年实心轮胎现状及发展趋势分析(目录)
- 基于GIS的农用地定级技术研究定稿
- 2017-2022年中国医疗保健市场调查与市场前景预测报告(目录) - 图文
- 作业
- OFDM技术仿真(MATLAB代码) - 图文
- Android工程师笔试题及答案
- 生命密码联合密码
- 空间地上权若干法律问题探究
- 江苏学业水平测试《机械基础》模拟试题
- 选课走班实施方案
- 期期
- 职高
- 数学试题
- 高一
- 上学
- 一至四年级古诗
- 八年级美术试题试题及答案
- 哈工大数字信号处理实验报告
- 商品房买卖合同纠纷典型案例剖析
- 关于低碳的英语作文5篇精品推荐版
- 马太效应的正面效应及负面效应
- 二年级语文下册 医生的心思教案 沪教版
- 英美文学史复习 大纲
- 脱螺纹模具设计讲义(重点) - 图文
- 空冷岛-变频电气室空水冷系统应用 - 图文
- 高一历史必修二学案1(16份) 人民版12
- 浅谈博物馆的数字化建设与文物管理
- 乡村公路水泥混凝土路面工程
- 2017年4月自考课程与教学论00467试卷及答案解释完整版
- 人教版八年级数学上册三角形全等练习
- 金属非金属地下矿山安全管理监督检查表
- 公司资金支出授权审批联签暂行规定修订
- 2020高三第一次月考数学(文)试卷
- 绍兴柯桥区淘汰落后产能工作协调小组
- 初一期中考试家长会班主任发言稿