毕业论文文献综述基于SPSS的多元回归分析模型选取的应用 之文献综述

更新时间:2023-10-06 02:38:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

基于SPSS的多元回归分析模型选取的应用 文献综述

重庆工商大学 统计学 2010级 统计2班 殷婷

引 言

随着社会的发展,统计的运用范围越来越广泛,统计学作为高等院校经济类专业和工商管理类专业的核心课程,不管是在经济管理领域,或是在军事、医学等领域的研究中对于数量分析与统计分析都需要更高的要求,需要用到的数学知识较多,应用方面的灵活性也较强,计算量大且复杂.然而科学研究的深入,研究的对象也日益变得复杂,复杂系统的研究问题更是成为当今研究的热点. 为了更好的描述一个复杂的现象,就需要大量的数据和信息,如何高效、准确地利用已知的信息便成为当今社会研究的一项重要课题.

基于以上背景,本文通过总结和吸取其他国内外学者对统计学研究的,并结合我国的实际情况,本文采用了案例一对于网络购物这块的的研究,通过对2005年到2012年的居民消费水平,以及我国网络普及度,我国人人均纯收入以及我国的居民消费水平对淘宝网的未来发展趋势进行非线性回归模型的研究以及案例二对于我国财政收入的进行变量选取研究,通过对1992年到2012年的人均国内生产总值,城镇居民家庭人均可支配收入,全社会固定投资,进出口总额,居民消费价格水平对我国财政收入的影响进行定量数据的研究. 通过对数据的选取,回归模型的确定以及软件的操作方法来告知读者如何在SPSS的操作中变量选取的原则、要求和方法.

一、研究现状

在科学技术飞速发展的今天,统计学通过不断吸收和融合相关学科的新理论,开发应用新技术和新方法,拓展新的领域的同时不断深化和丰富了统计学传统领域的理论与方法. 在我国,社会主义市场经济体制的逐步建立,实践发展的需要对统计学提出了新的更多、更高的要求. 随着我国社会主义市场经济的成长和不断完善,统计学的潜在功能将得到更充分更完满的开掘. 从20世纪60年代开始,关于回归自变量的选择成为统计学中研究的热点问题,统计学家提出了许多回归选元的准则,并提出了许多行之有效的选元方法. 在应用回归分析去处理实际问题时,回归自变量选择是首先要解决的重要问题. 通常在做回归分析时,人们根据所研究问题的目的,结合经济理论罗列出对因变量可能有影响的

的一些因素作为自变量引进回归模型,把一些对因变量影响很小的,有些甚至是没有影响的自变量,不但使得计算量变大,估计和预测的精度也下降了. 此外,如果遗漏了某些重要变量,回归方程的效果肯定不好. SPSS软件作为当今国际上运用广泛的统计分析软件,其功能齐全带有各种特点,在各个领域内都得到了迅速普及,并成为各个行业提高管理水平、形成科学决策的重要手段. 然而,我国对于该软件的运用和理解始终处于早期应用阶段,无论是在功能的研究开发还是实际生活当中的运用都与西方发达国家相差甚远. 尤其是在管理决策方面,都因为没有进行深度分析而造成了浪费,要么就是利用SPSS软件进行简单分析而未进行深度开发,导致所得的信息有限、各信息间的关系不明确,最终导致管理者的判断出现偏差.

二、结论

SPSS 是世界上最早采用图形菜单驱动界面的统计软件,其最突出的特点就是操作界面极为友好,输出结果美观漂亮,是“统计产品与服务解决方案”软件.对于那些常见的统计方法,SPSS的命令语句、子命令及选择项的大部分都是由“对话框”的操作完成. 所以不需要花大量时间来记忆这些大量的命令、过程或选择项. 由以上SPSS的操作方法可以知道SPSS中有很多的统计方法,适合专业的统计人员对数据进行统计整理得出自己想要的结果. SPSS在得出的趋势线以及变量之间的线性关系,需要自己用一元线性回归的方法得出数据之间的系数,然后自己把方程写在趋势线旁边. 由两个案例分析中可以看出在对数据计算结果如果需要更精确一点,就需要通过对多元回归分析的操作方法进行对比可以知道,采用逐步回归分析的方法对数据进行处理,剔除没有通过检验的,对因变量影响不显著的.

由以上案例中可以看到,多元回归分析中变量的选择不能靠简单的自行筛选就可以,有时候对于一些变量的筛选都通过检验,并不能代表你在选择数据上有多高明,而是需要通过相关性分析,计算复相关系数和偏相关系数来了解你所选的变量之间的相关关系的大小,而变量之间存在线性关系和非线性关系需要通过散点图的观察来对变量之间关系进行判断. 在一些情况下,某些自变量的观测数据的获得代价十分贵,这些自变量可能对因变量的影响非常小,而我们把它引进了模型中,势必造成数据收集和模型的应用不必要的加大.所以在回归分析中,对进入模型的自变量作精心的选择是十分必要的. 所以我们在选择回归

模型时一定要注意.而本文可以让我们知道在多元回归分析中变量的选择中我们需要的是先选择模型,案例一我们是对于非线性回归模型转化为线性回归模型同时采用的是全模型进行分析,案例二我们用得则是选模型,及在变量的选取上我们应该如何去选择. 相关系数以及方差分析就是很好检验数据的方法,同时逐步回归时对数据进行剔除的一个很好方法. 从而可以看出所选的变量是否符合要求. 然后再通过回归分析,看数据之间的P值检验,是否通过P值检验,如果两个检验均通过,说明说选定的变量在多元回归分析中,自变量对因变量有显著性影响,从而确定影响程度的大小,最后在通过检验之后得到最优方程式,这就是自变量与因变量之间的关联方程式. 该方程式预测了我国淘宝注册人数,网络普及度和居民消费水平关于淘宝交易额的影响的预测方程式. 实验中通过对数据的检验可以看出其计算结果的误差系数较低.案例一在对变量的处理上也告诉我们在遇到变量之间不呈线性关系时的处理方法,因网络普及度和我国第二产业增加值与淘宝交易额之间呈现的是指数线性关系,所以在对变量进行使用时,我们采用的是其指数幂的方法把非线性回归模型转化为线性回归模型来进行研究,从而得到的自变量便与因变量之间呈线性关系. 从案例一可以看出,对变量处理前得到的回归模型没有变量处理后得到的回归模型的拟合度好. 进一步的告诉大家在对变量的选取和使用上一定要注意,对于可转化的非线性回归模型,最好采用其对应的方法把变量转换,这样才可以得出更有意义和更加价值的模型. 从案例分析二,我们还可以看到在选择变量时当存在为通过检验,或者变量之间的偏相关系数大于复相关系数时的处理方法,这里我们研究的是当自变量的P值检验或t值检验没通过是,对于变量选取的处理方法,本文采用了一个简单的SPSS 的操作方法,逐步回归分析,通过软件操作,逐步回归分析会通过逐步的对数据进行检验,把关联程度大的先检验,逐步进行最后直接剔除未通过检验的数据,在逐步回归之前我们也得到一个预测方程式,很显然,在解释变量未通过检验的情况下,所得到的预测方程式是完全没有意义,其在操作过程中更是方便简洁. 通过案例一和案例二的对比,便告诉大家在选取模型时,我们应该如何对模型进行选取. 而通过以上两个案例分析,我们可以看出,不能只靠肉眼的观察和直观的选择就对变量进行判断,需要通过一系列的检验方法对数据进行对比研究,而通过对偏相关系数的检验,我们便可以通过直观的方法看到系数之间的差距,偏相关系数本是检验变量之间相关关系的直观表达,如果偏相关系数过小,我们便可以把此变量剔除,案例二,在偏相关系数较小的情况

下,我们继续采用了回归分析和逐步回归分析对变量进行处理,通过回归分析可以看到,在偏相关系数较小的两个变量中在回归分析中也没有通过P值检验,而在逐步回归分析中,该变量也被剔除. 所以案例二很好的反映了在多元线性回归分析中如何对变量进行筛选,最后得出最优的方程式.

参考文献

[1]魏和清,罗良清.实用统计学[M]. 北京:中国财政经济出版社,2011. [2]符啟勋.实用统计学[M]. 北京:国防工业出版社,2008. [3]王正朋.实用统计学[M].北京:中国财政经济出版社,2008.

[4]薛薇.基于SPSS的数据分析[M].北京:对外经济贸易大学出版社,2007. [5]冯力.统计学实验[M].大连:东北财经大学出版社,2012. [6]陈珍珍.统计学[M].厦门:厦门大学出版社,2006.

[7]阮桂海.SPSS实用教程[M].北京:北京大学出版社.1999.

[8]阮桂海.数据统计与分析-SPSS应用教程[M].北京:北京大学出版社,2005. [9]何晓群.现代统计分析方法与应用[M].北京:中国人民大学出版社,2012.

本文来源:https://www.bwwdw.com/article/j6pd.html

Top