实验和数值研究包装,压缩,和结块的洗衣粉的行为 - 图文

更新时间:2024-05-20 17:12:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

Particuology12 (2014) 2–12

ContentslistsavailableatScienceDirect

Particuology

journalhomepage:www.elsevier.com/locate/partic

Anexperimentalandnumericalstudyofpacking,compression,andcakingbehaviourofdetergentpowders

SubhashC.Thakura,b,HosseinAhmadianb,JinSuna,JinY.Ooia,?

ab

SchoolofEngineering,UniversityofEdinburgh,King’sBuildings,EdinburghEH93JL,UK

NewcastleInnovationCentre,ProcterandGambleTechnicalCentreLtd,NewcastleuponTyneNE129BZ,UK

article

info

abstract

Articlehistory:

Received22April2013

Receivedinrevisedform21June2013Accepted27June2013

Keywords:

DiscreteelementmethodPowder?ow

CohesivematerialUniaxialtestPlasticity

Contactmodel

Thispaperpresentsanexperimentalandnumericalstudyofthepacking,compression,andcakingbehaviourofspraydrieddetergent(SDD)powderswithatwo-foldaim:anexperimentalprocessofobservationandevaluationofthepacking,compressionandcakingbehaviourofSDDpowders,andanumericalapproachbasedondiscreteelementmodelling(DEM).Themechanicalproperties,includingthestress–strainresponseandthecorrespondingporositychangeasafunctionofconsolidationstressinacon?nedcylinder,thestress–strainresponseduringuncon?nedshearingandthecakestrengthasafunc-tionofconsolidationstress,wereevaluatedandcomparedfordifferentSDDpowdersusinganextendeduniaxialtester(EdinburghPowderTester–EPT).TheexperimentsusingEPTshowedexcellentrepro-ducibilityinthemeasurementofpacking,compressionandcakingbehaviourandwerethereforeveryusefulfordescribingthehandlingcharacteristicsofthesepowderedproductsincludingscreeningnewproductsanddifferentformulations.Itwasfoundthatthesamplewithhighermoisturehadlowerbulkporositybuthighercompressibilityandcakestrength.Theporosity,compressibilityandcakestrengthwerefoundtovaryacrossdifferentsizefractionsofthesamesample.Thelargersieve-cutsampleshadhigherinitialbulkporosity,compressibilityandcakestrength.Itisrevealedthatmoistureplaysasig-ni?cantroleinpacking,compression,andshearingbehaviourofthepowder.Three-dimensionalDEMmodellingusingarecentlydevelopedelasto-plasticadhesive-frictionalcontactmodelshowedthatthecontactmodelisabletocapturethedetergentbehaviourreasonablywellandcanbeusedtomodelcomplexprocessesinvolvingthesepowders.

? 2013 Chinese Society of Particuology and Institute of Process Engineering, Chinese Academy of

Sciences. Published by Elsevier B.V. All rights reserved.

1.Introduction

Powderpacking,compressibility,and?owabilityareimportantmeasuresforindustrialparticulatesolids,suchashouseholdandpersonalcareproducts,chemicals,fertilizers,coal,cements,explo-sives,dyesandpigments.Thepackingbehaviourofapowderinacontainerisdeterminedbyitsinitialmicrostructureandtheensu-ingmechanicalprocessesincludingcompression,shear,vibrationandimpact,whichoccurduringtransportation,forexample.Forthemanufacturingofparticulatedetergents,bulkporosityisanimportantvariabletocontrolsincemostconsumerdosesaremea-suredbyvolumeandthesolubilityofdetergentpowdersnormallyincreasewithincreasingporosity.Inaddition,thecompressibilityofpowderscanin?uencetheirappearanceandvolumeincontain-ersoncetheyreachconsumers.Cakingisaphenomenonwhere

?Correspondingauthor.

E-mailaddress:j.ooi@ed.ac.uk(J.Y.Ooi).

free?owingpowdersaretransformedintolumps,aggregatesoreventuallyintoacoherentmass.Cakingofpowdercanhaveadverseeffectsonsolubility,mixing,anddispersionresultinginlossofproducts,delaysinlaunchandconsumercomplaints.Itcanalsocausestorageandhandlingrelatedproblemsincludinghopper/binarchingandratholing,resultinginno?ow.AccordingtoanestimatebyGrif?th(1991),thecostofunproductivecakeproductswasinanexcessof1billionUSDintheUSAalonein1985.Thepackingofporouspowderisgovernedbyinter-particleandintra-particleporosity.Severalfactorsincludingparticleshape,absolutesize,sizedistribution,andsurfaceproperties(stiffness,friction,andadhesion),affectinter-particleporosity.Inadditiontoparticlepropertiesinter-particleporositymayalsodependonsize,shape,androughnessofthecontaineraswellasthemethodandintensityofdeposition(Yu,1989).Itisgenerallyacceptedthatdeviationofparticleshapefromspheretendstoincreasetheinter-particleporosityofmono-sizedparticles(Yu&Standish,1993).Porosityisfoundtobeindependentofparticlesizeforparticlesizesabove100?m(Yang,Zou,&Yu,2000).Forparticle

1674-2001/$–seefrontmatter? 2013 Chinese Society of Particuology and Institute of Process Engineering, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.partic.2013.06.009

S.C.Thakuretal./Particuology12 (2014) 2–12

3

NomenclatureCucoef?cientofuniformity

D60diameterofparticleat60%passing(m)D10diameterofparticleat10%passing(m)eco-ef?cientofrestitutionf0constantadhesion(N)fncontactnormalforce(N)ftcontacttangentialforce(N)

fctcoulomblimitingtangentialforce(N)fndnormaldampingforce(N)ftstangentialspringforce(N)ftdtangentialdampingforce(N)fhys

hystereticspringforce(N)

fts(ntangentialspringforceatprevioustimestep(N)?1)k1loadingstiffnessparameter(N/m)

k2unloading/reloadingstiffnessparameter(N/m)kadhadhesivestiffnessparameter(N/m)kttangentialstiffness(N/m)

m*equivalentmassoftheparticles(kg)nnon-linearindexparameteráinterinterparticleporosityáintraintraparticleporosityápparticleporosity

Ri

distancefromthecontactpointtotheparticlecen-treofmass(m)

??n

relativenormalvelocity(m/s)

vpores

speci?cvolumeofmercurypenetratingtheparticlepores(L/kg)

??trelativetangentialvelocity(m/s)wmoisturecontent(%)

ˇnnormaldashpotco-ef?cientˇttangentialdashpotcoef?cient?angleofshearingresistance(?)??ftsIncrementaltangentialforce(N)?normaloverlap(m)

?maxmaximumnormaloverlap(m)?pplasticoverlap(m)

??sskeletaldensityorparticledensity(kg/m3)??bbulkdensity(kg/m3)ásamplebulkporosity??co-ef?cientoffriction

??rcoef?cientofrollingfriction??itotalappliedtorque(Nm)

ωi

unitangularvelocityvector(radian/s)

diameterssmallerthan100?m,theratioofinter-particleforcetotheweightofparticlescanbegreaterthanunity(Krupp,1967),resultingindifferentpackingbehaviour.Higherinter-particleforceratioscauseformationofchain-likestructureleadingtohighporosity(Yangetal.,2000).Forcohesionlesspowders,asthespreadoftheparticlesizedistribution(PSD)increases,theporositydecreasesbecausethesmallerparticles?lltheporesbetweenlargerparticles.TheeffectofPSDonporosityofcohesivematerialisnotverywellunderstoodandisin?uencedbythecomplexadhesiveforcesthatexist.Inaddition,theintra-particleporosityofapowdermaydependonchemicalcomposition,andshrinkageorpuf?ngeffectduetodrying(Hecht&King,2000a,2000b).

Thepowdercompressibilitymayresultfromparticlerearrangement,breakageoflooselybondedagglomeratesintoprimaryparticles,failureoftheparticleduringelasto-plasticdeformation,andfragmentationoftheprimaryparticles(Heckel,1961;Hersey&Rees,1970).Thesemechanismsdonothappen

insequenceandusuallyoverlapeachother(Hersey&Rees,1970).Foragglomeratedcohesivepowderssubjectedtoincreasingconsolidationstress,particlesarelikelytoundergorearrangementandlooselybondedagglomeratemaybreakwithoutexcessivedeformationattheparticlecontacts.Therearrangementoftheparticlewilldependontheparticleshape(Cho,Dodds,&Santamarina,2006;Güden,Celik,Hizal,Altindis?,&Cetiner,2008),sizeandsizedistribution(Hersey&Rees,1970),rollingandstaticfriction(Sheng,Lawrence,Briscoe,&Thornton,2004),andadhesion(Mehrotra,Chaudhuri,Faqih,Tomassone,&Muzzio,2009).Thebreakageofanagglomeratewillalsodependonbondstrength.Astheconsolidationstressisincreased,elasto-plasticdeformationoftheparticlesleadstosquashingandreductioninintra-andinter-particleporosity.Onfurtherapplicationofstress,fragmentationoftheprimaryparticlemayoccurandexcessivedeformationmayleadtoworkhardening.

Thecakestrengthofpowderatanappliedconsolidationstressisaffectedbyparticlesize,sizedistribution,friction,shape,humidity,moisturecontent,plasticdeformationandadhesionattheparti-clecontactetc.Severalexperimentsincludingshearcells(Jenike,annular,andPeschl),tensiletest,creeptest,penetrationtest,cak-ingindextest,blowtest,anduniaxialtesthavebeenusedforthemeasurementofcakingpropensity(Cleaver,2008).Eachtesterhasitsownadvantagesanddisadvantages,whichwereexplainedbySchwedes(2003).Uniaxialtesthaswidelybeenusedtostudythecakingorshearbehaviourofpowders(Bell,Catalano,Zhong,Ooi,&Rotter,2007;Enstad&Ose,2003;Freeman&Fu,2011;Parrella,Barletta,Boere?jn,&Poletto,2008;R?ck,Ostendorf,&Schwedes,2006;Williams,Birks,&Bhattacharya,1971;Zhong,Ooi,&Rotter,2005)inindustrialpracticebecauseofitssimplicityandrapidityinconductingatest.Repeatabilityofmeasurementisoneofthemajorconcernsforuniaxialtesters.Anextendeduniaxialtester,theEdin-burghPowderTester(EPT),hasbeendevelopedattheUniversityofEdinburgh,withafocusonrobustness,repeatabilityandspeedforindustrialsolidsmeasurement(Belletal.,2007).

Thediscreteelementmethod(DEM)hasincreasinglybeenusedtomodeldiscretephenomenaincludingpowderpacking(Dong,Yang,Zou,&Yu,2006;Yangetal.,2000;Yang,Zou,Dong,An,&Yu,2007;Yen&Chaki,1992),compaction(Morgeneyeretal.,2005;Redanz&Fleck,2001;Samimi,Hassanpour,&Ghadiri,2005;Shengetal.,2004),andpowder?ow(Baxter,Abouchakra,Tüzün,&MillsLamptey,2000;David,García-rojo,Herrmann,&Luding,2007;Ludingetal.,2004;Mehrotraetal.,2009;Moreno-Atanasio,Antony,&Ghadiri,2005).TodatetheDEMmodellingofcohesivepowdershasbeenlesssuccessfulinproducingquantitativepredic-tions.

Themajorobjectiveofthispaperistostudypacking,compres-sion,andcakingbehaviourofspraydrieddetergentpowdersusingtheEPT,andtomodelthefullspectrumoftheloadingregimesfromcompressiontoshearfailureusingDEM.TheEPTisusedtomeasurethemechanicalpropertiesincludingthestress–strainresponseandthecorrespondingporositychangeasafunctionofconsolidationstressinacon?nedcylinder.Inaddition,thestressstrainresponseduringuncon?nedshearingandthecakestrengthasafunctionofconsolidationstressisevaluated.Thephysicalpropertiesofthepowders,whichmayaffectthemechanicalproperties,arealsomeasured.Theseincludemoisturecontent,particlesize,sizedis-tribution,shape,inter-andintra-porosity.DEMmodellingisthenusedtosimulatethepacking,compressionandshearbehaviour,whichiscomparedwiththeexperimentsforoneexampledeter-gentpowder.Thesimulationsutilisedarecentlydevelopedcontactmodelthatuseshystereticnon-linearloadingandunloadingpathstomodeltheelasto-plasticpermanentcontactdeformationandanadhesionparameterwhichisafunctionofthemaximumcontactoverlap(Thakur,Morrissey,Sun,Chen,&Ooi,2011).

4S.C.Thakuretal./Particuology12 (2014) 2–12

Table1

Distributionofmoisturecontent(%)acrossdifferentsizefractions(n=3).

Sizefractions

SampleA

SampleB

M

RSD(%)

M

RSD(%)

Bulk

2.292.394.742.70>500?m2.554.994.964.24500–250?m2.303.304.432.50<250?m

2.12

4.30

4.17

4.80

Notes:n=numberofsamples,M=mean,

RSD=relative

standard

devia-

tion=standarddeviation/mean.

2.Materialsandphysicalpropertiesmeasurement

2.1.Materials

Inthisstudy,spraydrieddetergent(SDD)powderswereinves-tigated,whichconstitute60–70%ofthecommerciallyavailabledetergentwashingpowdersandarethemostcommondetergentpowderssoldworldwidewithbillionsofdollarssales.TwoSDDpowdersproducedwithalowmoisturecontent(SampleA)andahighmoisturecontent(SampleB)wereselected,coveringarangeofuncon?nedyield(cake)strength.Thechemicalcompositionandmoisturecontentofspraydriedpowdersvaryacrossdifferentsizefractions.Therefore,thespraydriedpowderswereseparatedintothreedifferentsizefractions,<250?m(smallsize),250–500?m(mediumsize),and>500?m(largesize).Testswereconductedonbulksamplescoveringallparticlesizerangeaswellasdifferentsizefractions.

2.2.Measurementofpowderphysicalproperties

Beforeanymeasurementonthespecimenismade,itisvitalthatarepresentativesampleisobtained.Inthisstudythesamplesobtainedfromaspraydriedtowerwas?rstmixedinarotarymixertogetahomogenoussampleandalsotoreducethebulkpowderdowntoa5kgbatch.Thepowderisthenfurthersampleddowntothe1kgsizeusingasplitsampler.Finally,thepowderissampleddowntorequiredsizesusingaPascalturntablesampledivider,aspinningsampledivider.TherotationspeedandvibrationlevelsinaPascalturntablesampledividerwerechosentoprovideauniform?owofpowder.Sincespraydriedpowdersaresensitivetomoistureandhumidity,thepowderswerepackedandsealedinairtightcontainersforfurthertesting.

Thepowdermoisturecontent,particlesizeandsizedistribu-tion,inter-plusintra-particlepore,andshapewerecharacterised,usingmoisturebalance,mechanicalsieveanalysis,gaspycnome-try,mercuryporosimetry,andscanningelectronmicroscope(SEM).Moisturecontentbyweightwasmeasuredusinganoven-dryingmethod.Atemperatureof105?Candheatingtimeof24hwasused.ThemoisturecontentanditsdistributionacrossdifferentsizefractionsareshowninTable1.ThemoisturecontentsofSampleBwerehigherthanthoseofSampleAforallsizefractions.Addition-allyforbothsamples,thelargersizefractionshadhighermoisturecontentsthanthesmallersizefractions.Thiscouldbeduetotheagglomerationofprimaryparticlesintolargersizeswithhigherinternalmoisture.Itshouldbenotedthatthemoisturecontentisnotfreeandmobilesurfacemoisture;butrathermoistureafterthepowdershavegonethroughdryingprocessinaspraydryingtower.

ThesizedistributionsoftheSDDpowdersweremeasuredusingvibratingmechanicalsievesfollowingtheASTMD6913procedure.Theamplitudeandfrequencyofvibrationweresettominimisebreakageofagglomeratesandtoensurethoroughsievingofthesample.ThefullsizedistributionsofparticlesizeonweightbasisareshowninFig.1.ThemedianparticlesizesD50ofSampleAand

Fig.1.Particlesizedistributionofthespraydrieddetergentpowders.

SampleBwereapproximately480and390?mrespectively.Bothpowdershaveasimilarcoef?cientofuniformity,Cu,(D60/D10)of3.6.

Inter-andintra-particleporositywascharacterisedusingmea-surementsfromgaspycnometryandmercuryporosimetry.Agaspycnometer,AccupycII1340(Micromeritics,USA),wasusedtomeasureskeletaldensity(soliddensity),basedonagasdisplace-mentmethodtomeasurevolumeaccurately.Heliumgasisusedasitobeystheidealgaslawandisabletopenetratesmallpores(ASTMD5550,2006)duetoitssmallatomicnumber.HoweverHeliumdoesnotpermeateanyclosedpores.Theaveragevaluesofskeletaldensityfrom?verunsare1919and1910kg/m3forSampleAandSampleBrespectively.Therewasnosigni?cantdifferencebetweenskeletaldensitymeasurementsacrossdifferentsizefractions.

Poresizecharacterisationofthespraydriedsampleswascon-ductedusingmercuryporosimetry(AutoPoreIV,Micromeritics,USA).Theinstrumentprovidesawiderangeofinformation,e.g.theporesizedistribution,thetotalporevolume(inter-andintra-particlepores)orporosity,theskeletalandenvelopedensity.Theinstrumentcharacterisesamaterial’sporositybyapplyingvariouslevelsofpressuretoasampleimmersedinmercury.Thepressurerequiredtointrudemercuryintothesample’sporesisinverselyproportionaltothesizeofporesandgivenbytheWashburn’sequation(Washburn,1921).

AHitachiTM1000SEMwasusedinthisstudyforvisualinspec-tionofparticles.TheSEMphotographsofthreedifferentsizefractionsofSampleAandSampleBareshowninFigs.2and3,respectively.Asigni?cantamountofporeopeningscanbeseenonthesurfaceoftheparticles.NodiscernibledifferenceinshapeandtextureofrespectivesizefractionsofSampleAandSampleBwasfound.ItcanbeseenfromFigs.2and3thatthelargerparticlesarenotindividualbutagglomeratesofprimaryparticles.

2.3.Measurementofpowdermechanicalproperties

TheEPTwasemployedtomeasurethepacking,compression,andshearbehaviouroftheSDDpowders.ThemaindifferencesbetweenEPTandsomepreviousuniaxialtesterliesintheattentiontomechanicaldetails,thelevelofcaredirectedtotheconsolida-tionaswellasfailureloadapplication,andthestrategicintent(Belletal.,2007).ThediameteroftheEPTsamplemouldis40mmandtheheightcanbeupto80mm.Theheightofthespecimenismeasuredcontinuallywithabuilt-inlinearvariablevoltagetrans-former(LVDT)displacementtransducerofanaccuracyof0.1mmattachedtotheloadingpiston.Thepowdercompressibilitycanthenbeevaluatedfromthemeasurement.

ThephotographicillustrationoftheEPTtestprocedureisshowninFig.4.IntheEPT,thepowdersampleispouredintotheconsoli-dationcylinder.Thesampleisloadedbyapplyingaconstantweight

S.C.Thakuretal./Particuology12 (2014) 2–12

5

Fig.2.SEMphotographsofdifferentsizeSampleA:(a)passingthrough250?m,(b)between250and500?m,and(c)retainedon500?m.

Fig.3.SEMphotographsofdifferentsizeSampleB:(a)passingthrough250?m,(b)between250and500?m,and(c)retainedon500?m.

totheconsolidationcellandtheforceisrecordedbytheloadcellattachedtotheconsolidationplunger.Afterthesampleisloadedfor1min,theconsolidationplungerisautomaticallyliftedoffleav-ingtheconsolidatedsample.Themouldisthenmanuallysliddownthepedestal,exposingafreestandingcolumnofconsolidatedpowdersample.Thesampleisthenfailedbyamotordriventestpistonandthestress–strainresponseduringtheuncon?nedaxialloadingtofailurecanberecorded.Theloadingpistontravelswithaspeedof0.4mm/s.Thespeedofthepistonissochosenthatthetest

canbeconductedrapidly,andatthesametimeuncon?nedyieldstrengthisnotcompromised.WatanabeandGroves(1964)foundthatuncon?nedstrengthofdetergentsampleswasunaffectedifthepistonspeedwasvariedinarangeof0.084–0.43mm/s.

Thefrictionbetweentheparticlesandboundarymayaffectthecompressibilityofthepowdersinuniaxialtests(Enstad&Ose,2003).IntheEPT,boundaryeffectisminimisedbyallowingthepowdersampletocompressfromboththetopandbottom.Furthertominimiseanyeffectofboundaryfriction,thesample

Fig.4.(a)EdinburghPowderTester,(b)compression,(c)uncon?nedsample,and(d)crushedsample.

6S.C.Thakuretal./Particuology12 (2014) 2–12

aspectratio(sampleheightat1kPastresstodiameterratio)duringcon?nedcompressioniskeptinanarrowrangeof1.3–1.4.Duringuncon?nedcompression,thesampleaspectratioiskeptbetween1.2–1.4whichwasfoundtogiveverygoodtestreproducibilityinuncon?nedstrengthmeasurement.Previousstudieshavepro-posedanaspectratiooftan(45?+?/2)orlarger,where?=angleofshearingresistanceofthepowder,tominimisetheeffectofendplatefriction(Bishop&Green,1965;Rock&Schwedes,2005;Williamsetal.,1971).Williamsetal.(1971)arguedthatforlowervaluesofaspectratio,thefailureofthesamplecantakeplaceonlywhenpartofthespecimenslipsalongoneoftheendplatens,whichwouldrequireextraworktobedonecausinganincreaseinuncon?nedyieldstrength.However,thepresentstudyfoundthatevenwithaspectratiobetween1.2and1.4whichismuchsmallerthantan(45?+?/2),thefailedsampledidnotintersecttheendplaten(seeFig.4(d)foratypicalfailure).Ahigheraspectratiowouldalsoincreasetheeffectofwallfrictionandcauseagreaterdensityvariationacrosstheheightofthespecimenwhichcancompromisemeasurementreproducibility.

Itisfurtherproposedthatthesehighlyrepeatablebulkmea-surementscanbeusedforDEMmodelcalibration.Thesearethe(vertical)stress–strainandthestress–porosityresponsedur-ingcon?nedcompressionaswellasthe(vertical)stress–strainresponseduringuncon?nedcompressionincludingthepeakuncon?nedstrength.

3.Resultsanddiscussion

3.1.Experimentalresults

3.1.1.Packing

TheEPTwasusedtomeasurethebulkporosityofthepowderundercompression.Theinitialbulkporositywasmeasuredcor-respondingtoasmallappliedinitialstressof1kPa(approx).Thishelpstoreducethevariabilityofthe?llporositymeasurementandgiveastablemeasurementoftheinitialheightofthespecimenwithalevelsurface.Theheightandweightofthespecimenwereusedtocalculatetheaveragevalueofthebulkdensity(??b).Thesamplebulkporosity(á)canthenbecalculatedusing??b,moisturecontent(w),andtheparticledensity(??s)asfollows:

á??b

=1?

??.(1)

s(1+w)

However,inthisstudytheparticledensitywasmeasuredforthepowderwithmoisture,thereforethemoisturewasnotconsideredinporositycalculation,andporositywassimplycalculatedas:

á??b

=1?

??.s

(2)

Theporositycomprisesoftheinter-particleporesaswellastheopenandclosedintra-particlepores.However,theskeletalden-sitymeasurementoftheSDDsamplesbeforeandaftermillingwasfoundtobesimilar,indicatinginsigni?cantclosedporesinthesam-ples.TheaveragebulkporosityofSampleAandSampleBforfullsizefractionanddifferentsievecutfractionsareshowninTable2.Thebulkporositiesofthelargersievecutfractionsforbothsampleswerehighercomparedtothoseofthesmallersievecutfractions.AsitcanbeseenfromtheSEMimages(Figs.2and3)thelargerfractionsareagglomeratesoftheprimaryparticles.Inadditiontotheintraandinter-particleporosity,theinter-agglomerateporos-ityalsocontributestothetotalporosityleadingtoahigherporosityforthelargerfractions.

ThebulkporosityofthefullsizefractionofSampleAwasfoundtobehigherthanthatofSampleB(seeTable2).IndeedthebulkporositiesofdifferentsizefractionsofSampleAwereconsistently

Table2

Initialsampleporosity(%)measurementsforSampleAandSampleBpowders.

Sizefractions

SampleA

SampleB

M

RSD(%)

M

RSD(%)

Allfractions(n=3)72.50.3669.60.35>500?m(n=1)77.7–75.2–500–250?m(n=1)75.4–72.8–<250?m(n=1)

72.2

69.8

NB:n=numberofmeasurements;initialporositytakenataconsolidationstressof1kPa.

higherthanthecorrespondingfractionsofSampleB.Thiswasdeemedcounterintuitiveconsideringthatbothsampleshavesim-ilarshape,morphologyandgradation,exceptahighermoisturecontentforSampleB.Onemightspeculatethatahighermois-turecontent(SampleB)couldleadtoamore-openstructureandahigherporosityresultingfromhigheradhesiveforcesattheparti-clecontacts(assumingthatmoistureisatthecontacts).Itshouldbenotedthatthemicrostructureofspraydriedpowdercomprisesporousprimaryparticlesandagglomeratesoftheseprimarypar-ticles.Suchamicrostructurecannotbeeasilyde?nedbyasinglevalueofbulkporosity.Therefore,acombinationofmeasurementsusingmercuryporosimetryandgaspycnometrywasusedtoesti-mateporositybetweentheparticles(inter-porosity)andporosityinsidetheparticles(intra-particleporosity).Inter-particleporositywascalculatedas:

áinter=1???b

??s(1?áp)

,

(3)whereáinteristheinter-particleporosity,andápistheparticleporositywhichwascalculatedas:

áp=

vpores

(v(4)

pores+,

(1/??s))

where,vpores=speci?cvolume(mL/g)ofmercurypenetratingtheparticlepores.

Thefractionoftotalvoidspaceinasamplecontributedbypar-ticleporosityistermedasintra-particleporosityandexpressedas:

áintra=áp(1?á).

(5)

Becauseofdif?cultyinseparatinginter-andintra-particlesforfullsizefractionsamples,inter-andintra-porositywasestimatedforthe250–500?mnarrowsizefractionsassumingthattheintra-porositymeasurementwillbevalidforothersizefractionsandfullsizefraction.Theassumptionisreasonablesinceintra-particleporosityrelatestoprimaryparticlesandshouldbeindependentofsizeofagglomerates(i.e.differentsizefractions).Table3showsthebreakdownofthetotalporosityfor250–500?mfortheSDDpowdersintermsofinter-andintra-particleporosity.Theinter-particleporosityofSampleBwas2.6%higherthanthatofSampleAwhichisindeedconsistentwiththepropositionofincreasinginter-particleporositywithincreasingmoisturecontent.However,theintra-particleporosityforSampleAwas5.2%higherthanthatofSampleBwhichmaskedthehigherinter-particleporosityin

Table3

Breakdownofbulkporosity(%)fortheSDDpowdersample(250–500?m).

Typesofporosity

SampleA

SampleB

M

RSD(%)

M

RSD(%)

Bulkporosity

75.4–72.8–Intraparticleporosity21.380.8516.193.45Interparticleporosity

54.02

56.61

S.C.Thakuretal./Particuology12 (2014) 2–12

7

SampleBandledtoahigheroverallporosityfortheSampleA.Thehigheramountofintra-particleporosityforSampleAcanbeattributedtothewaythesampleswereprocessedinthespraydry-ingtower.SampleAwasexposedtoslightlyhighertemperatureinthespraydryingtowercausingpuf?ngorshrinkingandleadingtomoreporousprimaryparticles.

3.1.2.Con?nedcompressionanddecompression

Thecompressionprocesswasstudiedbyplottingtheaxialstress–strainmeasurementsandtheporosity-stressmeasure-ments.Fig.5(a)showstheaxialstrainforthreespecimensofSampleAandSampleBasafunctionoftheconsolidationstressandFig.5(b)showsthecorrespondingporosityvariationasafunctionofconsolidationstress.SampleBexhibitedahigheroverallcom-pressibilitythanSampleAdespitethefactthattheinitial(bulk)porosityofSampleBwaslower.InFig.5(b),thepowdercom-pressionprocesscanbedividedintotwostages;stageIrelatingtoparticlerearrangement(mostlycompressionofinter-porosity),andstageIIwhentheelasto-plasticdeformationcausingsquashingofbothinter-andintra-particleporositybegantodominate.Itcanbeseenthatattheonsetofconsolidationtheporositydecreasedsharply(stageI).DuringstageIIastheconsolidationprogressed,theporosityvariedlinearlywitha?atterslopecomparedtostageI.ThesteeperslopeoftheporositystresscurveforSampleBindicateslargerparticlerearrangementduringstageI,andlargerelasto-plasticdeformationforstageII.ThelargerparticlerearrangementofSampleBcanberesultingfromhigher(2.6%for250–500?msize)inter-particleporositycomparedtoSampleA(Table3).Thelargerelasto-plasticdeformationinstageIIforsampleBmaybearisingfromhighermoistureincreasingtheplasticityatcontacts(Okasanen&Zogra?,1990)andagglomeratebreakageduetoweak-eningofthesolidbridges(Yan&Barbosa-Canovas,1997,2001).Oncethedesiredconsolidationstresswasreached,thesamplewasunloadedandthesampleheightwasrecordedtocalculatetheconsolidatedporosity(denotedbypointsonX-axis,seeFig.5(b)).Noneofthepowdersreturnedtotheinitialporosityuponunloadingindicatingsubstantialplasticdeformationarisingfromtheparticlerearrangement,breakage,andplasticdeformationatthecontacts.AscanbeseenfromFig.5(b)themaximumdifferenceinporos-itymeasurementsforeachofthepowdersatanyspeci?cappliedstresswaslessthan0.5%(seeerrorbars)indicatingahighlevelofreproducibility.

Fig.6(a)showsaxialstress–strainbehaviourandFig.6(b)showscorrespondingporositychangeasafunctionofconsolidationstressfordifferentsieve-cutfractionsofSamplesAandB.Whilecom-paringdifferentsizefractionsofthesample,thelargersieve-cutfractioncompressesmore,whichcouldberelatedwithcompres-sionoflargerinter-agglomeratepore,breakageofthelargesizeagglomerates,andlargerplasticdeformation.Ithasbeenfoundinliteraturethatasthesizeoftheagglomerate(foodpowder)increasedahighervolumereductionforlargesizeagglomeratesduringcompressioninacylindricalmouldwasfound(Yan&Barbosa-Canovas,1997).Theparticlesizeeffectonbreakagewasexplainedbythelargerparticleshavingmoreedgesorcornersontheirsurfacethanthesmallerones,resultinginmoreabrasionandchipping.Whilecomparingcompressionbehaviourofcorrespond-ingsieve-cutsamplesoftwoSDDpowders,sampleAcompresseslessshowingasimilartrendtothefullsizefraction.

Inaddition,alargergradientinporosity-stresscurve(forbothstageIandstageII)isfoundforSampleB.Forexample,thedecreaseinbulkporosityfor250–500?msampleBwas0.2%and0.5%higherthanthesamesizefractionsampleAforstageIandstageII,respec-tively.ThisagainindicateslargerparticlerearrangementinstageIandlargerelasto-plasticdeformationinstageIIforSampleB.

3.1.3.Uncon?nedcompressionand?owfunction

Theuncon?nedstress–strainbehaviourforallsampleswasobtainedbuttheresultsarepresentedonlyforfullsizerangeSDDpowders.Fig.7showstypicalstress–strainbehaviourduringuncon?nedcompressionforfourdifferent(20–80kPa)consolida-tionstresses.Thepeakstressatwhichthesamplefails(denotedbydropdowninstress)isknownastheuncon?nedyieldstrength.Veryofteninliteratureonlytheuncon?nedyieldstrengthasafunc-tionofconsolidationstressisreported.However,theareaundertheuncon?nedstress–straincurveisrelatedtotheenergyrequiredtofailthesampleandneedstobecapturedintheDEMsimula-tions.Itcanbeseenthatboththeuncon?nedstrengthandtheareaunderthecurveincreasewithincreasingconsolidationstressforbothsamples.

Fig.8showstherelationshipbetweenuncon?nedstrengthandconsolidationstress,otherwiseknownas?owfunction.Therepro-ducibilityofEPTwastestedforfullsizerangeSDDbulksamples.Therelativestandarddeviation(RSD)at37kPaofconsolidationstressforSampleAandSampleB(3testseachonfreshsamples)werefoundtobe4.8%and2.8%,respectively.Whilstthreedatapointswouldnotusuallybeconsideredsuf?cientforrigorousstatisticalanalysis,thelowRSDindicatesthatthereproducibilityofEPTisveryhigh.

TheSampleBdisplayedhigheruncon?nedstrengthatthesameconsolidationstress.Themostplausibleexplanationisthatmois-tureincreasesstickinessandplasticityofthecontactleadingtohigheruncon?nedstrength.HigherplasticdeformationhasbeenobservedforSampleBduringcon?nedcompression(seeFig.5).Forthedifferentsieve-cutfractionsofSampleB,largersieve-cutfrac-tionsshowedhigheruncon?nedstrengthcomparedtosmallsievecutfractions(forthelargerthan500?mfractionconsolidatedat77kPa,theuncon?nedstrengthexceededthe45kPalimitoftheloadcell).Theplausibleexplanationforlowerstrengthassociatedwith?nerparticlesisthatthe?nefractionscontainadispropor-tionateamountofanticakingagentswhichreducestheadhesionbetweenparticlesandthat?nefractionshaveaslightlylowermois-turecontentcomparedtothecoarserfractions.Incontrast,thecoarserparticleshavehighermoisturecontentandhaveshownpreviouslytodeformmoreplastically(seeFig.6(a))comparedtosmallsizeparticles,whichmayprobablygiverisetohighercon-tactareaandthereforehigheradhesion.Thisisconsistentwithprevious?ndingsthatsmallincreaseinmoisturecontent(0.6%)producedsigni?cantincreaseincakestrength(64%)ofSDDpow-ders(Watanabe&Groves,1964).

3.2.DEMsimulation

3.2.1.Elasto-plasticadhesivecontactmodel

ADEMcontactmodelbasedonthephysicalphenomenaobservedinadhesivecontactexperimentshasbeenproposed(Jones,2003).Whentwoparticlesoragglomeratesarepressedtogether,theyundergoelasticandplasticdeformationsandthepull-off(adhesive)forceincreaseswithanincreaseoftheplasticcontactarea.Anon-linearcontactmodelthataccountsforboththeelasto-plasticcontactdeformationandthecontact-areadependentadhesionisproposed.However,thelinearversionofthecontactmodelisusedinthisstudy(Fig.9(b)).Theschematicdiagramofnormalforce-overlap(fn??)forthismodelisshowninFig.9.

ThiscontactmodelhasbeenimplementedthroughtheAPIinEDEM?v2.3,acommercialDEMcodedevelopedbyDEMSolutionsLtd(2010).Thetotalcontactnormalforceissumofhystereticspringforce,fhys,andnormaldampingforce,fnd,andisgivenbyEq.(6):

fn=(fhys+fnd)u,

(6)

8S.C.Thakuretal./Particuology12 (2014) 2–12

Fig.5.(a)Con?nedstress–strainand(b)porosity–stressbehaviouroffullsizerangeSampleAandSampleB.

Fig.6.(a)Con?nedstress–strainand(b)porosity–stressbehaviourofdifferentsievecutfractionsofSampleAandSampleB.

Fig.7.Uncon?nedstress–strainof(a)SampleAand(b)SampleB.

Fig.8.Flowfunctions(a)foruncutSampleBandSampleA,and(b)fordifferentsizefractionsofSampleBandSampleA.COVdenotescoef?cientofvariation,theabsolutevalueofwhichistheRSD.

S.C.Thakuretal./Particuology12 (2014) 2–12

9

Fig.9.Non-linear(a)andlinear(b)normalcontactforce–displacementfunction.

where,uistheunitnormalvectorpointingfromthecontactpointtotheparticlecentreandfhysisgivenbyEq.(7):

?

f+k?n??01

allowedbyshearslider,thetangentialforceissetequaltothe

maximumfrictionalvalue,fct:

nifk2(?n??np)≥k1?;

fct≤??|fhys+kadh?n|,

(15)

fhys=

??

f0+k2(?n??np)

nifk1?n>k2(?n??np)>?kadh?;

(7)

f0?kadh?n

ifkadh?n≥k2(?n??np);

wheref0isconstantadhesion,?isnormaltotaloverlap,?pisnormal

plasticoverlap,k1isthevirginloadingstiffnessparameter,k2istheunloading/reloadingstiffnessparameter,kadhistheadhesivestiffnessparameter,andnisthenon-linearindexparameter.ThedampingforceisgivenbyEq.(8):

where??isthecoef?cientoffriction.

Forthetorquecalculation,thedefaultEDEMrollingfrictionmodelisadoptedinthisstudy.Thetotalappliedtorque,??i,isgivenby:

??i=???r|fhys|Riωi,

(16)

fnd=?ˇnvn,

(8)

where??nisthemagnitudeoftherelativenormalvelocity,andˇnisthenormaldashpotcoef?cientexpressedas:

where??risthecoef?cientofrollingfriction,Riisthedistancefromthecontactpointtotheparticlecentreofmassandωiistheunitangularvelocityvectoroftheobjectatthecontactpoint.Fur-therdetailsaboutthecontactmodelcanbefoundinthepaperbyThakur,Morrissey,etal.(2013).

??

ˇn=

4m?k11+(??/lne)

,2

(9)

withtheequivalentmassoftheparticlesm*,andthecoef?cientof

restitutionede?nedinthesimulation.

Thecontacttangentialforce,ft,issimilarlygivenbythesumoftangentialspringforce,fts,andtangentialdampingforce,ftd.,asgivenbyEq.(10):

ft=(fts+ftd).

(10)

Thetangentialspringforceisexpressedinincrementalterms:fts=fts(n?1)+??fts,

(11)

wherefts(n?1)isthetangentialspringforceattheprevioustimestep,and??ftsistheincrementofthetangentialforceandisgivenby:

??fts=?kt?t,

(12)

wherektisthetangentialstiffness,and?tistheincrementofthetangentialspring.Thetangentialdampingforceisproductoftan-gentialdashpotcoef?cient,ˇt,andtherelativetangentialvelocity,??t,asgivenbyEq.(13):

ftd=?ˇtvt.

(13)

Thedashpotcoef?cientˇtisgivenby:

??

ˇt=

4m?kt1+(??/lne)

.2

(14)

ThetotaltangentialforceislimitedbyCoulombfrictionlaw.

Thatis,ifthefrictionforceisgreaterthanmaximumshearforce

3.2.2.Modelimplementation

Thereareseveralchallengesinmodellingcohesivepowderatindividualparticlelevel.First,itiscomputationallyprohibitivetomodeleachandeveryindividualparticleandthecohesionaris-ingfromseveraldifferentphenomenaincludingvanderWaals,capillarybridge,andelectrostaticforcesseparately.Second,realparticlesarenotsphericalandcanhavesurfaceasperitiesandcon-tactoccursnotatasinglepointbutthroughmultipleasperities.Finally,itisverydif?culttomeasureinputparametersinclud-ingadhesiveforce,contactstiffness,coef?cientofrestitutionetc.forcohesivepowders.Forexample,enormousscatterindatahasbeenreportedinmeasurementofadhesivepull-offforceusingAFMmeasurement(Heimetal.,2005;Tykhoniuketal.,2007).Inourapproach,thefocusisonanintermediatescalebetweenthemicro-andmacro-scales,aimingataphenomenologicalcontactmodelthatcanreproducethebulkcohesivestrength,stresshistorydependency,andotherbehaviourevidencedinbulkexperiments.

Asa?rststeptowardscalibrationofDEMmodelparameter,asimpli?edlinearversionofthecontactmodel,i.e.,parametern=1(Luding,2008;Walton&Braun,1986)isused(seeFig.9(b)).Thecohesivecontactmodelwasonlyappliedtoparticle-particleinter-actions.Theparticle-geometryinteractionsweremodelledusingtheHertz-Mindlin(no-slip)contactmodelandhencenoparticle-geometryadhesionwaspermitted.Forthisinvestigation,theDEMparameterswereestimatedtomatchprimarilythecompressionandtheuncon?nedstrengthofSampleBretainedon500?msieve.TheDEMinputparametersusedarepresentedinTable4.Anexten-siveparametricstudyisunderwaytodeveloparobustcalibrationmethodologywhichshouldpermitarigorousmodelcalibrationinthenearfuture.

Thegeometricsimilaritybetweentheexperimentsandsimula-tionswasmaintainedbyusingthesamediametermould.Inorderto

10

Table4

Simulationparameters.

S.C.Thakuretal./Particuology12 (2014) 2–12

Numberofparticles

Loadingspringstiffness,k1(N/m)Unloadingspringstiffness,k2(N/m)Adhesiveforce,f0(N)

Adhesiveparameterstiffness,kadh(N/m)Particlestaticfriction,??sfParticlerollingfriction,??rfWallfriction,??wf

TopandbottomplatenFriction,??PfCoef?cientofrestitution,eDEMtimestep,ts(s)

35001×1064×106–0.0042×1060.60.0010.40.40.4

4.6×10?6

(2)con?nedconsolidationtotherequiredstresslevelandsubse-quentunloading;and(3)uncon?nedcompressionofthesampletofailureaftertheremovalofthemould.TheprocessisvisualisedinFig.11.Therandomrainfallmethodwasadoptedtoprovidearandompackingofparticles.Toensurethatthesystemreachedaquasi-staticstate,loadingonlycommencedwhenthekinetictopotentialenergyratiowaslessthan10?5withaconstantcoordina-tionnumber.Thecon?nedconsolidationprocesswasconductedbymovingthetopplatendownwardataconstantspeedof10mm/s(strainrate≈0.14s?1)toapplyaverticalcompression.Aftercon-solidatingthesampletothedesiredstress,theloadontheassemblywasreleasedbymovingthetopplatenupwardatthesamecon-stantspeed.Thelateralcon?ningwallswerethenremovedandtheuncon?nedsamplewasallowedtorelaxforashortperiodoftime(0.1s).Thisallowedthekineticenergygeneratedfromtheremovalofthecon?ningwallandupwardretreatofthetopplatentodissipate.Thesamplewasthencrushedtofailurebymovingthetopplatendownwardagainataconstantrateof5mm/s(strainrate≈0.1s?1).

Fig.10.Pairedparticlewithaspectratioof1.5.

predictthemechanicalbehaviourofrealadhesivefrictionalmate-rialwhichisneithersphericalnorsmooth,itisimportantthatnon-sphericalshapeisconsideredtomimicthegeometricinter-lockingthatexists.Inthissimulation,thecylinderwas?lledwith3500non-sphericalparticles,eachconsistingoftwooverlappingspheresof2mmdiametergivingaparticleaspectratioof1.5(Fig.10).ItshouldbenotedthattheDEMparticlesinthisstudyaremesoscopicrepresentationofthedetergentpowders.AstudyonnumericalscalingofDEMparametersinuniaxialtesthasshownthatiftheDEMinputparametersarescaledproperly,sizeindepen-dentbulkstress–strainresultscanbeobtained(Thakur,Ahmadian,etal.,2013).Therefore,particlesizelargerthanrealisticsizepar-ticlesisused.Theparticlesizedistributioncanhaveaneffectonthebulkbehaviourbutisnotconsideredinthissimulationwhereadetergentpowderwithanarrowsizerangehasbeenchosenforcomparison.

Eachsimulationconsistsofthreestages:(1)?llingthecylin-dricalmouldtoformtheinitialpackingusedforallstresslevels;

3.2.3.Simulationresults

SampleBwithparticlesizerange500–2000?mischosenforDEMmodelcalibration.Thecompressionanddecompressionbehaviour(stress–strainandchangeinporosity–stress)isshowninFig.12.Thepredictedstress–strainresponsematchesverywellwiththeexperimentalstress–strainbehaviourofSampleBwithparticlesizerange500–2000?m.However,thereisadiscrepancyinporosity–stressbehaviourwiththeDEMpredictingalowerini-tialporosity.Thiscanbeattributedtothehighlyirregularshape,intra-particleporosity,andsurfaceasperitiesofSampleBasshownbytheSEMphotographs(seeFig.3(c)),whichhavenotbeenproperlyaccountedforintheDEMmodel.Thiswarrantsfurtherinvestigationintotheinteractionbetweeninter-andintra-particleporosityonpackingandcompressibilitybehaviourofcohesivepowder.However,whenchangeinporosityisplottedagainstappliedconsolidationstress,theresultsshowreasonableagree-mentbetweenthesimulationandtheexperiments(seeFig.12(b)).Fig.13(a)and(b)comparessimulationandexperimentalresultsfortheuncon?nedloadingresponse(tofailure)andthe?owfunction,respectively.Thecomputedpeakuncon?nedstrengthcomparesreasonablywellat37kPaconsolidationstress.How-ever,theinitialstiffnessinDEMsimulationwassteeperthantheexperiments.Furthermore,overconsolidationbehaviourwasnotobservedinthesimulations.ThiscouldbeduetothefragilenatureoftheSDDpowdersundergoingbreakageduringshearing.From

Fig.11.Snapshotsofuniaxialtestsimulations:(1)?lling,(2)con?nedconsolidation,and(3)uncon?nedcompression.

S.C.Thakuretal./Particuology12 (2014) 2–12

11

Fig.12.Con?nedstress–strain(a)andporosity–stressbehaviour(b)(simulationvs.experiments).

Fig.13.Uncon?nedstress–strainbehaviour(a)and?owfunction(b)forsimulationandexperiments.

Fig.13(b),the?owfunctionresultfromDEMsimulationscom-paresreasonablywelltoexperimentalresults,especiallyathigherconsolidationstresses(40–60kPa).

4.Conclusions

Thepacking,compressionand?owabilitybehaviouroftwospray-driedpowdersmanufacturedattwodifferentmoisturecontentshavebeenstudiedusingtheEPTuniaxialtester.TheEPTprovidedhighlyreproduciblemeasurementsofthecon?nedcom-pression(givingtheporosity-stressfunction)andtheuncon?nedcompressiontofailure(givingthe?owfunction)ofthepowders:thesecanbeveryusefulindescribingthehandlingcharacteris-ticsofthesepowderedproductsincludingscreeningnewproducts,studyingformulationchangesandtheeffectofanticakingagent.Comparingthetwomanufacturedpowders,thelowmoisturesamplehadhigherintra-particleporosityandlowerinter-particleporosity,resultinginahigheroverallporosity.Howeverthehigherintra-particleporositydidnotleadtoahighercompressibilityunderload.Forthehighmoisturesample,thehighermoisturegaverisetohigherinter-particleporosityandahigherplasticityatthecontactsunderload,resultinginahigheroverallcompressibility.Thehigherplasticityatthecontactseventuallyledtoahighercakestrengthforthehighmoisturesample.

Fordifferentsieve-cutsamples,itwasfoundthatmoisturecon-tentwasnotuniformlydistributed,withthelargersizefractionshavinghighermoisturecontents,mostprobablyduetotheagglom-erationofprimaryparticlesintolargersizesenclosinghigherinternalmoisture.Thelargersizefractionsshowedhighertotalporositycomparedtothesmallersizefractions.Itisnotedthatthelargerfractionsareagglomeratesoftheprimaryparticles.Thusthe

inter-agglomerateporosityalsocontributedtothetotalporosityleadingtoahigherporosityforthelargerfractions.Higherinitialporosity,andhighmoistureassociatedwithlargesizefractionsexplainswhylargesizefractionsalwaysshowedahighercom-pressibilitythanthesmallersizefractions.

Additionally,thelargersizefractionsalsoshowedhighercakestrengththanthefullsizerangeineachofthetwopowders.Thishasthepracticalimplicationthatifthedetergentpowdersegregatesduringthehandlingandtransportoperation,thecoarserfrac-tionmaydominatetheoverallcakingbehaviourofthedetergentpowders.Inaddition,thepowderswithhigherinherentmoisturecontentcanhaveahighercohesivityandmaythereforecausemore?owabilityproblemsespeciallywhensubjectedtosigni?cantcon-solidationstresses.

The?llingand,con?nedcompression/decompression,followedbytheuncon?nedloadingtofailure,inanEPTtesthavebeensimu-latedwithDEMusingarecentlydevelopedelasto-plasticadhesivecontactmodel.Thesimulationresultsareinreasonablygoodagree-mentwiththeexperimentalresultsforthe?owfunctionandcompressionbehaviourbutlesssoforotherobservedfeatures.Fur-therdevelopmentofcontactmodelisunderwaytoimprovethepredictivecapabilities.

Thisstudyisthe?rststeptowardsusingDEMtomodelcohe-sivepowdersforindustrialscaleapplications.MoresimulationsarerequiredtostudytheeffectsofseveralDEMinputparameterssuchasparticlesize,shape,particlesizedistribution,frictionetc.onthebulkresponse.However,this?rststepdemonstratedthemodel’scapabilitytopredictthepertinentmacroscopicbehaviourofacohesivepowderundercompressionandshearanditspotentialformodellingcomplexindustrialprocessesinvolvingtheseloadingregimes.

12S.C.Thakuretal./Particuology12 (2014) 2–12

Acknowledgements

ThesupportfromtheEUMarieCurieInitialTrainingNetworkisgratefullyacknowledged.TheauthorswouldalsoliketothankDrLuisMartindejuan,DrGrahamCalvert,MrSimonGreener,JohnPaulMorrissey,andProfJian-FeiChenformanyusefuldiscussionsandMissTaraAzizfortechnicalassistance.

References

ASTMD5550.(2006).Standardtestmethodforspeci?cgravityofsoilsolidsbygas

pycnometer.AnnualbookofASTMstandards.WestConshohocken,PA,USA:ASTMInternational.

Baxter,J.,Abouchakra,H.,Tuzun,U.,&MillsLamptey,B.(2000).ADEMsimula-tionandexperimentalstrategyforsolving?nepowder?owproblems.ChemicalEngineeringResearchandDesign,78(7),1019–1025.

Bell,T.A.,Catalano,E.J.,Zhong,Z.,Ooi,J.Y.,&Rotter,J.M.(2007).Evaluationofthe

edinburghpowdertester.InProceedingsofPARTECNuremberg,Germany,(pp.2–6).

Bishop,A.W.,&Green,G.E.(1965).Thein?uenceofendrestraintonthecompression

strengthofacohesionlesssoil.Geotechnique,15(3),243–266.

Cho,G.-C.,Dodds,J.,&Santamarina,J.C.(2006).Particleshapeeffectsonpacking

density,stiffness,andstrength:Naturalandcrushedsands.JournalofGeotech-nicalandGeoenvironmentalEngineering,132(5),591–602.

Cleaver,J.(2008).Powdercaking—AreviewforInternationalFineParticleResearch

Institute(IFPRI).SAR.

David,C.T.,García-rojo,R.,Herrmann,H.J.,&Luding,S.(2007).Powder?owtest-ingwith2Dand3Dbiaxialandtriaxialsimulations.Particle&ParticleSystemsCharacterization,24,29–33.

DEMSolutionsLtd.\\.(2010).EDEM2.3programmingguide.Online(Revision3).Edin-burgh,Scotland,UK(pp.1–49).

Dong,K.J.,Yang,R.Y.,Zou,R.P.,&Yu,A.B.(2006).Roleofinterparticleforcesinthe

formationofrandomloosepacking.PhysicalReviewLetters,96(14),145505.Enstad,G.G.,&Ose,S.(2003).Uniaxialtestingandtheperformanceofapalletpress.

ChemicalEngineering&Technology,26,171–176.

Freeman,R.,&Fu,X.(2011).Thedevelopmentofacompactuniaxialtester.InPaper

presentedattheParticulateScienceAnalysisEdinburgh,UK,(pp.1–6).

Grif?th,E.(1991).Cakeformationinparticulatesystems.NewYork:Wiley-VCHpub-lishers,Inc.

Güden,M.,Celik,E.,Hizal,A.,Altindis?,M.,&Cetiner,S.(2008).Effectsofcompaction

pressureandparticleshapeontheporosityandcompressionmechanicalpropertiesofsinteredTi6Al4Vpowdercompactsforhardtissueimplanta-tion.JournalofBiomedicalMaterialsResearch.PartB,AppliedBiomaterials,85(2),547–555.

Hecht,J.P.,&King,C.J.(2000a).Spraydrying:In?uenceofdevelopingdropmor-phologyondryingratesandretentionofvolatilesubstances.1.Single-dropexperiments.Industrial&EngineeringChemistryResearch,39(6),1756–1765.Hecht,J.P.,&King,C.J.(2000b).Spraydrying:In?uenceofdevelopingdropmorphol-ogyondryingratesandretentionofvolatilesubstances.2.Modeling.Industrial&EngineeringChemistryResearch,39(6),1766–1774.

Heckel,R.W.(1961).Density–pressurerelationshipsinpowdercompaction.Trans-actionsoftheMetallurgicalSocietyofAIME,221(4),671–675.

Heim,L.,Farschi,M.,Morgeneyer,M.,Schwedes,J.,Butt,H.J.,&Kappl,M.(2005).

Adhesionofcarbonylironpowderparticlesstudiedbyatomicforcemicroscopy.JournalofAdhesionScienceandTechnology,19(3–5),199–213.

Hersey,J.A.,&Rees,J.E.(1970).Effectofparticlesizeonconsolidationofpowder

duringcompaction.InProceedingsofparticlesizeanalysisconference(pp.33–41).UK:UniversityofBradford.

Jones,R.(2003).FromsingleparticleAFMstudiesofadhesionandfrictiontobulk

?ow:Forgingthelinks.GranularMatter,4(4),191–204.

Krupp,H.(1967).Particleadhesiontheoryandexperiment.AdvancesinColloidand

InterfaceScience,1(2),111–239.

Luding,S.(2008).Cohesive,frictionalpowders:Contactmodelsfortension.Granular

Matter,10(4),235–246.

Luding,S.,Tykhoniuk,R.,Tomas,J.,Heim,L.,Kappl,M.,&Butt,H.J.(2004).Flow

behaviorofcohesiveandfrictional?nepowders.InNumericalModelinginMicromechanicsviaParticleMethods–2004.PFCSymposiumproceedings.London:AABalkema.

Mehrotra,A.,Chaudhuri,B.,Faqih,A.,Tomassone,M.S.,&Muzzio,F.J.(2009).Amod-elingapproachforunderstandingeffectsofpowder?owpropertiesontabletweightvariability.PowderTechnology,188(3),295–300.

Moreno-Atanasio,R.,Antony,S.,&Ghadiri,M.(2005).Analysisof?owabilityof

cohesivepowdersusingdistinctelementmethod.PowderTechnology,158(1–3),51–57.

Morgeneyer,M.,R?ck,M.,Schwedes,J.,Johnson,K.,Kadau,D.,Wolf,D.E.,etal.

(2005).Microscopicandmacroscopiccompactionofcohesivepowders.InR.Garcia-Rojo,H.J.Herrmann,&S.McNamara(Eds.),PowdersandGrains2005(pp.535–539).London:Taylor&FrancisGroup.

Okasanen,C.A.,&Zogra?,G.(1990).Therelationshipbetweentheglasstransition

temperatureandwatervaporabsorptionbypoly(vinylpyrrolidone).Pharma-ceuticalResearch,7(6),654–657.

Parrella,L.,Barletta,D.,Boere?jn,R.,&Poletto,M.(2008).Comparisonbetweena

uniaxialcompactiontesterandasheartesterforthecharacterizationofpowder?owability.KONAPowderandParticleJournal,26(26),178–189.

Redanz,P.,&Fleck,N.A.(2001).Discreteelementmodellingofcompactionof

cylindricalpowderparticles.InIUTAMsymposiumontheoreticalandnumericalmethodsincontinuummechanicsofporousmaterials.Amsterdam:Springer.

R?ck,M.,Ostendorf,M.,&Schwedes,J.(2006).Developmentofanuniaxialcaking

tester.ChemicalEngineering&Technology,29(6),679–685.

Rock,M.,&Schwedes,J.(2005).Investigationsonthecakingbehaviourofbulk

solids—Macroscaleexperiments.PowderTechnology,157(1–3),121–127.

Samimi,A.,Hassanpour,A.,&Ghadiri,M.(2005).Singleandbulkcompressionsof

softgranules:ExperimentalstudyandDEMevaluation.ChemicalEngineeringScience,60(14),3993–4004.

Schwedes,J.(2003).Reviewontestersformeasuring?owpropertiesofbulksolids.

GranularMatter,5(1),1–43.

Sheng,Y.,Lawrence,C.J.,Briscoe,B.J.,&Thornton,C.(2004).Numericalstudies

ofuniaxialpowdercompactionprocessby3DDEM.EngineeringComputations,21(2–4),304–317.

Thakur,S.C.,Ahmadian,H.,Sun,J.,&Ooi,J.Y.(2013).Scalingofdiscreteelement

modelparametersinuniaxialtestsimulation.InProceedingsofDEM6conferenceGolden,Clorado.

Thakur,S.C.,Morrissey,J.P.,Sun,J.,Chen,J.-F.,&Ooi,J.Y.(2011).ADEMstudyofcohe-siveparticulatesolids;plasticityandstresshistorydependency.InInternationalconferenceonparticulatesystemanalysisEdinburgh,UK,(pp.1–5).

Thakur,S.C.,Morrissey,J.P.,Sun,J.,Chen,J.-F.,&Ooi,J.Y.(2013).Micromechanical

analysisofcohesivegranularmaterialsusingthediscreteelementmethodwithanadhesiveelasto-plasticcontactmodel.GranularMatter(submitted).

Tykhoniuk,R.,Tomas,J.,Luding,S.,Kappl,M.,Heim,L.,&Butt,H.-J.(2007).Ultra-?necohesivepowders:Frominterparticlecontactstocontinuumbehaviour.ChemicalEngineeringScience,62(11),2843–2864.

Walton,O.R.,&Braun,R.L.(1986).Viscosity,granular-temperature,andstresscal-culationsforshearingassembliesofinelastic,frictionaldisks.JournalofRheology,30(5),949–980.

Washburn,E.W.(1921).Thedynamicsofcapillary?ow.PhysicalReview,17(3),

273–283.

Watanabe,H.,&Groves,W.L.(1964).Cakingtestfordrieddetergents.Journalofthe

AmericanOilChemists’Society,41(4),311–315.

Williams,J.C.,Birks,A.H.,&Bhattacharya,D.(1971).Thedirectmeasurementofthe

failurefunctionofacohesivepowder.PowderTechnology,4(1970/71),328–337.Yan,H.,&Barbosa-Canovas,G.V.(1997).Compressioncharacteristicsofagglomer-atedfoodpowders:Effectofagglomeratesizeandwateractivity.FoodScienceandTechnologyInternational,3(5),351–359.

Yan,H.,&Barbosa-Canovas,G.V.(2001).Attritionevaluationforselectedagglom-eratedfoodpowders:Theeffectofagglomeratesizeandwateractivity.JournalofFoodProcessEngineering,24(1),37–49.

Yang,R.Y.,Zou,R.P.,Dong,K.J.,An,X.Z.,&Yu,A.B.(2007).Simulationofthepacking

ofcohesiveparticles.ComputerPhysicsCommunications,177(1),206–209.

Yang,R.Y.,Zou,R.P.,&Yu,A.B.(2000).Computersimulationofthepackingof?ne

particles.PhysicalReviewE,62(3),3900–3908.

Yen,K.Z.Y.,&Chaki,T.K.(1992).Adynamicsimulationofparticlerearrangement

inpowderpackingswithrealisticinteractions.JournalofAppliedPhysics,71(7),3164–3173.

Yu,A.B.,1989.Thepackingofsolidparticles.Doctoraldissertation,Universityof

Wollongong.Retrievedfromhttp://ro.uow.edu.au/theses/1531/

Yu,A.B.,&Standish,N.(1993).Characterisationofnon-sphericalparticlesfromtheir

packingbehaviour.PowderTechnology,74,205–213.

Zhong,Z.,Ooi,J.Y.,&Rotter,J.M.(2005).Predictingthehandlabilityofacoalblend

frommeasurementsonthesourcecoals.Fuel,84(17),2267–2274.

12S.C.Thakuretal./Particuology12 (2014) 2–12

Acknowledgements

ThesupportfromtheEUMarieCurieInitialTrainingNetworkisgratefullyacknowledged.TheauthorswouldalsoliketothankDrLuisMartindejuan,DrGrahamCalvert,MrSimonGreener,JohnPaulMorrissey,andProfJian-FeiChenformanyusefuldiscussionsandMissTaraAzizfortechnicalassistance.

References

ASTMD5550.(2006).Standardtestmethodforspeci?cgravityofsoilsolidsbygas

pycnometer.AnnualbookofASTMstandards.WestConshohocken,PA,USA:ASTMInternational.

Baxter,J.,Abouchakra,H.,Tuzun,U.,&MillsLamptey,B.(2000).ADEMsimula-tionandexperimentalstrategyforsolving?nepowder?owproblems.ChemicalEngineeringResearchandDesign,78(7),1019–1025.

Bell,T.A.,Catalano,E.J.,Zhong,Z.,Ooi,J.Y.,&Rotter,J.M.(2007).Evaluationofthe

edinburghpowdertester.InProceedingsofPARTECNuremberg,Germany,(pp.2–6).

Bishop,A.W.,&Green,G.E.(1965).Thein?uenceofendrestraintonthecompression

strengthofacohesionlesssoil.Geotechnique,15(3),243–266.

Cho,G.-C.,Dodds,J.,&Santamarina,J.C.(2006).Particleshapeeffectsonpacking

density,stiffness,andstrength:Naturalandcrushedsands.JournalofGeotech-nicalandGeoenvironmentalEngineering,132(5),591–602.

Cleaver,J.(2008).Powdercaking—AreviewforInternationalFineParticleResearch

Institute(IFPRI).SAR.

David,C.T.,García-rojo,R.,Herrmann,H.J.,&Luding,S.(2007).Powder?owtest-ingwith2Dand3Dbiaxialandtriaxialsimulations.Particle&ParticleSystemsCharacterization,24,29–33.

DEMSolutionsLtd.\\.(2010).EDEM2.3programmingguide.Online(Revision3).Edin-burgh,Scotland,UK(pp.1–49).

Dong,K.J.,Yang,R.Y.,Zou,R.P.,&Yu,A.B.(2006).Roleofinterparticleforcesinthe

formationofrandomloosepacking.PhysicalReviewLetters,96(14),145505.Enstad,G.G.,&Ose,S.(2003).Uniaxialtestingandtheperformanceofapalletpress.

ChemicalEngineering&Technology,26,171–176.

Freeman,R.,&Fu,X.(2011).Thedevelopmentofacompactuniaxialtester.InPaper

presentedattheParticulateScienceAnalysisEdinburgh,UK,(pp.1–6).

Grif?th,E.(1991).Cakeformationinparticulatesystems.NewYork:Wiley-VCHpub-lishers,Inc.

Güden,M.,Celik,E.,Hizal,A.,Altindis?,M.,&Cetiner,S.(2008).Effectsofcompaction

pressureandparticleshapeontheporosityandcompressionmechanicalpropertiesofsinteredTi6Al4Vpowdercompactsforhardtissueimplanta-tion.JournalofBiomedicalMaterialsResearch.PartB,AppliedBiomaterials,85(2),547–555.

Hecht,J.P.,&King,C.J.(2000a).Spraydrying:In?uenceofdevelopingdropmor-phologyondryingratesandretentionofvolatilesubstances.1.Single-dropexperiments.Industrial&EngineeringChemistryResearch,39(6),1756–1765.Hecht,J.P.,&King,C.J.(2000b).Spraydrying:In?uenceofdevelopingdropmorphol-ogyondryingratesandretentionofvolatilesubstances.2.Modeling.Industrial&EngineeringChemistryResearch,39(6),1766–1774.

Heckel,R.W.(1961).Density–pressurerelationshipsinpowdercompaction.Trans-actionsoftheMetallurgicalSocietyofAIME,221(4),671–675.

Heim,L.,Farschi,M.,Morgeneyer,M.,Schwedes,J.,Butt,H.J.,&Kappl,M.(2005).

Adhesionofcarbonylironpowderparticlesstudiedbyatomicforcemicroscopy.JournalofAdhesionScienceandTechnology,19(3–5),199–213.

Hersey,J.A.,&Rees,J.E.(1970).Effectofparticlesizeonconsolidationofpowder

duringcompaction.InProceedingsofparticlesizeanalysisconference(pp.33–41).UK:UniversityofBradford.

Jones,R.(2003).FromsingleparticleAFMstudiesofadhesionandfrictiontobulk

?ow:Forgingthelinks.GranularMatter,4(4),191–204.

Krupp,H.(1967).Particleadhesiontheoryandexperiment.AdvancesinColloidand

InterfaceScience,1(2),111–239.

Luding,S.(2008).Cohesive,frictionalpowders:Contactmodelsfortension.Granular

Matter,10(4),235–246.

Luding,S.,Tykhoniuk,R.,Tomas,J.,Heim,L.,Kappl,M.,&Butt,H.J.(2004).Flow

behaviorofcohesiveandfrictional?nepowders.InNumericalModelinginMicromechanicsviaParticleMethods–2004.PFCSymposiumproceedings.London:AABalkema.

Mehrotra,A.,Chaudhuri,B.,Faqih,A.,Tomassone,M.S.,&Muzzio,F.J.(2009).Amod-elingapproachforunderstandingeffectsofpowder?owpropertiesontabletweightvariability.PowderTechnology,188(3),295–300.

Moreno-Atanasio,R.,Antony,S.,&Ghadiri,M.(2005).Analysisof?owabilityof

cohesivepowdersusingdistinctelementmethod.PowderTechnology,158(1–3),51–57.

Morgeneyer,M.,R?ck,M.,Schwedes,J.,Johnson,K.,Kadau,D.,Wolf,D.E.,etal.

(2005).Microscopicandmacroscopiccompactionofcohesivepowders.InR.Garcia-Rojo,H.J.Herrmann,&S.McNamara(Eds.),PowdersandGrains2005(pp.535–539).London:Taylor&FrancisGroup.

Okasanen,C.A.,&Zogra?,G.(1990).Therelationshipbetweentheglasstransition

temperatureandwatervaporabsorptionbypoly(vinylpyrrolidone).Pharma-ceuticalResearch,7(6),654–657.

Parrella,L.,Barletta,D.,Boere?jn,R.,&Poletto,M.(2008).Comparisonbetweena

uniaxialcompactiontesterandasheartesterforthecharacterizationofpowder?owability.KONAPowderandParticleJournal,26(26),178–189.

Redanz,P.,&Fleck,N.A.(2001).Discreteelementmodellingofcompactionof

cylindricalpowderparticles.InIUTAMsymposiumontheoreticalandnumericalmethodsincontinuummechanicsofporousmaterials.Amsterdam:Springer.

R?ck,M.,Ostendorf,M.,&Schwedes,J.(2006).Developmentofanuniaxialcaking

tester.ChemicalEngineering&Technology,29(6),679–685.

Rock,M.,&Schwedes,J.(2005).Investigationsonthecakingbehaviourofbulk

solids—Macroscaleexperiments.PowderTechnology,157(1–3),121–127.

Samimi,A.,Hassanpour,A.,&Ghadiri,M.(2005).Singleandbulkcompressionsof

softgranules:ExperimentalstudyandDEMevaluation.ChemicalEngineeringScience,60(14),3993–4004.

Schwedes,J.(2003).Reviewontestersformeasuring?owpropertiesofbulksolids.

GranularMatter,5(1),1–43.

Sheng,Y.,Lawrence,C.J.,Briscoe,B.J.,&Thornton,C.(2004).Numericalstudies

ofuniaxialpowdercompactionprocessby3DDEM.EngineeringComputations,21(2–4),304–317.

Thakur,S.C.,Ahmadian,H.,Sun,J.,&Ooi,J.Y.(2013).Scalingofdiscreteelement

modelparametersinuniaxialtestsimulation.InProceedingsofDEM6conferenceGolden,Clorado.

Thakur,S.C.,Morrissey,J.P.,Sun,J.,Chen,J.-F.,&Ooi,J.Y.(2011).ADEMstudyofcohe-siveparticulatesolids;plasticityandstresshistorydependency.InInternationalconferenceonparticulatesystemanalysisEdinburgh,UK,(pp.1–5).

Thakur,S.C.,Morrissey,J.P.,Sun,J.,Chen,J.-F.,&Ooi,J.Y.(2013).Micromechanical

analysisofcohesivegranularmaterialsusingthediscreteelementmethodwithanadhesiveelasto-plasticcontactmodel.GranularMatter(submitted).

Tykhoniuk,R.,Tomas,J.,Luding,S.,Kappl,M.,Heim,L.,&Butt,H.-J.(2007).Ultra-?necohesivepowders:Frominterparticlecontactstocontinuumbehaviour.ChemicalEngineeringScience,62(11),2843–2864.

Walton,O.R.,&Braun,R.L.(1986).Viscosity,granular-temperature,andstresscal-culationsforshearingassembliesofinelastic,frictionaldisks.JournalofRheology,30(5),949–980.

Washburn,E.W.(1921).Thedynamicsofcapillary?ow.PhysicalReview,17(3),

273–283.

Watanabe,H.,&Groves,W.L.(1964).Cakingtestfordrieddetergents.Journalofthe

AmericanOilChemists’Society,41(4),311–315.

Williams,J.C.,Birks,A.H.,&Bhattacharya,D.(1971).Thedirectmeasurementofthe

failurefunctionofacohesivepowder.PowderTechnology,4(1970/71),328–337.Yan,H.,&Barbosa-Canovas,G.V.(1997).Compressioncharacteristicsofagglomer-atedfoodpowders:Effectofagglomeratesizeandwateractivity.FoodScienceandTechnologyInternational,3(5),351–359.

Yan,H.,&Barbosa-Canovas,G.V.(2001).Attritionevaluationforselectedagglom-eratedfoodpowders:Theeffectofagglomeratesizeandwateractivity.JournalofFoodProcessEngineering,24(1),37–49.

Yang,R.Y.,Zou,R.P.,Dong,K.J.,An,X.Z.,&Yu,A.B.(2007).Simulationofthepacking

ofcohesiveparticles.ComputerPhysicsCommunications,177(1),206–209.

Yang,R.Y.,Zou,R.P.,&Yu,A.B.(2000).Computersimulationofthepackingof?ne

particles.PhysicalReviewE,62(3),3900–3908.

Yen,K.Z.Y.,&Chaki,T.K.(1992).Adynamicsimulationofparticlerearrangement

inpowderpackingswithrealisticinteractions.JournalofAppliedPhysics,71(7),3164–3173.

Yu,A.B.,1989.Thepackingofsolidparticles.Doctoraldissertation,Universityof

Wollongong.Retrievedfromhttp://ro.uow.edu.au/theses/1531/

Yu,A.B.,&Standish,N.(1993).Characterisationofnon-sphericalparticlesfromtheir

packingbehaviour.PowderTechnology,74,205–213.

Zhong,Z.,Ooi,J.Y.,&Rotter,J.M.(2005).Predictingthehandlabilityofacoalblend

frommeasurementsonthesourcecoals.Fuel,84(17),2267–2274.

本文来源:https://www.bwwdw.com/article/j5h7.html

Top