B《优化探究》2014高考数学总复习(人教A文)提素能高效题组训练

更新时间:2024-04-28 13:44:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

[命题报告·教师用书独具]

一、选择题

1.设平面向量a=(-1,0),b=(0,2),则2a-3b=( ) A.(6,3) C.(2,1)

B.(-2,-6) D.(7,2)

解析:2a-3b=(-2,0)-(0,6)=(-2,-6). 答案:B

m

2.已知向量a=(2,3),b=(-1,2),若ma+nb与a-2b共线,则n=( ) A.-2 1C.-2

B.2 1D.2 解析:由向量a=(2,3),b=(-1,2)得ma+nb=(2m-n,3m+2n),a-2b=(4,-1),因为ma+nb与a-2b共线,所以(2m-n)×(-1)-(3m+2n)×4=0,整理m1得n=-2. 答案:C

3.(2013年潍坊模拟)已知平面直角坐标系内的两个向量a=(1,2),b=(m,3m-2),且平面内的任一向量c,都可以唯一地表示成c=λa+μb(λ,μ为实数),则m的取值范围是( )

A.(-∞,2) C.(-∞,+∞)

B.(2,+∞)

D.(-∞,2)∪(2,+∞)

第1页 共7页

解析:本题考查平面向量基本定理.任意两个不共线的向量均可作为基底向量来表示平面内的任一向量,故本题需满足a,b不共线,当a∥b,即向量a,b共线时,满足3m-2=2m,解得m=2.故a,b不共线时,m∈(-∞,2)∪(2,+∞).

答案:D

4.(2013年郑州模拟)若向量a=(x+1,2)和向量b=(1,-1)平行,则|a+b|=( )

A.10 C.2

10B.2 2D.2 解析:依题意得,-(x+1)-2×1=0,得x=-3,又a+b=(-2,2)+(1,-1)=(-1,1),所以|a+b|=?-1?2+12=2,选C.

答案:C

→,OB→满足|OA→|=|OB→|=1,OA→·→=0,OC→=

5.(2013年淮南质检)已知向量OAOB→+μOB→(λ,μ∈R),若M为AB的中点,并且|MC→|=1,则点(λ,μ)在( ) λOA

?11?A.以?-2,2?为圆心,半径为1的圆上

??1??1

B.以?2,-2?为圆心,半径为1的圆上

??1??1-,-C.以?2为圆心,半径为1的圆上 2????11?D.以?2,2?为圆心,半径为1的圆上

??解析:由于M是AB的中点, ∴在△AOM中, →=1(OA→+OB→), OM

2

1?→?→→→??1?→?

∴|MC|=|OC-OM|=??λ-2?OA+?μ-2?OB?=1,

??????1?→?2??1?→?

∴??λ-2?OA+?μ-2?OB?=1, ??????1??1??

∴?λ-2?2+?μ-2?2=1,故选D. ????

第2页 共7页

答案:D 二、填空题

6.已知向量a=(3,-2),b=(x,y-1),若 a∥b,则4x+8y的最小值为________. 解析:∵a∥b,∴3×(y-1)-(-2)×x=0,∴2x+3y=3. 故4+8 =2+2≥221

=2时等号成立.

答案:42

7.(2013年苏州质检)已知向量a=2e1-3e2,b=2e1+3e2,其中e1,e2不共线,向量c=2e1-9e2.若向量d=λa+μb与c共线,则实数λ,μ的关系为________.

解析:d=λ(2e1-3e2)+μ(2e1+3e2)=(2λ+2μ)e1+(-3λ+3μ)e2,要使d与c共线,则应存在实数k,使d=kc,

即(2λ+2μ)e1+(-3λ+3μ)e2=2ke1-9ke2, ?2λ+2μ=2k,由?得λ=-2μ. -3λ+3μ=-9k,?答案:λ=-2μ

→=1NC→,→8.(2013年济南调研)如图,在△ABC中,ANP是BN上的一点,若AP

3→+2AC→,则实数m的值为________. =mAB

11

x

y

2x

3y

2x+3y3

=22=42,当且仅当2x=3y,即x=4,y

3

→=AB→+BP→=AB→+kBN→

解析:因为AP

1→→?→+k(AN→-AB→)=AB+k??4AC-AB? =AB

??→+kAC→,

=(1-k)AB

4→=mAB→+2AC→, 且AP

11

第3页 共7页

k2

所以1-k=m,4=11, 83

解得k=11,m=11. 3

答案:11 9.(2013年苏北四市联考)如图,在四边形ABCD中,AC和BD相交于点O,→=a,AB→=b,若AB→=2DC→,则AO→=________(用向量a和b表示). 设AD

→=μAC→=μ(AD→+DC→)

解析:∵AO

1?μ?

=μ?a+2b?=μ a+2b. ??

μ2→21∵μ+2=1,解得μ=3.∴AO=3a+3b. 21答案:3a+3b 三、解答题

10.已知a=(1,2),b=(-3,2),是否存在实数k,使得ka+b与a-3b共线,且方向相反?

解析:设存在实数k,则ka+b=k(1,2)+(-3,2)=(k-3,2k+2),a-3b=(1,2)-3(-3,2)=(10,-4).

若这两个向量共线,则必有 (k-3)×(-4)-(2k+2)×10=0. 1?104?

解得k=-3.这时ka+b=?-3,3?,

??1

所以ka+b=-3(a-3b).

即存在实数k,使得ka+b与a-3b共线,且方向相反. →=1AB→,DA→=-1BA→,

11.已知点A(-1,2),B(2,8)以及AC

33→的坐标.

求点C,D的坐标和CD

第4页 共7页

解析:设点C,D的坐标分别为(x1,y1),(x2,y2),由题意得AC=(x1+1,y1→=(3,6), -2),AB

→=(-1-x2-y),BA→=(-3,-6). DA2,21→→1→→

因为AC=3AB,DA=-3BA, ?x1+1=1,?-1-x2=1,所以有?和?

?y1-2=2?2-y2=2,?x1=0,?x2=-2,

?解得?

?y1=4,?y2=0.

所以点C,D的坐标分别是(0,4),(-2,0), →=(-2,-4). 从而CD

→+4BP→+5CP→

12.(能力提升)(2013年东营模拟)已知P为△ABC内一点,且3AP→=a,AC→=b,用a,b表示向量AP→、AD→. =0.延长AP交BC于点D,若AB

→=AP→-AB→=AP→-a,CP→=AP→-AC→=AP→-b,

解析:∵BP

→→→

又3AP+4BP+5CP=0, →+4(AP→-a) +5(AP→-b)=0. ∴3AP

→=1a+5b.

化简,得AP

312

15→→→

设AD=tAP(t∈R),则AD=3t a+12t b.① →=kBC→(k∈R), 又设BD

→=AC→-AB→=b-a,得 由BC

→=k(b-a).而AD→=AB→+BD→=a+BD→, BD

→=a+k(b-a)=(1-k)a+kb.② ∴AD

1??3t=1-k,5??12t=k.

由①②,得?

4

解得t=3.

第5页 共7页

5→4

代入①,有AD=9a+9b.

[因材施教·学生备选练习]

1.(2013年徐州质检)在△ABC中,过中线AD的中点E任作一条直线分别交→=xAB→,AN→=yAC→,则4x+y的最小值为________.

AB,AC于M,N两点,若AM

→=1(AB→+AC→),AE→=1AD→,

解析:如图所示,由题意知AD

22

又M,E,N三点共线,

→=λAM→+(1-λ)AN→(其中0<λ<1),

所以AE

→=xAB→,AN→=yAC→, 又AM

1→→→+(1-λ)yAC→, 所以4(AB+AC)=λxAB?4λx=1,因此有?

?4?1-λ?y=1.1

解得x=4λ,y=

1

4?1-λ?

111t令λ=t(t>1),则4x+y=λ+=t+ 4?1-λ?4?t-1?=(t-1)+

159

+4≥4, 4?t-1?

32

当且仅当t=2,即λ=3时取等号. 9答案:4 2.(2013年西安模拟)已知△ABC的三个内角A,B,C所对的边分别为a,b,??3

c.m=(1,1),n=?sin Bsin C-,cos Bcos C?,且m∥n.

2??

(1)求A的大小;

第6页 共7页

(2)若a=1,b=3c,求S△ABC.

3

解析:(1)m∥n?sin Bsin C-2-cos Bcos C=0. 3

∴cos(B+C)=-2. ∵B,C为△ABC的内角,∴0<B+C<π. 5ππ

∴B+C=6,∴A=6. (2)由余弦定理得b2+c2-a2=2bccos A?c2=1. 133

∴S△ABC=2bcsin A=4c2=4.

高考试题库 w。w-w*高考试题库 高考试题库 w。w-w*高考试题库

第7页 共7页

本文来源:https://www.bwwdw.com/article/j4zg.html

Top