高中数学人教A版必修二教案

更新时间:2023-10-16 06:23:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

高中数学人教A版必修二教案

教 情 分 析 教材 地位 教学 理念 教学 设计 思路 教学 措施 学 情 分 析 学法 指导 教学 对象 学生 情况 学生基础知识不够扎实,知识面狭窄。 探索、讨论

在编排方面.在每章均有章头图和引言,作为本章内容的导入,使学生对该章学习的内容产生悬念,发生兴趣,从而初步了解学习该章内容的必要性. 增加了教材旁注,并且多处提到解决问题的基本数学思想方法. 通过认识空间图形,培养和发展学生的几何观察能力、运用图形语言进行交流的能力、空间想象能力与一定的推理论证能力是高中阶段数学必修课程的一个基本要求。 在教科书中,各节根据需要,开设了“思考”、“观察”和“探究”等栏目,把学生作为学习的主体来编排内容,符合新课程的理念.有利于学生开展自主和合作学习,实现教师教学和学生学习双重行为方式的转变. 空间几何体是几何学的重要主成部分,几何学是研究现实世界中物体的形状大小与位置关系的数学学科。 高一9、10班 1

学期教学计划安排 周次 1 教学内容 必修1 第一章 集合与函数概念 1.1集合(约4课时) 2 1.2函数及其表示(约4课时) 3 1.3函数的基本性质(约3课时) 小结与复习(约1课时) 4 第二章 基本初等函数 2.1指数函数(约4课时) 5 国庆放假 6 2.1指数函数(约2课时)2.2对数函数(约2课时) 7 2.2对数函数(约4课时) 8 2.3幂函数(约1课时) 第三章 函数的应用 3.1函数与方程(约3课时) 9 3.2函数模型及其应用(约4课时) 10 必修2 第一章 空间几何体 1.1空间几何体的结构(约2课时) 1.2空间几何体的三视图和直观图(约2课时) 11 1.3空间几何体的表面积和体积(约2课时) 小结与复习(约1课时) 12 中段考、评卷 13-15 第二章 点、直线、平面之间的位置关系 2.1空间点、直线、平面之间的位置关系(约3课时) 2.2直线、平面平行的判定与性质(约3课时) 2.3直线、平面垂直的判定与性质(约3课时) 第一、二章单元复习、测验与评卷(约3课时) 16-17 第三章 直线与方程 3.1直线的倾斜角与斜率(约2课时) 3.2直线的方程(约3课时) 3.3直线的交点坐标及距离公式(约3课时) 18-19 小结与复习(约1课时) 第四章 圆与方程 4.1圆的方程(约2课时) 4.2直线、圆的位置关系(约4课时) 4.3空间直角坐标系(约1课时) 20-22 期末复习与考试

2

教学设计方案

课题 1.1.1柱、锥、台、球的结构特征 (1)通过实物操作,增强学生的直观感知。(ABC) (2)能根据几何结构特征对空间物体进行分类。(ABC) 知识与 能力 (3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。(AB) (4)会表示有关于几何体以及柱、锥、台的分类。(AB) 过程与 方法 情感、 态度、 价值观 (1)让学生通过直观感受空间物体,从实物中概括出柱、锥、 三 维 教 学 目 标 台、球的几何结构特征。 (2)让学生观察、讨论、归纳、概括所学的知识。 (1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。 (2)培养学生的空间想象能力和抽象括能力。 让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。 柱、锥、台、球的结构特征的概括 教 学 内 容 分 析 教学 重点 教学 难点 教学过程 (一)创设情景,揭示课题 1.教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流。教师对学生的活动及时给予评价。 2.所举的建筑物基本上都是由这些几何体组合而成的,(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察。根据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容。 (二)、研探新知 1.引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥。(ABC) 2.观察棱柱的几何物件以及投影出棱柱的图片,它们各自的特点是什么?它们的共同特点是什么?(AB) 3.组织学生分组讨论,每小组选出一名同学发表本组讨论结果。在此基础上得出棱柱的主要结构特征。(1)有两个面互相平行;(2)其余各面都是平行四边形;(3)

3

每相邻两上四边形的公共边互相平行。概括出棱柱的概念。 4.教师与学生结合图形共同得出棱柱相关概念以及棱柱的表示。 5.提出问题:各种这样的棱柱,主要有什么不同?可不可以根据不同对棱柱分类? 请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的? 6.以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。(AB) 7.让学生观察圆柱,并实物模型演示,如何得到圆柱,从而概括出圆标的概念以及相关的概念及圆柱的表示。 8.引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括。 9.教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体。 10.现实世界中,我们看到的物体大多由具有柱、锥、台、球等几何结构特征的物体组合而成。请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的? (三)质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考。 1.有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明,如图) 2.棱柱的何两个平面都可以作为棱柱的底面吗? 3.课本P8,习题1.1 A组第1题。 4.圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转? 5.棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢? 四、巩固深化 练习:课本P7 练习1、2(1)(2) 课本P8 习题1.1 第2、3、4题 五、归纳整理 由学生整理学习了哪些内容 课 后 学 习

课本P8 练习题1.1 B组第1题 课外练习 课本P8 习题1.1 B组第2题 4

教 学 反 思 棱柱没有说明直棱柱和斜棱柱的概念,而课本给出的图形都是直棱柱,让学生有错觉,棱柱的侧棱都垂直底面。棱锥也没有给出正棱锥的概念,可是课本又给出了正棱锥,对于这些概念我认为还是进行简单的介绍。 教学设计方案

第 一 单元 第 2 课 年 月 日

课题 三 维 教 学 目 标 教 学 内 容 分 析 知识与 能力 过程与 方法 情感、 态度、 价值观 教学 重点 教学 难点 1.2.1 空间几何体的三视图 (1)掌握画三视图的基本技能(ABC) (2)丰富学生的空间想象力(AB) 主要通过学生自己的亲身实践,动手作图,体会三视图的作用。 (1)提高学生空间想象力 (2)体会三视图的作用 画出简单组合体的三视图 识别三视图所表示的空间几何体 教学过程 (一)创设情景,揭开课题 “横看成岭侧看成峰”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体,这堂课我们主要学习空间几何体的三视图。 在初中,我们已经学习了正方体、长方体、圆柱、圆锥、球的三视图(正视图、侧视图、俯视图),你能画出空间几何体的三视图吗? (二)实践动手作图 1.讲台上放球、长方体实物,要求学生画出它们的三视图,教师巡视,学生画完后可交流结果并讨论;(ABC) 2.教师引导学生用类比方法画出简单组合体的三视图(AB) (1)画出球放在长方体上的三视图 (2)画出矿泉水瓶(实物放在桌面上)的三视图 学生画完后,可把自己的作品展示并与同学交流,总结自己的作图心得。 5

本文来源:https://www.bwwdw.com/article/ixdf.html

Top