2010年中考数学压轴题100题精选答案

更新时间:2023-04-13 04:11:01 阅读量: 实用文档 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

2010年中考数学压轴题100题精选(1-10题)答案

【001】解:(1)

抛物线2

(1)0)

y a x a

=-+≠经过点(20)

A-,,

09a a

∴=+=·······································································································1分∴

二次函数的解析式为:2

y x x

=+ ·························································3分

(2)D

为抛物线的顶点D

∴过D作DN OB

⊥于N

,则DN=

3660

AN AD DAO

=∴=∴∠=

,°···························································4分OM AD

①当AD OP

=时,四边形DAOP是平行四边形

66(s)

OP t

∴=∴=······················································· 5分

②当DP OM

⊥时,四边形DAOP是直角梯形

过O作OH AD

⊥于H,2

AO=,则1

AH=

(如果没求出60

DAO

∠=°可由Rt Rt

OHA DNA

△∽△求

AH

55(s)

OP DH t

∴===··········································································································6分③当PD OA

=时,四边形DAOP是等腰梯形

26244(s)

OP AD AH t

∴=-=-=∴=

综上所述:当6

t=、5、4时,对应四边形分别是平行四边形、直角梯形、等腰梯形.··7分(3)由(2)及已知,60

COB OC OB OCB

∠==

°,,△是等边三角形

则6262(03)

OB OC AD OP t BQ t OQ t t

=====∴=-<<

,,,

过P作PE OQ

⊥于E,则

2

PE= ···················································································8分

11

6(62)

22

BCPQ

S t

∴=???-=

2

3

22

t

??

-

?

??

····································9分当

3

2

t=时,

BCPQ

S···········································································10分∴此时

3339

33

2444

OQ OP OE QE PE

==∴=-==

,=,

2

PQ

∴===························

······

·11分【002】解:(1)1,

8

5

(2)作QF⊥AC于点F,如图3,AQ = CP= t,∴3

AP t

=-.

由△AQF∽△ABC,4

BC=,

45

QF t

=.∴

4

5

QF t

=.∴

14

(3)

25

S t t

=-?

即2

26

55

S t t

=-+.

(3)能.

①当DE∥QB时,如图4.

∵DE⊥PQ,∴PQ⊥QB,四边形QBED是直角梯形.

此时∠AQP=90°.

由△APQ ∽△ABC,得

AQ AP

AC AB

=,

3

35

t t-

=.解得

9

8

t=.

②如图5,当PQ∥BC时,DE⊥BC,四边形QBED是直角梯形.

此时∠APQ =90°.

由△AQP ∽△ABC,得

AQ AP

AB AC

=,

3

53

t t-

=.解得

15

8

t=.

(4)

5

2

t=或

45

14

t=.

【注:①点P由C向A运动,DE经过点C.

方法一、连接QC,作QG⊥BC于点G,如图6.

PC t=,222

QC QG CG

=+22

34

[(5)][4(5)]

55

t t

=-+--.

由22

PC QC

=,得222

34

[(5)][4(5)]

55

t t t

=-+--,解得

5

2

t=.

方法二、由CQ CP AQ

==,得QAC QCA

∠=∠,进而可得

B BCQ

∠=∠,得CQ BQ

=,∴

5

2

AQ BQ

==.∴

5

2

t=.

②点P由A向C运动,DE经过点C,如图7.

222

34

(6)[(5)][4(5)]

55

t t t

-=-+--,45

14

t=】

【003】解.(1)点A的坐标为(4,8)…………………1分

将A (4,8)、C(8,0)两点坐标分别代入y=ax2+bx

图4

图3

F

图5

8=16a +4b 得

0=64a +8b

解 得a =-12

,b =4 ∴抛物线的解析式为:y =-

12

x 2+4x …………………3分 (2)①在Rt △APE 和Rt △ABC 中,tan ∠PAE =PE AP =BC AB ,即PE AP =48

∴PE =12AP =12

t .PB=8-t . ∴点E的坐标为(4+12

t ,8-t ). ∴点G 的纵坐标为:-12(4+12t )2+4(4+12t )=-18

t 2+8. …………………5分 ∴EG=-18t 2+8-(8-t ) =-18

t 2+t . ∵-18<0,∴当t =4时,线段EG 最长为2. …………………7分 ②共有三个时刻. …………………8分 t 1=163, t 2=4013,t 3= …………………11分 【004】(1)解:由

28033x +=,得4x A =-∴.点坐标为()40-,. 由2160x -+=,得8x B =∴.点坐标为()80,.∴()8412AB =--=.

(2分) 由2833216y x y x ?=+???=-+?,.

解得56x y =??=?,.∴C 点的坐标为()56,.(3分) ∴111263622

ABC C S AB y =

=??=△·.(4分) (2)解:∵点D 在1l 上且2888833D B D x x y ==∴=?+=,. ∴D 点坐标为()88,.(5分)又∵点E 在2l 上且821684E D E E y y x x ==∴-+=∴=,..∴E 点坐标为()48,.(6分)

∴8448OE EF =-==,.(7分)

(3)解法一:①当03t <≤时,如图1,矩形DEFG 与ABC △重叠部分为五边形CHFGR (0

t =时,为四边形CHFG ).过C 作CM AB ⊥于M ,则Rt Rt RGB CMB △∽△.

BG RG BM CM =,即36

t RG

=,∴2RG t =.Rt Rt AFH AMC △∽△,

∴()()112

36288223

ABC BRG AFH S S S S t t t t =--=-??--?-△△△.

即241644

333

S t t =-++.(10分)

【005】(1)如图1,过点E 作EG BC ⊥于点G .····················· 1分

∵E 为AB 的中点,

∴1

22

BE AB ==. 在Rt EBG △中,60B =?∠,∴30BEG =?∠. (2)

∴112

BG BE EG ====, 即点E 到BC ················································· 3分

(2)①当点N 在线段AD 上运动时,PMN △的形状不发生改变. ∵PM EF EG EF ⊥⊥,,∴PM EG ∥. ∵EF BC ∥,∴EP GM =,PM EG ==

同理4MN AB ==. ············································································································ 4分 如图2,过点P 作PH MN ⊥于H ,∵MN AB ∥, ∴6030NMC B PMH ==?=?∠∠,∠. ∴122

PH PM =

= ∴3

cos302

MH PM =?= .

则35

422

NH MN MH =-=-=.

在Rt PNH △中,PN === ∴PMN △的周长=4PM PN MN ++. ··················································· 6分 ②当点N 在线段DC 上运动时,PMN △的形状发生改变,但MNC △恒为等边三角形. 当PM PN =时,如图3,作PR MN ⊥于R ,则MR NR =.

类似①,3

2

MR =

. ∴23MN MR ==. ·············································································································· 7分

图1

A

D E

B F C

G

图2

A D E

B

F C

P

N

M

G H

∵MNC △是等边三角形,∴3MC MN ==.

此时,6132x EP GM BC BG MC ===--=--=. ··············································· 8分

当MP MN =时,如图4

,这时MC MN MP ===

此时,615x EP GM ===-=

当NP NM =时,如图5,30NPM PMN ==?∠∠.

则120PMN =?∠,又60MNC =?∠, ∴180PNM MNC +=?∠∠.

因此点P 与F 重合,PMC △为直角三角形.

∴tan 301MC PM =?= .

此时,6114x EP GM ===--=.

综上所述,当2x =或4

或(5-时,PMN △为等腰三角形. 【006】解:(1)OC=1,所以,q=-1,又由面积知0.5OC ×AB=

45,得AB=5

2

, 设A (a,0),B(b,0)AB=b -

a=

52,解得p=32±,但p<0,所以p=32

-。 所以解析式为:2

3

12

y x x =-- (2)令y=0,解方程得2

3102x x -

-=,得121,22x x =-=,所以A(12

-,0),B(2,0),在直角三角形AOC 中可求得

同样可求得

AC 2+BC 2=AB 2,得△ABC 是直角三角形。AB 为斜边,所以外接圆的直径为AB=

52,所以5544

m -≤≤。 (3)存在,AC ⊥BC ,①若以AC 为底边,则BD//AC,易求AC 的解析式为y=-2x-1,可设BD 的解析式

为y=-2x+b ,把B(2,0)代入得BD 解析式为y=-2x+4,解方程组2

31

2

24

y x x y x ?=--???=-+?得D (52-,9) ②若以BC 为底边,则BC//AD,易求BC 的解析式为y=0.5x-1,可设AD 的解析式为y=0.5x+b ,把

图3

A D E B

F

C

P

N M

图4

A D E

B

F C

P

M

N 图5

A D E

B F (P ) C

M

N G

G

R

G

A(

1

2

-,0)代入得AD解析式为y=0.5x+0.25,解方程组

2

3

1

2

0.50.25

y x x

y x

?

=--

?

?

?=+

?

得D(

53

,

22

) 综上,

所以存在两点:(

5

2

-,9)或(

53

,

22

)。

【007】

【008】证明:(1)∵∠ABC=90°,BD ⊥EC ,

∴∠1与∠3互余,∠2与∠3互余,

∴∠1=∠2…………………………………………………1分

∵∠ABC=∠DAB=90°,AB=AC

∴△BAD ≌△CBE …………………………………………2分

∴AD=BE ……………………………………………………3分

(2)∵E 是AB 中点,

∴EB=EA 由(1)AD=BE 得:AE=AD ……………………………5分 ∵AD ∥BC ∴∠7=∠ACB=45°∵∠6=45°∴∠6=∠7

由等腰三角形的性质,得:EM=MD ,AM ⊥DE 。

即,AC 是线段ED 的垂直平分线。……………………7分

(3)△DBC 是等腰三角(CD=BD )……………………8分

理由如下:

由(2)得:CD=CE 由(1)得:CE=BD ∴CD=BD

∴△DBC 是等腰三角形。……………………………10分

【009】解:(1)①AC x ⊥轴,AE y ⊥轴, ∴四边形AEOC 为矩形. BF x ⊥轴,BD y ⊥轴,

∴四边形BDOF 为矩形.

AC x ⊥轴,BD y ⊥轴,

∴四边形AEDK DOCK CFBK ,,均为矩形. ············· 1分 1111OC x AC y x y k === ,,,

∴11AEOC S OC AC x y k === 矩形

2222OF x FB y x y k === ,,,

∴22BDOF S OF FB x y k === 矩形.

∴AEOC BDOF S S =矩形矩形.

AEDK AEOC DOCK S S S =-矩形矩形矩形,

C F B K B

D O F D S S S =-矩形矩形矩形,

∴AEDK CFBK S S =矩形矩形. ·

·········································································································· 2分 ②由(1)知AEDK CFBK S S =矩形矩形.

∴AK DK BK CK =

AK BK CK DK

=. ·························································································································· 4分 90AKB CKD ∠=∠=°,

∴AKB CKD △∽△. ·

············································································································· 5分 ∴CDK ABK ∠=∠.

∴AB CD ∥. ···························································································································· 6分 AC y ∥轴,

∴四边形ACDN 是平行四边形.

∴AN CD =. ·

··························································································································· 7分 同理BM CD =.

AN BM ∴=. ···························································································································· 8分

(2)AN 与BM 仍然相等. ····································································································· 9分 AEDK AEOC ODKC S S S =+矩形矩形矩形,

BKCF BDOF ODKC S S S =+矩形矩形矩形,

又 AEOC BDOF S S k ==矩形矩形,

∴AEDK BKCF S S =矩形矩形. ····································· 10分 ∴AK DK BK CK = . ∴CK DK AK BK

=. K K ∠=∠,

∴CDK ABK △∽△.

∴CDK ABK ∠=∠.

∴AB CD ∥. ·

························································································································· 11分 AC y ∥轴,

∴四边形ANDC 是平行四边形.

∴AN CD =.

同理BM CD =.

∴AN BM =. ·

························································································································ 12分

【010】解:(1)根据题意,得34231.2a a b b a -=+-???-=??, ····· 2分 解得12.

a b =??=-?,∴抛物线对应的函数表达式为223y x x =--. 3

(2)存在.

在223y x x =--中,令0x =,得3y =-.

(第26题图)

令0y =,得2230x x --=,1213x x ∴=-=,.

(10)A ∴-,,(30)B ,,(03)C -,.

又2(1)4y x =--,∴顶点(14)M -,. ·

················································································· 5分 容易求得直线CM 的表达式是3y x =--.

在3y x =--中,令0y =,得3x =-.

(30)N ∴-,,2AN ∴=. ·

········································································································ 6分 在223y x x =--中,令3y =-,得1202x x ==,.

2CP AN CP ∴=∴=,.

AN CP ∥,∴四边形ANCP 为平行四边形,此时(23)P -,. ······································ 8分

(3)AEF △是等腰直角三角形.

理由:在3y x =-+中,令0x =,得3y =,令0y =,得3x =.

∴直线3y x =-+与坐标轴的交点是(03)D ,

,(30)B ,. OD OB ∴=,45OBD ∴∠=°. ····························································································· 9分

又 点(03)C -,,OB OC ∴=.45OBC ∴∠=°. ·························································· 10分

由图知45AEF ABF ∠=∠=°,45AFE ABE ∠=∠=°. ··············································· 11分 90EAF ∴∠=°,且AE AF =.AEF ∴△是等腰直角三角形. ······································ 12分

(4)当点E 是直线3y x =-+上任意一点时,(3)中的结论成立. 14分

2010年中考数学压轴题100题精选(11-20题)答案

【011】解:(1)证明:在Rt △FCD 中,∵G 为DF 的中点,∴ CG= FD .………1分 同理,在Rt △DEF 中,EG= FD .…………2分∴ CG=EG .…………………3分

(2)(1)中结论仍然成立,即EG=CG .…………………………4分

证法一:连接AG ,过G 点作MN ⊥AD 于M ,与EF 的延长线交于N 点.

在△DAG 与△DCG 中,∵ AD=CD ,∠ADG=∠CDG ,DG=DG ,

∴ △DAG ≌△DCG .∴ AG=CG .………………………5分

在△DMG 与△FNG 中,∵ ∠DGM=∠FGN ,FG=DG ,∠MDG=∠NFG ,

∴ △DMG ≌△FNG .∴ MG=NG 在矩形AENM 中,AM=EN . ……………6分

在Rt △AMG 与Rt △ENG 中,∵ AM=EN , MG=NG ,

∴ △AMG ≌△ENG .∴ AG=EG .∴ EG=CG . ……………………………8分

证法二:延长CG 至M,使MG=CG , 连接MF ,ME ,EC , ……………………4分

在△DCG 与△FMG 中,∵FG=DG ,∠MGF=∠CGD ,MG=CG , ∴△DCG ≌△FMG .∴MF=CD ,∠FMG =∠DCG .

∴MF ∥CD ∥AB .………………………5分∴ 在Rt △MFE 与Rt △CBE 中,

∵ MF=CB ,EF=BE ,∴△MFE ≌△CBE .∴∠MEC =∠MEF +∠FEC =∠CEB +∠CEF =90°.∴ △MEC 为直角三角形.∵ MG = CG ,∴ EG= MC .………8分

(3)(1)中的结论仍然成立,即EG=CG .其他的结论还有:EG ⊥CG .……10分 【012】解:(1) 圆心O 在坐标原点,圆O 的半径为1,

∴点A B C D 、、、的坐标分别为(10)(01)(10)(01)A B C D --,、

,、,、, 抛物线与直线y x =交于点M N 、,且MA NC 、分别与圆O 相切于点A 和点C ,

∴(11)(11)M N --,

、,. 点D M N 、、在抛物线上,将(01)(11)(11)D M N --,、,、,的坐标代入2y ax bx c =++,得:111c a b c a b c =??-=-+??=++? 解之,得:1

11a b c =-??

=??=?

∴抛物线的解析式为:21y x x =-++. ·

··············································································· 4分 (2)2

215124y x x x ?

?=-++=--+ ??

?

∴抛物线的对称轴为12

x =

12OE DE ∴===

,. ······················· 6分 连结90BF BFD ∠=,°,

BFD EOD ∴△∽△,DE OD

DB FD

=,

又12DE OD DB ===,,

FD ∴=

EF FD DE ∴=-=

= ··············································································· 8分

(3)点P 在抛物线上. ············································································································· 9分

设过D C 、点的直线为:y kx b =+,

将点(10)(01)C D ,、,的坐标代入y kx b =+,得:11k b =-=,,

∴直线DC 为:1y x =-+. ·

································································································· 10分 过点B 作圆O 的切线BP 与x 轴平行,P 点的纵坐标为1y =-, 将1y =-代入1y x =-+,得:2x =.

∴P 点的坐标为(21)-,

,当2x =时,2212211y x x =-++=-++=-, 所以,P 点在抛物线21y x x =-++上. ·············································································· 12分

【013】解:(1) 该抛物线过点(02)C -,,∴可设该抛物线的解析式为22y ax bx =+-. 将(40)A ,

,(10)B ,代入, 得1642020a b a b .+-=??+-=?,解得1252

a b .?

=-????=??,

∴此抛物线的解析式为215

222

y x x =-+-. ·

······························································· (3分) (2)存在. ·························································································································· (4分)

如图,设P 点的横坐标为m , 则P 点的纵坐标为215

222

m m -+-, 当14m <<时,

4AM m =-,215

222

PM m m =-+-.

又90COA PMA ∠=∠= °,

∴①当

2

1AM AO PM OC ==时, APM ACO △∽△,

即21542222m m m ??

-=-

+- ???

解得1224m m ==,(舍去)

,(21)P ∴,. ····································································· (6分) ②当

12AM OC PM OA ==时,APM CAO △∽△,即215

2(4)222

m m m -=-+-. 解得14m =,25m =(均不合题意,舍去)

∴当14m <<时,(21)P ,

. ····························································································· (7分) 类似地可求出当4m >时,(52)P -,. ·

········································································· (8分) 当1m <时,(314)P --,.

综上所述,符合条件的点P 为(21),或(52)-,或(314)--,

. ·································· (9分) (3)如图,设D 点的横坐标为(04)t t <<,则D 点的纵坐标为215222

t t -

+-. 过D 作y 轴的平行线交AC 于E .由题意可求得直线AC 的解析式为122y x =-.(10分) E ∴点的坐标为122t t ??- ???

,.2215112222222DE t t t t t ??∴=-+---=-+ ???. ·· (11分) 22211244(2)422DAC S t t t t t ??∴=?-+?=-+=--+ ???

△. ∴当2t =时,DAC △面积最大.(21)D ∴,

. ··························································· (13分) 【014】(1)解:∵A 点第一次落在直线y x =上时停止旋转,∴OA 旋转了045.

∴OA 在旋转过程中所扫过的面积为24523602

ππ?=.……………4分 (2)解:∵MN ∥AC ,∴45BMN BAC ∠=∠=?,45BNM BCA ∠=∠=?.

∴BMN BNM ∠=∠.∴BM BN =.又∵BA BC =,∴AM CN =.

又∵O A O C =,OAM OCN ∠=∠,∴OAM OCN ???.∴AOM CON ∠=∠.∴1(90452

AOM ∠=?-?)=22.5?.∴旋转过程中,当MN 和AC 平行时,正方形OABC 旋转的度数为45?-22.5?=22.5?.……………………………………………8分

(3)答:p 值无变化. 证明:延长BA 交y 轴于E 点,则045AOE AOM ∠=-∠,

000904545CON AOM AOM ∠=--∠=-∠,∴A O E C O ∠=∠.又∵O A O C =,

0001809090OAE OCN ∠=-==∠.∴OAE OCN ???.∴,OE ON AE CN ==.

又∵045MOE MON ∠=∠=,OM OM =, ∴OME

???∴MN ME AM AE ==+.∴MN AM CN =+, ∴p MN BN BM AM CN BN BM AB BC =++=+++=+(第26题) x

∴在旋转正方形OABC 的过程中,p 值无变化. ……………12分

【015】⑴设二次函数的解析式为:y=a(x-h)2

+k ∵顶点C 的横坐标为4,且过点(0,397) ∴y=a(x-4)2+k k a +=16397 ………………① 又∵对称轴为直线x=4,图象在x 轴上截得的线段长为6 ∴A(1,0),B(7,0)

∴0=9a+k ………………②由①②解得a=93,k=3-∴二次函数的解析式为:y=9

3(x-4)2-3 ⑵∵点A 、B 关于直线x=4对称 ∴PA=PB ∴PA+PD=PB+PD ≥DB ∴当点P 在线段DB 上时PA+PD 取得最小值 ∴DB 与对称轴的交点即为所求点P

设直线x=4与x 轴交于点M ∵PM ∥OD ,∴∠BPM=∠BDO ,又∠PBM=∠DBO

∴△BPM ∽△BDO ∴BO BM DO PM = ∴3

373397=?=PM ∴点P 的坐标为(4,33) ⑶由⑴知点C(4,3-),又∵AM=3,∴在Rt △AMC 中,cot ∠ACM=3

3, ∴∠ACM=60o ,∵AC=BC ,∴∠ACB=120o

①当点Q 在x 轴上方时,过Q 作QN ⊥x 轴于N 如果AB=BQ ,由△ABC ∽△ABQ 有

BQ=6,∠ABQ=120o ,则∠QBN=60o ∴QN=33,BN=3,ON=10,此时点Q (10,33),

如果AB=AQ ,由对称性知Q(-2,33)

②当点Q 在x 轴下方时,△QAB 就是△ACB ,此时点Q 的坐标是(4,3-),

经检验,点(10,33)与(-2,33)都在抛物线上

综上所述,存在这样的点Q ,使△QAB ∽△ABC

点Q 的坐标为(10,33)或(-2,33)或(4,3-).

【016】解:(1)设正比例函数的解析式为11(0)y k x k =≠,

因为1y k x =的图象过点(33)A ,,所以133k =,解得11k =.

这个正比例函数的解析式为y x =. ················································································· (1分) 设反比例函数的解析式为22(0)k y k x =≠.因为2k y x

=的图象过点(33)A ,,所以 233k =,解得29k =.这个反比例函数的解析式为9y x

=.········································ (2分) (2)因为点(6)B m ,在9y x =的图象上,所以9362m ==,则点362B ?? ???,. ········· (3分) 设一次函数解析式为33(0)y k x b k =+≠.因为3y k x b =+的图象是由y x =平移得到的, 所以31k =,即y x b =+.又因为y x b =+的图象过点362B ?

? ???

,,所以 362b =+,解得92b =-,∴一次函数的解析式为92

y x =-. ·································· (4分) (3)因为92y x =-的图象交y 轴于点D ,所以D 的坐标为902??- ??

?,. 设二次函数的解析式为2(0)y ax bx c a =++≠.

因为2y ax bx c =++的图象过点(33)A ,、362B ?

? ???,、和D 902??- ???

,, 所以933336629.2

a b c a b c c ??++=??++=???=-??,, ····················· (5分) 解得1249.2a b c ?=-??=???=-?,, 这个二次函数的解析式为219422y x x =-

+-. ···························································· (6分) (4)92y x =- 交x 轴于点C ,∴点C 的坐标是902?? ???

,, 如图所示,15113166633322222

S =

?-??-??-?? 99451842

=--- 814

=. 假设存在点00()E x y ,,使12812273432S S ==?=.

四边形CDOE 的顶点E 只能在x 轴上方,∴00y >,

1OCD OCE S S S ∴=+△△ 01991922222y =??+? 0819

84

y =+.

081927842y ∴+=,032y ∴=.00()E x y ,在二次函数的图象上, 2001934222

x x ∴-+-=.解得02x =或06x =.

当06x =时,点362E ?

? ???

,与点B 重合,这时CDOE 不是四边形,故06x =舍去,

∴点E 的坐标为322??

???

,. (8分)

【017】解:(1)已知抛物线2y x bx c =++经过(1

0)(02)A B ,,,, 01200b c c =++?∴?

=++? 解得3

2

b c =-??=? ∴所求抛物线的解析式为232y x x =-+. ·

··········································································· 2分 (2)(1

0)A ,,(02)B ,,12OA OB ∴==, 可得旋转后C 点的坐标为(31), ·································································································· 3分 当3x =时,由232y x x =-+得2y =,

可知抛物线232y x x =-+过点(32),

∴将原抛物线沿y 轴向下平移1个单位后过点C .

∴平移后的抛物线解析式为:231y x x =-+. ·

···································································· 5分 (3) 点N 在2

31y x x =-+上,可设N 点坐标为2000(31)x x x -+,

将2

31y x x =-+配方得2

3524y x ??=-- ??

?,∴其对称轴为32x =. ·································· 6分

①当03

02

x <<

时,如图①, 112NBB NDD S S = △△

00113121222x x ??∴??=???- ???

图①

01x =

此时2

00311x x -+=-

N ∴点的坐标为(11)-,. ·

········································································································· 8分 ②当03

2

x >时,如图②

同理可得

0011312222x x ????=??- ???

03x ∴=

此时2

00311x x -+=

∴点N 的坐标为(31)

,. 综上,点N 的坐标为(11)-,或(31),. ·

·················································································· 10分 【018】解:(1) 抛物线24y ax bx a =+-经过(1

0)A -,,(04)C ,两点, 404 4.a b a a --=?∴?-=?,

解得13.a b =-??

=?,

∴抛物线的解析式为234y x x =-++.

(2) 点(1)D m m +,在抛物线上,2

134m m m ∴+=-++,

即2

230m m --=,1m ∴=-或3m =.

点D 在第一象限,∴点D 的坐标为(34),. 由(1)知45OA OB CBA =∴∠=,

°. 设点D 关于直线BC 的对称点为点E .

(04)C ,,CD AB ∴∥,且3CD =, 45ECB DCB ∴∠=∠=°, E ∴点在y 轴上,且3CE CD ==.

1OE ∴=,(01)E ∴,.

即点D 关于直线BC 对称的点的坐标为(0,1).

(3)方法一:作PF AB ⊥于F ,DE BC ⊥于E .

由(1)有:445OB OC OBC ==∴∠=,

°, 45DBP CBD PBA ∠=∴∠=∠ °,.

图②

(04)(34)C D ,,,,CD OB ∴∥且3CD =.

45DCE CBO ∴∠=∠=°,

2

DE CE ∴== 4OB OC ==

,BC ∴=

2BE BC CE ∴=-=

, 3tan tan 5

DE PBF CBD BE ∴∠=∠=

=. 设3PF t =,则5BF t =,54OF t ∴=-, (543)P t t ∴-+,.

P 点在抛物线上,

∴23(54)3(54)4t t t =--++-++,

0t ∴=(舍去)或2225t =,266525P ??∴- ???

,. 方法二:过点D 作BD 的垂线交直线PB 于点Q ,过点D 作DH x ⊥轴于H .过Q 点作QG DH ⊥于G .

45PBD QD DB ∠=∴= °,.

QDG BDH ∴∠+∠90=°,

又90DQG QDG ∠+∠=°,DQG BDH ∴∠=∠. QDG DBH ∴△≌△,4QG DH ∴==,1DG BH ==.

由(2)知(34)D ,

,(13)Q ∴-,. (40)B ,,∴直线BP 的解析式为31255y x =-+. 解方程组23431255y x x y x ?=-++??=-+??,,得11

40x y =??=?,;222566.25x y ?=-????=??

, ∴点P 的坐标为266525??- ???

,. 【019】(1)EO >EC ,理由如下:

由折叠知,EO=EF ,在Rt △EFC 中,EF 为斜边,∴EF >EC , 故EO >EC …2分

(2)m 为定值

∵S 四边形CFGH =CF 2=EF 2-EC 2=EO 2-EC 2=(EO+EC)(EO ―EC)=CO ·(EO ―EC)

S 四边形CMNO =CM ·CO=|CE ―EO|·CO=(EO ―EC) ·CO ∴1==CMNO CFGH

S S m 四边形四边形 ……………………………………………………4分

(3)∵CO=1,32

31==QF CE , ∴EF=EO=QF ==-32

311

∴cos ∠FEC=21

∴∠FEC=60°, ∴?=∠∠=?=?

-?=∠3060260180EAO OEA FEA ,

∴△EFQ 为等边三角形,32

=EQ

…………………………………………5分

作QI ⊥EO 于I ,EI=31

21

=EQ ,IQ=33

23

=EQ

∴IO=3131

32

=- ∴Q 点坐标为

)31

,33(

……………………………………6分

∵抛物线y=mx 2+bx+c 过点C(0,1), Q )31

,33

(

,m=1 ∴可求得3-=b ,c=1 ∴抛物线解析式为132+-=x x y

……………………………………7分

(4)由(3),3

323==EO AO 当332

=x 时,31

1332

3)332

(2=+?-=y <AB

∴P 点坐标为)31

,33

2( …………………8分

∴BP=32

31

1=-AO

方法1:若△PBK 与△AEF 相似,而△AEF ≌△AEO ,则分情况

下: ①3

3232

32=BK 时,932=BK ∴K 点坐标为)1,93

4(或)

1,938( ②3

32

332=BK 时,332=BK ∴K 点坐标为)

1,33

4

(或)1,0(…………10分

故直线KP 与y 轴交点T 的坐标为 )1,0()31,0()37,0()35,0(或或或--

…………………………………………12分 方法2:若△BPK 与△AEF 相似,由(3)得:∠BPK=30°或60°,过P 作PR ⊥y 轴于R ,则∠RTP=60°或30°

①当∠RTP=30°时,2

333

2=?=RT

②当∠RTP=60°时,32

3332=÷=RT ∴)1,0()31

,0()35,0()37,0(4321T T T T ,,,--

……………………………12分

【020】解:(1)①CF ⊥BD ,CF=BD

②成立,理由如下:∵∠FAD=∠BAC=90° ∴∠BAD=∠CAF

又 BA=CA ,AD=AF ∴△BAD ≌△CAF ∴CF=BD ∠ACF=∠ACB=45°

∴∠BCF=90° ∴CF ⊥BD ……(1分)

(2)当∠ACB=45°时可得CF ⊥BC ,理由如下:

如图:过点A 作AC 的垂线与CB 所在直线交于G

则∵∠ACB=45° ∴AG=AC ∠AGC=∠ACG=45°

∵AG=AC AD=AF ………(1分)

∴△GAD ≌△CAF (SAS ) ∴∠ACF=∠AGD=45°

∴∠GCF=∠GCA+∠ACF=90° ∴CF ⊥BC …………(2分)

(3)如图:作AQBC 于Q

∵∠ACB=45° AC=42 ∴CQ=AQ=4

∵∠PCD=∠ADP=90°∴∠ADQ+∠CDP=∠CDP+∠CPD=90°

∴△ADQ ∽△

DPC …(1分) ∴DQ PC =AQ CD

设CD 为x (0<x <3)则DQ=CQ -CD=4-x 则

x PC

-4=4x

…………(1分)

∴PC=41

(-x 2+4x)=-41

(x -2)2+1≥1

当x=2时,PC 最长,此时PC=1 ………(1分)

2010年中考数学压轴题100题精选(31-40题)答案

【031】解:(1)5 , 24, 524

…………………………………3分

(2)①由题意,得AP =t ,AQ =10-2t. ……………………………………1分

如图1,过点Q 作QG ⊥AD ,垂足为G ,由QG ∥BE 得

△AQG ∽△ABE ,∴BA

QA

BE QG =

, ∴QG =2548548t -

, …………………………1分 ∴t t QG AP S 5242524212+-=?=(25≤t ≤5).

∵6)25(25242+--=t S (25

≤t ≤5).

∴当t =

2

5

时,S 最大值为6.…………………1分 ② 要使△APQ 沿它的一边翻折,翻折前后的两个三角形

组成

的四边形为菱形,根据轴对称的性质,只需△APQ 为等腰三角形即可. 当t =4秒时,∵点P 的速度为每秒1个单位,∴AP =4.………………1分 以下分两种情况讨论:

第一种情况:当点Q 在CB 上时, ∵PQ ≥BE >PA ,∴只存在点Q 1,使Q 1A =Q 1P . 如图2,过点Q 1作Q 1M ⊥AP ,垂足为点M ,Q 1M 交AC 于点F ,则AM =1

22

AP =. 由△AMF ∽△AOD ∽△CQ 1F ,得4

311===AO OD CQ F Q AM FM , 23

=FM ,

∴10

33

11=

-=FM MQ F Q . ………………1分

∴CQ 1=QF 34=225.则11CQ AP t k t =

??,

∴11110

CQ k AP == .……………………………1分

第二种情况:当点Q 在BA 上时,存在两点Q 2,Q 3, 分别使A P = A Q 2,PA =PQ 3.

①若AP =A Q 2,如图3,CB +BQ 2=10-4=6.

则2

1BQ CB AP

t k t +=

??,∴232CB BQ k AP +==.……1分 ②若PA =PQ 3,如图4,过点P 作PN ⊥AB ,垂足为N , 由△ANP ∽△AEB ,得

AB

AP

AE AN =

. ∵AE =57

22=-BE AB , ∴AN =2825

.

∴AQ 3=2AN=5625

, ∴BC+BQ 3=10-25194

2556=

则31BQ CB AP

t k t +=

??.∴50973=+=AP BQ CB k . ………………………1分

综上所述,当t = 4秒,以所得的等腰三角形APQ 沿底边翻折,

翻折后得到菱形的k 值为

1011或23或50

97. 【032】解:(1)在△ABC 中,∵1=AC ,x AB =,x BC -=3.

∴?

??>-+->+x x x

x 3131,解得21<

(2)①若AC 为斜边,则22)3(1x x -+=,即0432=+-x x ,无解. ②若AB 为斜边,则1)3(22+-=x x ,解得3

5

=x ,满足21<

4

=x ,满足21<

x 或3

4

=x . ··················································································································· 9分 (3)在△ABC 中,作AB CD ⊥于D ,

设h CD =,△ABC 的面积为S ,则xh S 21

=.

①若点D 在线段AB 上, 则x h x h =--+-222)3(1.

∴22222112)3(h h x x h x -+--=--,即4312-=-x h x . ∴16249)1(222+-=-x x h x ,即16248222-+-=x x h x . ∴462412222-+-==

x x h x S 21

)23(22+--=x (423

x <≤)

. ·································· 11分 当23=

x 时(满足423

x <≤),2S 取最大值21,从而S 取最大值22.·························· 13分

②若点D 在线段MA 上, 则x h h x =----2221)3(.

同理可得,4624

1

2222

-+-==x x h x S

21

)23(22+--=x (413

x <≤)

, 易知此时2

2

综合①②得,△ABC 的最大面积为2

2

. ··············································································· 14分 【033】

(第24题-1)

(第24题-2)

本文来源:https://www.bwwdw.com/article/iq3l.html

Top