2010年中考数学压轴题100题精选答案
更新时间:2023-04-13 04:11:01 阅读量: 实用文档 文档下载
- 2010世界杯推荐度:
- 相关推荐
2010年中考数学压轴题100题精选(1-10题)答案
【001】解:(1)
抛物线2
(1)0)
y a x a
=-+≠经过点(20)
A-,,
09a a
∴=+=·······································································································1分∴
二次函数的解析式为:2
y x x
=+ ·························································3分
(2)D
为抛物线的顶点D
∴过D作DN OB
⊥于N
,则DN=
3660
AN AD DAO
=∴=∴∠=
,°···························································4分OM AD
∥
①当AD OP
=时,四边形DAOP是平行四边形
66(s)
OP t
∴=∴=······················································· 5分
②当DP OM
⊥时,四边形DAOP是直角梯形
过O作OH AD
⊥于H,2
AO=,则1
AH=
(如果没求出60
DAO
∠=°可由Rt Rt
OHA DNA
△∽△求
AH
55(s)
OP DH t
∴===··········································································································6分③当PD OA
=时,四边形DAOP是等腰梯形
26244(s)
OP AD AH t
∴=-=-=∴=
综上所述:当6
t=、5、4时,对应四边形分别是平行四边形、直角梯形、等腰梯形.··7分(3)由(2)及已知,60
COB OC OB OCB
∠==
°,,△是等边三角形
则6262(03)
OB OC AD OP t BQ t OQ t t
=====∴=-<<
,,,
过P作PE OQ
⊥于E,则
2
PE= ···················································································8分
11
6(62)
22
BCPQ
S t
∴=???-=
2
3
22
t
??
-
?
??
····································9分当
3
2
t=时,
BCPQ
S···········································································10分∴此时
3339
33
2444
OQ OP OE QE PE
==∴=-==
,=,
2
PQ
∴===························
······
·11分【002】解:(1)1,
8
5
;
(2)作QF⊥AC于点F,如图3,AQ = CP= t,∴3
AP t
=-.
由△AQF∽△ABC,4
BC=,
得
45
QF t
=.∴
4
5
QF t
=.∴
14
(3)
25
S t t
=-?
即2
26
55
S t t
=-+.
(3)能.
①当DE∥QB时,如图4.
∵DE⊥PQ,∴PQ⊥QB,四边形QBED是直角梯形.
此时∠AQP=90°.
由△APQ ∽△ABC,得
AQ AP
AC AB
=,
即
3
35
t t-
=.解得
9
8
t=.
②如图5,当PQ∥BC时,DE⊥BC,四边形QBED是直角梯形.
此时∠APQ =90°.
由△AQP ∽△ABC,得
AQ AP
AB AC
=,
即
3
53
t t-
=.解得
15
8
t=.
(4)
5
2
t=或
45
14
t=.
【注:①点P由C向A运动,DE经过点C.
方法一、连接QC,作QG⊥BC于点G,如图6.
PC t=,222
QC QG CG
=+22
34
[(5)][4(5)]
55
t t
=-+--.
由22
PC QC
=,得222
34
[(5)][4(5)]
55
t t t
=-+--,解得
5
2
t=.
方法二、由CQ CP AQ
==,得QAC QCA
∠=∠,进而可得
B BCQ
∠=∠,得CQ BQ
=,∴
5
2
AQ BQ
==.∴
5
2
t=.
②点P由A向C运动,DE经过点C,如图7.
222
34
(6)[(5)][4(5)]
55
t t t
-=-+--,45
14
t=】
【003】解.(1)点A的坐标为(4,8)…………………1分
将A (4,8)、C(8,0)两点坐标分别代入y=ax2+bx
图4
图3
F
图5
8=16a +4b 得
0=64a +8b
解 得a =-12
,b =4 ∴抛物线的解析式为:y =-
12
x 2+4x …………………3分 (2)①在Rt △APE 和Rt △ABC 中,tan ∠PAE =PE AP =BC AB ,即PE AP =48
∴PE =12AP =12
t .PB=8-t . ∴点E的坐标为(4+12
t ,8-t ). ∴点G 的纵坐标为:-12(4+12t )2+4(4+12t )=-18
t 2+8. …………………5分 ∴EG=-18t 2+8-(8-t ) =-18
t 2+t . ∵-18<0,∴当t =4时,线段EG 最长为2. …………………7分 ②共有三个时刻. …………………8分 t 1=163, t 2=4013,t 3= …………………11分 【004】(1)解:由
28033x +=,得4x A =-∴.点坐标为()40-,. 由2160x -+=,得8x B =∴.点坐标为()80,.∴()8412AB =--=.
(2分) 由2833216y x y x ?=+???=-+?,.
解得56x y =??=?,.∴C 点的坐标为()56,.(3分) ∴111263622
ABC C S AB y =
=??=△·.(4分) (2)解:∵点D 在1l 上且2888833D B D x x y ==∴=?+=,. ∴D 点坐标为()88,.(5分)又∵点E 在2l 上且821684E D E E y y x x ==∴-+=∴=,..∴E 点坐标为()48,.(6分)
∴8448OE EF =-==,.(7分)
(3)解法一:①当03t <≤时,如图1,矩形DEFG 与ABC △重叠部分为五边形CHFGR (0
t =时,为四边形CHFG ).过C 作CM AB ⊥于M ,则Rt Rt RGB CMB △∽△.
∴
BG RG BM CM =,即36
t RG
=,∴2RG t =.Rt Rt AFH AMC △∽△,
∴()()112
36288223
ABC BRG AFH S S S S t t t t =--=-??--?-△△△.
即241644
333
S t t =-++.(10分)
【005】(1)如图1,过点E 作EG BC ⊥于点G .····················· 1分
∵E 为AB 的中点,
∴1
22
BE AB ==. 在Rt EBG △中,60B =?∠,∴30BEG =?∠. (2)
分
∴112
BG BE EG ====, 即点E 到BC ················································· 3分
(2)①当点N 在线段AD 上运动时,PMN △的形状不发生改变. ∵PM EF EG EF ⊥⊥,,∴PM EG ∥. ∵EF BC ∥,∴EP GM =,PM EG ==
同理4MN AB ==. ············································································································ 4分 如图2,过点P 作PH MN ⊥于H ,∵MN AB ∥, ∴6030NMC B PMH ==?=?∠∠,∠. ∴122
PH PM =
= ∴3
cos302
MH PM =?= .
则35
422
NH MN MH =-=-=.
在Rt PNH △中,PN === ∴PMN △的周长=4PM PN MN ++. ··················································· 6分 ②当点N 在线段DC 上运动时,PMN △的形状发生改变,但MNC △恒为等边三角形. 当PM PN =时,如图3,作PR MN ⊥于R ,则MR NR =.
类似①,3
2
MR =
. ∴23MN MR ==. ·············································································································· 7分
图1
A
D E
B F C
G
图2
A D E
B
F C
P
N
M
G H
∵MNC △是等边三角形,∴3MC MN ==.
此时,6132x EP GM BC BG MC ===--=--=. ··············································· 8分
当MP MN =时,如图4
,这时MC MN MP ===
此时,615x EP GM ===-=
当NP NM =时,如图5,30NPM PMN ==?∠∠.
则120PMN =?∠,又60MNC =?∠, ∴180PNM MNC +=?∠∠.
因此点P 与F 重合,PMC △为直角三角形.
∴tan 301MC PM =?= .
此时,6114x EP GM ===--=.
综上所述,当2x =或4
或(5-时,PMN △为等腰三角形. 【006】解:(1)OC=1,所以,q=-1,又由面积知0.5OC ×AB=
45,得AB=5
2
, 设A (a,0),B(b,0)AB=b -
a=
52,解得p=32±,但p<0,所以p=32
-。 所以解析式为:2
3
12
y x x =-- (2)令y=0,解方程得2
3102x x -
-=,得121,22x x =-=,所以A(12
-,0),B(2,0),在直角三角形AOC 中可求得
同样可求得
AC 2+BC 2=AB 2,得△ABC 是直角三角形。AB 为斜边,所以外接圆的直径为AB=
52,所以5544
m -≤≤。 (3)存在,AC ⊥BC ,①若以AC 为底边,则BD//AC,易求AC 的解析式为y=-2x-1,可设BD 的解析式
为y=-2x+b ,把B(2,0)代入得BD 解析式为y=-2x+4,解方程组2
31
2
24
y x x y x ?=--???=-+?得D (52-,9) ②若以BC 为底边,则BC//AD,易求BC 的解析式为y=0.5x-1,可设AD 的解析式为y=0.5x+b ,把
图3
A D E B
F
C
P
N M
图4
A D E
B
F C
P
M
N 图5
A D E
B F (P ) C
M
N G
G
R
G
A(
1
2
-,0)代入得AD解析式为y=0.5x+0.25,解方程组
2
3
1
2
0.50.25
y x x
y x
?
=--
?
?
?=+
?
得D(
53
,
22
) 综上,
所以存在两点:(
5
2
-,9)或(
53
,
22
)。
【007】
【008】证明:(1)∵∠ABC=90°,BD ⊥EC ,
∴∠1与∠3互余,∠2与∠3互余,
∴∠1=∠2…………………………………………………1分
∵∠ABC=∠DAB=90°,AB=AC
∴△BAD ≌△CBE …………………………………………2分
∴AD=BE ……………………………………………………3分
(2)∵E 是AB 中点,
∴EB=EA 由(1)AD=BE 得:AE=AD ……………………………5分 ∵AD ∥BC ∴∠7=∠ACB=45°∵∠6=45°∴∠6=∠7
由等腰三角形的性质,得:EM=MD ,AM ⊥DE 。
即,AC 是线段ED 的垂直平分线。……………………7分
(3)△DBC 是等腰三角(CD=BD )……………………8分
理由如下:
由(2)得:CD=CE 由(1)得:CE=BD ∴CD=BD
∴△DBC 是等腰三角形。……………………………10分
【009】解:(1)①AC x ⊥轴,AE y ⊥轴, ∴四边形AEOC 为矩形. BF x ⊥轴,BD y ⊥轴,
∴四边形BDOF 为矩形.
AC x ⊥轴,BD y ⊥轴,
∴四边形AEDK DOCK CFBK ,,均为矩形. ············· 1分 1111OC x AC y x y k === ,,,
∴11AEOC S OC AC x y k === 矩形
2222OF x FB y x y k === ,,,
∴22BDOF S OF FB x y k === 矩形.
∴AEOC BDOF S S =矩形矩形.
AEDK AEOC DOCK S S S =-矩形矩形矩形,
C F B K B
D O F D S S S =-矩形矩形矩形,
∴AEDK CFBK S S =矩形矩形. ·
·········································································································· 2分 ②由(1)知AEDK CFBK S S =矩形矩形.
∴AK DK BK CK =
.
∴
AK BK CK DK
=. ·························································································································· 4分 90AKB CKD ∠=∠=°,
∴AKB CKD △∽△. ·
············································································································· 5分 ∴CDK ABK ∠=∠.
∴AB CD ∥. ···························································································································· 6分 AC y ∥轴,
∴四边形ACDN 是平行四边形.
∴AN CD =. ·
··························································································································· 7分 同理BM CD =.
AN BM ∴=. ···························································································································· 8分
(2)AN 与BM 仍然相等. ····································································································· 9分 AEDK AEOC ODKC S S S =+矩形矩形矩形,
BKCF BDOF ODKC S S S =+矩形矩形矩形,
又 AEOC BDOF S S k ==矩形矩形,
∴AEDK BKCF S S =矩形矩形. ····································· 10分 ∴AK DK BK CK = . ∴CK DK AK BK
=. K K ∠=∠,
∴CDK ABK △∽△.
∴CDK ABK ∠=∠.
∴AB CD ∥. ·
························································································································· 11分 AC y ∥轴,
∴四边形ANDC 是平行四边形.
∴AN CD =.
同理BM CD =.
∴AN BM =. ·
························································································································ 12分
【010】解:(1)根据题意,得34231.2a a b b a -=+-???-=??, ····· 2分 解得12.
a b =??=-?,∴抛物线对应的函数表达式为223y x x =--. 3
(2)存在.
在223y x x =--中,令0x =,得3y =-.
(第26题图)
令0y =,得2230x x --=,1213x x ∴=-=,.
(10)A ∴-,,(30)B ,,(03)C -,.
又2(1)4y x =--,∴顶点(14)M -,. ·
················································································· 5分 容易求得直线CM 的表达式是3y x =--.
在3y x =--中,令0y =,得3x =-.
(30)N ∴-,,2AN ∴=. ·
········································································································ 6分 在223y x x =--中,令3y =-,得1202x x ==,.
2CP AN CP ∴=∴=,.
AN CP ∥,∴四边形ANCP 为平行四边形,此时(23)P -,. ······································ 8分
(3)AEF △是等腰直角三角形.
理由:在3y x =-+中,令0x =,得3y =,令0y =,得3x =.
∴直线3y x =-+与坐标轴的交点是(03)D ,
,(30)B ,. OD OB ∴=,45OBD ∴∠=°. ····························································································· 9分
又 点(03)C -,,OB OC ∴=.45OBC ∴∠=°. ·························································· 10分
由图知45AEF ABF ∠=∠=°,45AFE ABE ∠=∠=°. ··············································· 11分 90EAF ∴∠=°,且AE AF =.AEF ∴△是等腰直角三角形. ······································ 12分
(4)当点E 是直线3y x =-+上任意一点时,(3)中的结论成立. 14分
2010年中考数学压轴题100题精选(11-20题)答案
【011】解:(1)证明:在Rt △FCD 中,∵G 为DF 的中点,∴ CG= FD .………1分 同理,在Rt △DEF 中,EG= FD .…………2分∴ CG=EG .…………………3分
(2)(1)中结论仍然成立,即EG=CG .…………………………4分
证法一:连接AG ,过G 点作MN ⊥AD 于M ,与EF 的延长线交于N 点.
在△DAG 与△DCG 中,∵ AD=CD ,∠ADG=∠CDG ,DG=DG ,
∴ △DAG ≌△DCG .∴ AG=CG .………………………5分
在△DMG 与△FNG 中,∵ ∠DGM=∠FGN ,FG=DG ,∠MDG=∠NFG ,
∴ △DMG ≌△FNG .∴ MG=NG 在矩形AENM 中,AM=EN . ……………6分
在Rt △AMG 与Rt △ENG 中,∵ AM=EN , MG=NG ,
∴ △AMG ≌△ENG .∴ AG=EG .∴ EG=CG . ……………………………8分
证法二:延长CG 至M,使MG=CG , 连接MF ,ME ,EC , ……………………4分
在△DCG 与△FMG 中,∵FG=DG ,∠MGF=∠CGD ,MG=CG , ∴△DCG ≌△FMG .∴MF=CD ,∠FMG =∠DCG .
∴MF ∥CD ∥AB .………………………5分∴ 在Rt △MFE 与Rt △CBE 中,
∵ MF=CB ,EF=BE ,∴△MFE ≌△CBE .∴∠MEC =∠MEF +∠FEC =∠CEB +∠CEF =90°.∴ △MEC 为直角三角形.∵ MG = CG ,∴ EG= MC .………8分
(3)(1)中的结论仍然成立,即EG=CG .其他的结论还有:EG ⊥CG .……10分 【012】解:(1) 圆心O 在坐标原点,圆O 的半径为1,
∴点A B C D 、、、的坐标分别为(10)(01)(10)(01)A B C D --,、
,、,、, 抛物线与直线y x =交于点M N 、,且MA NC 、分别与圆O 相切于点A 和点C ,
∴(11)(11)M N --,
、,. 点D M N 、、在抛物线上,将(01)(11)(11)D M N --,、,、,的坐标代入2y ax bx c =++,得:111c a b c a b c =??-=-+??=++? 解之,得:1
11a b c =-??
=??=?
∴抛物线的解析式为:21y x x =-++. ·
··············································································· 4分 (2)2
215124y x x x ?
?=-++=--+ ??
?
∴抛物线的对称轴为12
x =
,
12OE DE ∴===
,. ······················· 6分 连结90BF BFD ∠=,°,
BFD EOD ∴△∽△,DE OD
DB FD
∴
=,
又12DE OD DB ===,,
FD ∴=
,
EF FD DE ∴=-=
= ··············································································· 8分
(3)点P 在抛物线上. ············································································································· 9分
设过D C 、点的直线为:y kx b =+,
将点(10)(01)C D ,、,的坐标代入y kx b =+,得:11k b =-=,,
∴直线DC 为:1y x =-+. ·
································································································· 10分 过点B 作圆O 的切线BP 与x 轴平行,P 点的纵坐标为1y =-, 将1y =-代入1y x =-+,得:2x =.
∴P 点的坐标为(21)-,
,当2x =时,2212211y x x =-++=-++=-, 所以,P 点在抛物线21y x x =-++上. ·············································································· 12分
【013】解:(1) 该抛物线过点(02)C -,,∴可设该抛物线的解析式为22y ax bx =+-. 将(40)A ,
,(10)B ,代入, 得1642020a b a b .+-=??+-=?,解得1252
a b .?
=-????=??,
∴此抛物线的解析式为215
222
y x x =-+-. ·
······························································· (3分) (2)存在. ·························································································································· (4分)
如图,设P 点的横坐标为m , 则P 点的纵坐标为215
222
m m -+-, 当14m <<时,
4AM m =-,215
222
PM m m =-+-.
又90COA PMA ∠=∠= °,
∴①当
2
1AM AO PM OC ==时, APM ACO △∽△,
即21542222m m m ??
-=-
+- ???
.
解得1224m m ==,(舍去)
,(21)P ∴,. ····································································· (6分) ②当
12AM OC PM OA ==时,APM CAO △∽△,即215
2(4)222
m m m -=-+-. 解得14m =,25m =(均不合题意,舍去)
∴当14m <<时,(21)P ,
. ····························································································· (7分) 类似地可求出当4m >时,(52)P -,. ·
········································································· (8分) 当1m <时,(314)P --,.
综上所述,符合条件的点P 为(21),或(52)-,或(314)--,
. ·································· (9分) (3)如图,设D 点的横坐标为(04)t t <<,则D 点的纵坐标为215222
t t -
+-. 过D 作y 轴的平行线交AC 于E .由题意可求得直线AC 的解析式为122y x =-.(10分) E ∴点的坐标为122t t ??- ???
,.2215112222222DE t t t t t ??∴=-+---=-+ ???. ·· (11分) 22211244(2)422DAC S t t t t t ??∴=?-+?=-+=--+ ???
△. ∴当2t =时,DAC △面积最大.(21)D ∴,
. ··························································· (13分) 【014】(1)解:∵A 点第一次落在直线y x =上时停止旋转,∴OA 旋转了045.
∴OA 在旋转过程中所扫过的面积为24523602
ππ?=.……………4分 (2)解:∵MN ∥AC ,∴45BMN BAC ∠=∠=?,45BNM BCA ∠=∠=?.
∴BMN BNM ∠=∠.∴BM BN =.又∵BA BC =,∴AM CN =.
又∵O A O C =,OAM OCN ∠=∠,∴OAM OCN ???.∴AOM CON ∠=∠.∴1(90452
AOM ∠=?-?)=22.5?.∴旋转过程中,当MN 和AC 平行时,正方形OABC 旋转的度数为45?-22.5?=22.5?.……………………………………………8分
(3)答:p 值无变化. 证明:延长BA 交y 轴于E 点,则045AOE AOM ∠=-∠,
000904545CON AOM AOM ∠=--∠=-∠,∴A O E C O ∠=∠.又∵O A O C =,
0001809090OAE OCN ∠=-==∠.∴OAE OCN ???.∴,OE ON AE CN ==.
又∵045MOE MON ∠=∠=,OM OM =, ∴OME
???∴MN ME AM AE ==+.∴MN AM CN =+, ∴p MN BN BM AM CN BN BM AB BC =++=+++=+(第26题) x
∴在旋转正方形OABC 的过程中,p 值无变化. ……………12分
【015】⑴设二次函数的解析式为:y=a(x-h)2
+k ∵顶点C 的横坐标为4,且过点(0,397) ∴y=a(x-4)2+k k a +=16397 ………………① 又∵对称轴为直线x=4,图象在x 轴上截得的线段长为6 ∴A(1,0),B(7,0)
∴0=9a+k ………………②由①②解得a=93,k=3-∴二次函数的解析式为:y=9
3(x-4)2-3 ⑵∵点A 、B 关于直线x=4对称 ∴PA=PB ∴PA+PD=PB+PD ≥DB ∴当点P 在线段DB 上时PA+PD 取得最小值 ∴DB 与对称轴的交点即为所求点P
设直线x=4与x 轴交于点M ∵PM ∥OD ,∴∠BPM=∠BDO ,又∠PBM=∠DBO
∴△BPM ∽△BDO ∴BO BM DO PM = ∴3
373397=?=PM ∴点P 的坐标为(4,33) ⑶由⑴知点C(4,3-),又∵AM=3,∴在Rt △AMC 中,cot ∠ACM=3
3, ∴∠ACM=60o ,∵AC=BC ,∴∠ACB=120o
①当点Q 在x 轴上方时,过Q 作QN ⊥x 轴于N 如果AB=BQ ,由△ABC ∽△ABQ 有
BQ=6,∠ABQ=120o ,则∠QBN=60o ∴QN=33,BN=3,ON=10,此时点Q (10,33),
如果AB=AQ ,由对称性知Q(-2,33)
②当点Q 在x 轴下方时,△QAB 就是△ACB ,此时点Q 的坐标是(4,3-),
经检验,点(10,33)与(-2,33)都在抛物线上
综上所述,存在这样的点Q ,使△QAB ∽△ABC
点Q 的坐标为(10,33)或(-2,33)或(4,3-).
【016】解:(1)设正比例函数的解析式为11(0)y k x k =≠,
因为1y k x =的图象过点(33)A ,,所以133k =,解得11k =.
这个正比例函数的解析式为y x =. ················································································· (1分) 设反比例函数的解析式为22(0)k y k x =≠.因为2k y x
=的图象过点(33)A ,,所以 233k =,解得29k =.这个反比例函数的解析式为9y x
=.········································ (2分) (2)因为点(6)B m ,在9y x =的图象上,所以9362m ==,则点362B ?? ???,. ········· (3分) 设一次函数解析式为33(0)y k x b k =+≠.因为3y k x b =+的图象是由y x =平移得到的, 所以31k =,即y x b =+.又因为y x b =+的图象过点362B ?
? ???
,,所以 362b =+,解得92b =-,∴一次函数的解析式为92
y x =-. ·································· (4分) (3)因为92y x =-的图象交y 轴于点D ,所以D 的坐标为902??- ??
?,. 设二次函数的解析式为2(0)y ax bx c a =++≠.
因为2y ax bx c =++的图象过点(33)A ,、362B ?
? ???,、和D 902??- ???
,, 所以933336629.2
a b c a b c c ??++=??++=???=-??,, ····················· (5分) 解得1249.2a b c ?=-??=???=-?,, 这个二次函数的解析式为219422y x x =-
+-. ···························································· (6分) (4)92y x =- 交x 轴于点C ,∴点C 的坐标是902?? ???
,, 如图所示,15113166633322222
S =
?-??-??-?? 99451842
=--- 814
=. 假设存在点00()E x y ,,使12812273432S S ==?=.
四边形CDOE 的顶点E 只能在x 轴上方,∴00y >,
1OCD OCE S S S ∴=+△△ 01991922222y =??+? 0819
84
y =+.
081927842y ∴+=,032y ∴=.00()E x y ,在二次函数的图象上, 2001934222
x x ∴-+-=.解得02x =或06x =.
当06x =时,点362E ?
? ???
,与点B 重合,这时CDOE 不是四边形,故06x =舍去,
∴点E 的坐标为322??
???
,. (8分)
【017】解:(1)已知抛物线2y x bx c =++经过(1
0)(02)A B ,,,, 01200b c c =++?∴?
=++? 解得3
2
b c =-??=? ∴所求抛物线的解析式为232y x x =-+. ·
··········································································· 2分 (2)(1
0)A ,,(02)B ,,12OA OB ∴==, 可得旋转后C 点的坐标为(31), ·································································································· 3分 当3x =时,由232y x x =-+得2y =,
可知抛物线232y x x =-+过点(32),
∴将原抛物线沿y 轴向下平移1个单位后过点C .
∴平移后的抛物线解析式为:231y x x =-+. ·
···································································· 5分 (3) 点N 在2
31y x x =-+上,可设N 点坐标为2000(31)x x x -+,
将2
31y x x =-+配方得2
3524y x ??=-- ??
?,∴其对称轴为32x =. ·································· 6分
①当03
02
x <<
时,如图①, 112NBB NDD S S = △△
00113121222x x ??∴??=???- ???
图①
01x =
此时2
00311x x -+=-
N ∴点的坐标为(11)-,. ·
········································································································· 8分 ②当03
2
x >时,如图②
同理可得
0011312222x x ????=??- ???
03x ∴=
此时2
00311x x -+=
∴点N 的坐标为(31)
,. 综上,点N 的坐标为(11)-,或(31),. ·
·················································································· 10分 【018】解:(1) 抛物线24y ax bx a =+-经过(1
0)A -,,(04)C ,两点, 404 4.a b a a --=?∴?-=?,
解得13.a b =-??
=?,
∴抛物线的解析式为234y x x =-++.
(2) 点(1)D m m +,在抛物线上,2
134m m m ∴+=-++,
即2
230m m --=,1m ∴=-或3m =.
点D 在第一象限,∴点D 的坐标为(34),. 由(1)知45OA OB CBA =∴∠=,
°. 设点D 关于直线BC 的对称点为点E .
(04)C ,,CD AB ∴∥,且3CD =, 45ECB DCB ∴∠=∠=°, E ∴点在y 轴上,且3CE CD ==.
1OE ∴=,(01)E ∴,.
即点D 关于直线BC 对称的点的坐标为(0,1).
(3)方法一:作PF AB ⊥于F ,DE BC ⊥于E .
由(1)有:445OB OC OBC ==∴∠=,
°, 45DBP CBD PBA ∠=∴∠=∠ °,.
图②
(04)(34)C D ,,,,CD OB ∴∥且3CD =.
45DCE CBO ∴∠=∠=°,
2
DE CE ∴== 4OB OC ==
,BC ∴=
2BE BC CE ∴=-=
, 3tan tan 5
DE PBF CBD BE ∴∠=∠=
=. 设3PF t =,则5BF t =,54OF t ∴=-, (543)P t t ∴-+,.
P 点在抛物线上,
∴23(54)3(54)4t t t =--++-++,
0t ∴=(舍去)或2225t =,266525P ??∴- ???
,. 方法二:过点D 作BD 的垂线交直线PB 于点Q ,过点D 作DH x ⊥轴于H .过Q 点作QG DH ⊥于G .
45PBD QD DB ∠=∴= °,.
QDG BDH ∴∠+∠90=°,
又90DQG QDG ∠+∠=°,DQG BDH ∴∠=∠. QDG DBH ∴△≌△,4QG DH ∴==,1DG BH ==.
由(2)知(34)D ,
,(13)Q ∴-,. (40)B ,,∴直线BP 的解析式为31255y x =-+. 解方程组23431255y x x y x ?=-++??=-+??,,得11
40x y =??=?,;222566.25x y ?=-????=??
, ∴点P 的坐标为266525??- ???
,. 【019】(1)EO >EC ,理由如下:
由折叠知,EO=EF ,在Rt △EFC 中,EF 为斜边,∴EF >EC , 故EO >EC …2分
(2)m 为定值
∵S 四边形CFGH =CF 2=EF 2-EC 2=EO 2-EC 2=(EO+EC)(EO ―EC)=CO ·(EO ―EC)
S 四边形CMNO =CM ·CO=|CE ―EO|·CO=(EO ―EC) ·CO ∴1==CMNO CFGH
S S m 四边形四边形 ……………………………………………………4分
(3)∵CO=1,32
31==QF CE , ∴EF=EO=QF ==-32
311
∴cos ∠FEC=21
∴∠FEC=60°, ∴?=∠∠=?=?
-?=∠3060260180EAO OEA FEA ,
∴△EFQ 为等边三角形,32
=EQ
…………………………………………5分
作QI ⊥EO 于I ,EI=31
21
=EQ ,IQ=33
23
=EQ
∴IO=3131
32
=- ∴Q 点坐标为
)31
,33(
……………………………………6分
∵抛物线y=mx 2+bx+c 过点C(0,1), Q )31
,33
(
,m=1 ∴可求得3-=b ,c=1 ∴抛物线解析式为132+-=x x y
……………………………………7分
(4)由(3),3
323==EO AO 当332
=x 时,31
1332
3)332
(2=+?-=y <AB
∴P 点坐标为)31
,33
2( …………………8分
∴BP=32
31
1=-AO
方法1:若△PBK 与△AEF 相似,而△AEF ≌△AEO ,则分情况
如
下: ①3
3232
32=BK 时,932=BK ∴K 点坐标为)1,93
4(或)
1,938( ②3
32
332=BK 时,332=BK ∴K 点坐标为)
1,33
4
(或)1,0(…………10分
故直线KP 与y 轴交点T 的坐标为 )1,0()31,0()37,0()35,0(或或或--
…………………………………………12分 方法2:若△BPK 与△AEF 相似,由(3)得:∠BPK=30°或60°,过P 作PR ⊥y 轴于R ,则∠RTP=60°或30°
①当∠RTP=30°时,2
333
2=?=RT
②当∠RTP=60°时,32
3332=÷=RT ∴)1,0()31
,0()35,0()37,0(4321T T T T ,,,--
……………………………12分
【020】解:(1)①CF ⊥BD ,CF=BD
②成立,理由如下:∵∠FAD=∠BAC=90° ∴∠BAD=∠CAF
又 BA=CA ,AD=AF ∴△BAD ≌△CAF ∴CF=BD ∠ACF=∠ACB=45°
∴∠BCF=90° ∴CF ⊥BD ……(1分)
(2)当∠ACB=45°时可得CF ⊥BC ,理由如下:
如图:过点A 作AC 的垂线与CB 所在直线交于G
则∵∠ACB=45° ∴AG=AC ∠AGC=∠ACG=45°
∵AG=AC AD=AF ………(1分)
∴△GAD ≌△CAF (SAS ) ∴∠ACF=∠AGD=45°
∴∠GCF=∠GCA+∠ACF=90° ∴CF ⊥BC …………(2分)
(3)如图:作AQBC 于Q
∵∠ACB=45° AC=42 ∴CQ=AQ=4
∵∠PCD=∠ADP=90°∴∠ADQ+∠CDP=∠CDP+∠CPD=90°
∴△ADQ ∽△
DPC …(1分) ∴DQ PC =AQ CD
设CD 为x (0<x <3)则DQ=CQ -CD=4-x 则
x PC
-4=4x
…………(1分)
∴PC=41
(-x 2+4x)=-41
(x -2)2+1≥1
当x=2时,PC 最长,此时PC=1 ………(1分)
2010年中考数学压轴题100题精选(31-40题)答案
【031】解:(1)5 , 24, 524
…………………………………3分
(2)①由题意,得AP =t ,AQ =10-2t. ……………………………………1分
如图1,过点Q 作QG ⊥AD ,垂足为G ,由QG ∥BE 得
△AQG ∽△ABE ,∴BA
QA
BE QG =
, ∴QG =2548548t -
, …………………………1分 ∴t t QG AP S 5242524212+-=?=(25≤t ≤5).
∵6)25(25242+--=t S (25
≤t ≤5).
∴当t =
2
5
时,S 最大值为6.…………………1分 ② 要使△APQ 沿它的一边翻折,翻折前后的两个三角形
组成
的四边形为菱形,根据轴对称的性质,只需△APQ 为等腰三角形即可. 当t =4秒时,∵点P 的速度为每秒1个单位,∴AP =4.………………1分 以下分两种情况讨论:
第一种情况:当点Q 在CB 上时, ∵PQ ≥BE >PA ,∴只存在点Q 1,使Q 1A =Q 1P . 如图2,过点Q 1作Q 1M ⊥AP ,垂足为点M ,Q 1M 交AC 于点F ,则AM =1
22
AP =. 由△AMF ∽△AOD ∽△CQ 1F ,得4
311===AO OD CQ F Q AM FM , 23
=FM ,
∴10
33
11=
-=FM MQ F Q . ………………1分
∴CQ 1=QF 34=225.则11CQ AP t k t =
??,
∴11110
CQ k AP == .……………………………1分
第二种情况:当点Q 在BA 上时,存在两点Q 2,Q 3, 分别使A P = A Q 2,PA =PQ 3.
①若AP =A Q 2,如图3,CB +BQ 2=10-4=6.
则2
1BQ CB AP
t k t +=
??,∴232CB BQ k AP +==.……1分 ②若PA =PQ 3,如图4,过点P 作PN ⊥AB ,垂足为N , 由△ANP ∽△AEB ,得
AB
AP
AE AN =
. ∵AE =57
22=-BE AB , ∴AN =2825
.
∴AQ 3=2AN=5625
, ∴BC+BQ 3=10-25194
2556=
则31BQ CB AP
t k t +=
??.∴50973=+=AP BQ CB k . ………………………1分
综上所述,当t = 4秒,以所得的等腰三角形APQ 沿底边翻折,
翻折后得到菱形的k 值为
1011或23或50
97. 【032】解:(1)在△ABC 中,∵1=AC ,x AB =,x BC -=3.
∴?
??>-+->+x x x
x 3131,解得21< (2)①若AC 为斜边,则22)3(1x x -+=,即0432=+-x x ,无解. ②若AB 为斜边,则1)3(22+-=x x ,解得3 5 =x ,满足21< 4 =x ,满足21< x 或3 4 =x . ··················································································································· 9分 (3)在△ABC 中,作AB CD ⊥于D , 设h CD =,△ABC 的面积为S ,则xh S 21 =. ①若点D 在线段AB 上, 则x h x h =--+-222)3(1. ∴22222112)3(h h x x h x -+--=--,即4312-=-x h x . ∴16249)1(222+-=-x x h x ,即16248222-+-=x x h x . ∴462412222-+-== x x h x S 21 )23(22+--=x (423 x <≤) . ·································· 11分 当23= x 时(满足423 x <≤),2S 取最大值21,从而S 取最大值22.·························· 13分 ②若点D 在线段MA 上, 则x h h x =----2221)3(. 同理可得,4624 1 2222 -+-==x x h x S 21 )23(22+--=x (413 x <≤) , 易知此时2 2 综合①②得,△ABC 的最大面积为2 2 . ··············································································· 14分 【033】 (第24题-1) (第24题-2)
正在阅读:
2010年中考数学压轴题100题精选答案04-13
社区创建省和谐社区建设示范社区汇报材料09-23
富裕水资源论证4-903-11
儿童诗两首教学设计09-26
红高粱电影影评02-19
配套K12四川省德阳五中2017-2018学年高一化学下学期期中试题12-28
考试的烦恼作文600字07-17
2010届高考数学压轴试题集锦(10)01-25
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- 压轴
- 中考
- 答案
- 数学
- 精选
- 2010
- 100
- 人教版英语九年级全册单元unit 5 知识点+测试卷+思维导图
- 园林绿化工程施工组织设计方案(1)
- 精选浙江省嘉兴市2022-2022学年八年级上学期期末语文试卷人教版
- 反不正当竞争法讲义
- 黑龙江省庆安三中2011-2012学年高一下学期期中考试试题(物理)
- 高中生物第二章 复习提高教材挖空练习
- 液体药剂的制备实验报告
- 鲁科版化学选修3教师用书:第2章 第1节 共价键模型 Word版含解析
- H3CNE_GBO-190_题库V2.01及答案详解
- 中考政治专题七复习练习
- 单位工作总结结尾语3篇
- 2013年四川省达州市中考数学试题含答案.docx
- 故意杀人案二审辩护词
- 2022-2025年中国汽车玻璃市场专项调研及投资前景可行性预测报告
- 山东省学校创客空间建设指导意见
- 学校体卫艺述职报告
- 2022-2026全球及中国汽车玻璃行业发展现状调研及投资前景分析报
- 无花果标准化绿色种植基地及深加工项目可行性研究报告
- 2022-2022年度公司法律顾问个人年终总结
- 人教版小学语文一等奖课堂实录《军神》-军神教学实录一等奖