Perturbation theory for bound states and resonances where potentials and propagators have a
更新时间:2023-06-11 01:03:01 阅读量: 实用文档 文档下载
- perturbation推荐度:
- 相关推荐
Standard derivations of ``time-independent perturbation theory'' of quantum mechanics cannot be applied to the general case where potentials are energy dependent or where the inverse free Green function is a non-linear function of energy. Such derivations
Perturbationtheoryforboundstatesandresonanceswherepotentialsandpropagatorshavearbitraryenergydependence
A.N.Kvinikhidze1,2, andB.Blankleider2
1DepartmentofPhysicsandAstronomy,UniversityofManchester,ManchesterM139PL,United
Kingdom
2DepartmentofPhysics,TheFlindersUniversityofSouthAustralia,BedfordPark,SA5042,3
2
r
a
M
1
1
2
v
3
5
4
1
/0h
t
-
p
e
:hv
i
X
r
aAustralia(February1,2008)AbstractStandardderivationsof“time-independentperturbationtheory”ofquan-tummechanicscannotbeappliedtothegeneralcasewherepotentialsareenergydependentorwheretheinversefreeGreenfunctionisanon-linearfunctionofenergy.Suchderivationscannotbeused,forexample,inthecon-textofrelativisticquantum eldtheory.Herewesolvethisproblembypro-vidinganew,generalformulationofperturbationtheoryforcalculatingthechangesintheenergyspectrumandwavefunctionofboundstatesandreso-nancesinducedbyperturbationstotheHamiltonian.Althoughourderivationisvalidforenergy-dependentpotentialsandisnotrestrictedtoinversefreeGreenfunctionsthatarelinearintheenergy,theexpressionsobtainedfortheenergyandwavefunctioncorrectionsarecompact,practical,andmaximallysimilartotheonesofquantummechanics.Forthecaseofrelativisticquan-tum eldtheory,ourapproachprovidesadirectcovariantwayofobtainingcorrectionstoboundandresonancestatemasses,aswellastowavefunctionsthatarenotinthecentreofmassframe.
11.10.St,11.80.Fv,13.40.Ks,31.15.Md
TypesetusingREVTEX
Standard derivations of ``time-independent perturbation theory'' of quantum mechanics cannot be applied to the general case where potentials are energy dependent or where the inverse free Green function is a non-linear function of energy. Such derivations
I.INTRODUCTION
Thereisagrowinginterestincalculations,withinacovariantquantum eldtheoryframework,ofchangesinthepropertiesofboundstatesandresonancesinducedbysmallperturbationsintheinteractionHamiltonian.Thefour-dimensionalBethe-Salpeterequationanditsvariousthree-dimensionalreductions(so-calledquasi-potentialequations)arethemostpopulartoolsinthisrespect.AcurrentexampleistheNambuJona-Lasinio(NJL)modelwherethenucleonisdescribedintermsofthreerelativisticquarksinteractingviacontactpotentials,andwheremesonexchangeprovidesanimportantperturbativecorrection
[1].AnotherexampleisprovidedbyrelativisticcalculationsofhadronicatomswherethestronginteractionperturbstheCoulombboundstate[2,3],andyetanotherbyvariousothercorrectionstorelativisticcalculationsofelectromagneticboundstates[4].
Theperturbationprobleminvolvedinsuchcovariantcalculationscanbeformulatedasfollows.Denotingthetotalfour-momentumofthesystembyP,onewouldliketodeterminetheboundstatesolutionoftheequation
1G 0(P) K0(P) K1(P)Ψ=0
whereK1(P)isaperturbationtotheunperturbedkernelK0(P),andwhereitisassumedthattheunperturbedGreenfunctionGu(P),de nedasthesolutiontotheequation
Gu(P)=G0(P)+G0(P)K0(P)Gu(P),(2) (1)
isknowncompletely.1ThusweseekthemassMandwavefunctionΨsuchthatEq.(1)withP2=M2issatis ed.AconsequenceofthecompleteknowledgeofGu(P)isthatthemass
nspectrumMu(n=1,2,3,...)andcorrespondingwavefunctionsΦnoftheunperturbed
equation
1G 0(P) K0(P)Φn=0
n2whereP2=(Mu),areknown.
ThetaskofsolvingEq.(1)byexpressingthemassMandwavefunctionΨasaperturba-tionserieswithrespecttoK1isaproblemwhosesolutioniswell-knowninthecorrespondingcontextofnon-relativisticquantummechanics(givenbyso-calledtime-independentpertur-bationtheory).Unfortunatelythe(textbook)derivationusedtoobtainthequantumme-1chanicalresultisrestrictedtothecasewheretheinversefreeGreenfunctionG 0(P)islin-earlydependentonenergyP0andwheretheunperturbedkernelK0isanenergy-independentHermitianoperator.Althoughtheserestrictionsleadtotheclosureandorthonormalitycon-ditions (3)
¯nΦm=δnm,Φ n¯n=1,ΦnΦ(4)
Standard derivations of ``time-independent perturbation theory'' of quantum mechanics cannot be applied to the general case where potentials are energy dependent or where the inverse free Green function is a non-linear function of energy. Such derivations
whicharecrucialforthederivationoftime-independentperturbationtheory,theyarenotvalidintheBethe-Salpetercase.Indeednoneoftheserestrictionsarerequiredinthecontextofacovariant eldtheoreticapproach.Inthispaperwethereforepresentanewsolution1totheperturbationproblemwhichisvalidforanyformofG 0(P)andK0(P);inparticu-1lar,oursolutionisvalidforthecaseofcovariant eldtheoreticapproacheswhereG 0(P)dependsnonlinearlyonP0andwhereK0(P)canbeenergy(P0)dependent.Oursolution,giveninEq.(24)andEq.(25)forthenondegeneratecase,andinEq.(43)andEq.(46)forthedegeneratecase,expressesthemassMoftheboundstateorresonanceandthecorrespondingwavefunctionΨintermsofcompactexpressionsthattakeintoaccounttheperturbationtermK1toanyorder.Atthesametime,ourformulationallowsustowritetheperturbationseriesforbothMandΨ,uptoanyorder,inastraightforwardwaywhichismaximallyclosetotheanalogousquantummechanicalformulation.Afurtherimportantaspectofourapproachisthatitismanifestlycovariant.ThisfeatureenablesthedirectuseoftheperturbationseriesforΨalsoincaseswheretheboundstateorresonanceisnotatrest.InthiswaythemoreinvolvedapproachofLorentzboostingwavefunctionscalculatedperturbativelyintherestframe,canbeavoided.Assuch,ourapproachtotheperturbationproblemwherenorestrictionisputontheenergydependenceofkernelsandinversefreeGreenfunctions,mayprovidesomeimportantadvantagesoverpreviousformulations[5,6,2].
II.PERTURBATIONTHEORY
A.Basicequations
Inthispaperweusetheframeworkofrelativisticquantum eldtheorytoillustrateourapproachtoperturbationtheory.Althoughthisisdonepartlyforpresentationalpurposes–itisaparticularcasewherethekernelisenergydependentandwheretheinverseGreenfunc-tionisnon-linearlydependentonenergy,itisalsoaparticularlytopicalcase,asdiscussedintheIntroduction.Ontheotherhand,weemphasizethatourapproachtoperturbationtheorydoesnotdependontheparticulartheoreticalframeworkinwhichtheboundstateproblemisset–itcanbethatofnon-relativisticquantummechanics,relativisticquantum eldtheory,three-dimensionalrelativisticquasi-potentialequations,etc.Similarly,ourap-proachdoesnotdependonthefunctionalformtakenbytheenergydependenceofeitherthekernelortheinversefreeGreenfunction.Allweneedtoassumeistheusualoverallstructureofthedynamicalequationsinvolved,asexempli edbyEq.(1)andEq.(2).WethusconsidertheGreenfunction
G(P)=G0(P)+G0(P)K(P)G(P),(5)
wherePisthetotalfour-momentum,G0isthefullydisconnectedpartofG,andwherethekernelKconsistsofapartK0forwhichthecorrespondingGreenfunctionisknown,andasmallpartK1whichcanbetreatedasaperturbation.Thus
K(P)=K0(P)+K1(P),(6)
anditisassumedthattheunperturbedGreenfunctionGu(P)hasbeenpreviouslydeter-minedbysolvingEq.(2).WeareinterestedinthecasewhereGu(P)hasapolecorrespondingtoaboundorresonancestate.Thuswecanwrite
Standard derivations of ``time-independent perturbation theory'' of quantum mechanics cannot be applied to the general case where potentials are energy dependent or where the inverse free Green function is a non-linear function of energy. Such derivations
Gu(P)=¯P)iΦ(P)Φ(
¯P)arelikewiseassumedtobecovariantfunctionswhichThewavefunctionsΨ(P)andΨ(¯,whereP¯2=M2,totherespectivesolutionsoftheboundstatereduceinthelimitP→P
equations
¯)=G0(P¯)K(P¯)Ψ(P¯),Ψ(Pand¯P¯)=Ψ(¯P¯)K(P¯)G0(P¯).Ψ((10)P2 M2 b(P).+G(9)
TowriteaperturbationseriesforG,weexpressGintermsoftheknownunperturbedGreenfunctionGuthroughtheequation
G(P)=Gu(P)+Gu(P)K1(P)G(P),(11)
1 1 1whichfollowsfromthefactthatG 1=G 0 KandGu=G0 K0.ByiteratingEq.(11)
weobtainaperturbationseriesforG(P)withrespecttotheperturbationK1(P).What
Standard derivations of ``time-independent perturbation theory'' of quantum mechanics cannot be applied to the general case where potentials are energy dependent or where the inverse free Green function is a non-linear function of energy. Such derivations
appearsmoredi cultisto ndacorrespondingperturbationseriesforthemassMandwavefunctionΨ.Yetifonecloselyexaminesthestructureoftheaboveequations,itcanbediscoveredthatamathematicallysimilarproblemwassolvedlongagobyFeshbach[7]albeitintheratherdi erentcontextofnuclearreactiontheory.Indeedthereareanumberofothercontextswhereanalogousproblemshavebeensolved,thecaseofmassandvertexrenormalizationinpion-nucleonscatteringbeingparticularlynoteworthy[8].InthenextsectionweshallthereforeusethemethodofFeshbachtoderivethesolutionofourcovariantperturbationtheoryproblem.
B.Solution
¯andtheInthissubsectionwederiveexpressionsfortheboundstatewavefunctionsΨ,Ψ,
boundstatemassMcorrespondingtothefullkernelKofEq.(6).Althoughourgoalistoformulatethecovariantperturbationtheoryforthisproblem,weinfactderiveexpressions¯andM,thatareexactwithallordersofK1beingtakenintoaccount.StartingforΨ,Ψ,
fromtheseexactexpressionsitisthentrivialtogeneratealltermsoftheperturbationseries.Topresentoursolutionitwillbeconvenienttodiscussthecasesofnondegenerateanddegeneratestates,separately.
1.Nondegeneratecase
Inthenondegeneratecase,toeachunperturbedboundstatemassMutherecorrespondsauniqueboundstatewavefunctionΦ.TheunperturbedGreenfunctionGu(P)thenhasthe“poleplusbackground”structure,asgiveninEq.(7).HavinginmindthatthefullGreenfunctionG(P)hasasimilarstructureasgiveninEq.(9),andthatourgoalistorelatethequantitiesinthesetwoexpression,webeginbyintroducinga“background”GreenfunctionGb(P)de nedasthesolutionoftheequation
bbGb(P)=Gbu(P)+Gu(P)K1(P)G(P).(12)
b(P)whereG b(P)wasde nedinEq.(9).FromEq.(12)itfollowsNotethatGb(P)=G
that
(1+GbK1) 1Gb=Gbu,(13)
wherewehavedroppedthemomentumargumentsforconvenience.SimilarlyEq.(11)implies
G(1+K1G) 1=Gu.
Subtractingthelasttwoequations,weobtain
G(1+K1G) 1(14) (1+GK1)G=b 1b¯iΦΦ
Standard derivations of ``time-independent perturbation theory'' of quantum mechanics cannot be applied to the general case where potentials are energy dependent or where the inverse free Green function is a non-linear function of energy. Such derivations
(1+GK1)G G(1+K1G)=(1+GK1)bbb¯iΦΦ
¯+K1G)bywritingwhichcanbesolvedforΦ(1
¯K1(1+GbK1)iΦΦ(1¯+K1G)Φb¯¯Φ(1+K1G)=Φ(1+K1G)+
12P2 Mu,(17)
UsingthisresultinEq.(17)weobtaintheresultweareseeking:
¯(P)iψ(P)ψG(P)=2P2 Mu¯+K1Gb).Φ(1(19)
¯),andΨ(¯P¯)=Zψ(P
′ ¯P)[K1(P)+K1(P)Gb(P)K1(P)]Φ(P) 1 iΦ(
u√,¯2=M2P2=P(23)withtheprimeindicatingaderivativewithrespecttoP2,and 22b¯P¯)K1(P¯)+K1(P¯)G(P¯)K1(P¯)Φ(P¯).M=M+iΦ((24)
InthisrespectitisworthnotingthatbecauseallourwavefunctionsandGreenfunctionsareLorentzcovariant,thequantityinthecurlybracketsofEq.(23)[whichalsoappearsinEq.(24)],isaLorentzscalardependingonlyonP2.
Thus,inthenondegeneratecase,theproperlynormalizedwavefunctionsforthefullperturbationtheoryare
¯)=1 iΦ(¯P¯)K1(P¯)+K1(P¯)Gb(P¯)K1(P¯)Φ(P¯)Ψ(P
b ¯P¯)=Φ(¯P¯)[1+K1(P¯)G(P¯)]1 iΦ(¯P¯)K1(P¯)+K1(P¯)G(P¯)K1(P¯)Φ(P¯)Ψ(b
Wenotethatthesewavefunctionssatisfythenormalizationcondition
¯P)iΨ( G 1(P) ′ 1/2¯)K1(P¯)]Φ(P¯),(25)[1+Gb(P ′ 1/2.(26)
Standard derivations of ``time-independent perturbation theory'' of quantum mechanics cannot be applied to the general case where potentials are energy dependent or where the inverse free Green function is a non-linear function of energy. Such derivations
2.Referenceframedependenceofthewavefunctions
Asfarasweknow,allpreviousattemptsatdevelopingperturbationtheoryforrelativis-ticsystemshaveconsideredboundstatesonlyatrest(seee.g.[5]).Ontheotherhand,forobservablesinvolvingscatteringo theboundstate(e.g.electromagneticform-factors)takingintoaccountthetotalmomentumdependenceoftheboundstatewavefunctionisimportant.Intherelativisticcasetherearesomesubtletiesinthedeterminationofthisde-pendenceperturbativelyandatthesametimeinamanifestlycovariantway.Onepossiblewaytodothisistoderivethewavefunctiontotheneededorderintherestreferenceframe,andthentoboostitinordertogiveitthedesiredmomentum.Therearetwodisadvantagestothisapproach:oneisthatitinvolvestwoseparatesteps-theperturbationexpansion¯/Mwhichdeter-andtheboosting.Theseconddisadvantageisthattheunitvectorn=P
minestheboost[14],itselfmayneedtobecalculatedperturbatively.Toillustratethis,we¯)to rstorderintheconsiderthedeterminationofascalarboundstatewavefunctionΨ(P
perturbation.Showingexplicitlyonerelativemomentumpinadditiontothetotalon-shell¯,we rstwritetheperturbedwavefunctionasaboostedwavefunctionatrest:momentumP
¯,Lnp)=SLnΨ0(Lnp)¯,p)=SLnΨ(LnPΨ(P(28)
¯=(M,0),SLnistheassociatedtrans-whereLnistheboostLorentztransformation,LnP
formationmatrixactingonthespinindicesoftheconstituents,andΨ0(q)istheboundstatewavefunctionatrest.NextstepistocalculateΨ0(q)to rstorderintheperturba-tion:Ψ0(q)=(1+η1)Φ0(q),wherethe rst-ordercorrectionfactorη1isgivenexplicitlyinEq.(57).Thus
¯,p)=SLn(1+η1)Φ0(Lnp).Ψ(P
√¯AsLnisafunctionoftheunitvectorn=P/M=((29)
Standard derivations of ``time-independent perturbation theory'' of quantum mechanics cannot be applied to the general case where potentials are energy dependent or where the inverse free Green function is a non-linear function of energy. Such derivations
P¯u,p)allthesolutionsoftheboundstatewavefunctions,sotothisendwedenotebyΦ(¯uhasthepropertyboundstateequation[ rstofEqs.(8)]forwhichthetotalmomentumP¯2=M2.Wethennotethatonecannotsimplyde neΦ(P,p)=Φ( P¯u,p)whereP=(P0,P)Puu ¯u=(andP
P2wherePisarbitrary.Thus,ifwede newavefunctionΦ(P,p)as
MuP,p,Φ(P,p)=ΦP2
itimmediatelyfollowsthat
Φ(P,p)=SLΦ(LP,Lp),(32) (31)
whichisthestatementthatwavefunctionΦ(P,p)isLorentzcovariantinthewayweneed.InthiswaywehaveconstructedawavefunctionΦ(P,p)thatsatis esthesought-afterLorentz P¯u,p)ascovariance,whileatthesametimereducingtotheboundstatewavefunctionΦ(¯u(infactΦ(P,p),asde nedbyEq.(31),istheboundstatewavefunctionwithtotalP→P√momentumMuP/
Asforthenon-degeneratecase,weshallassumeourwavefunctionstobecovariantbutnotdependentonP2.ThewavefunctionsΦjare,bytheassumptionofr-folddegeneracy,
2P2 Mu+Gbu(P).(33)
Standard derivations of ``time-independent perturbation theory'' of quantum mechanics cannot be applied to the general case where potentials are energy dependent or where the inverse free Green function is a non-linear function of energy. Such derivations
1linearlyindependent.ApplyingthisfacttothepolestructureoftheidentityGuG uGu=Gu,
weobtainthenormalizationconditionforthesewavefunctions:
1 G¯iu(P)iΦ
Standard derivations of ``time-independent perturbation theory'' of quantum mechanics cannot be applied to the general case where potentials are energy dependent or where the inverse free Green function is a non-linear function of energy. Such derivations
¯S(P).SincedetD(P)= jDj(P)=0,thewithsimilarde nitionsholdingforΦS(P)andΦ
GreenfunctionG(P)willhavepolesatP2=Mj2,j=1,2,3,...,r,whereMjisthesolutionoftheequation
Mj2=2MubS¯S+iΦj(Pj)K1(Pj)+K1(Pj)G(Pj)K1(Pj)Φj(Pj),
¯S(P)andΦS(P)beingPjbeinganymomentumsatisfyingPj2=Mj2,andthefunctionsΦjjSS¯thej’thelementsofΦ(P)andΦ(P),respectively.
TakingintoaccountthediagonalnatureofD(P),Eq.(40)canbewrittenas
G(P)=i jS 1¯S(P)+Gb(P).ψj(P)Dj(P)ψj (43)(44)
Thus,assumingthattheperturbedboundstatemassMjisitselfnondegenerate, wecan nditscorrespondingwavefunctionΨjasinthenondegeneratecaseabove:Ψj=
Sb¯S1 iΦj(Pj)[K1(Pj)+K1(Pj)G(Pj)K1(Pj)]Φj(Pj)
Thus,inthedegeneratecaseoftheunperturbedtheory,theproperlynormalizedwavefunc-tionscorrespondingtothe(nondegenerate)boundstatemassMjofthefullperturbationtheory,are
Ψj= ′.(45)¯S(Pj)[1+K1(Pj)Gb(Pj)].ZjΦj(47)
ments
ThemainresultsofthissubsectionaretheexpressionsforM2andΨgiveninthenondegeneratecasebyEq.(24)andEq.(25),andinthedegeneratecasebyEq.(43)andEq.(46),respectively.Notonlyaretheseexpressionsexactandcompact,buttheycanalsobeeasilyusedtowritedowntheexplicitperturbationseriesforthesequantities.Forthis
2purposeitismost√convenienttotreatallfunctionsofPasfunctionsofPandtheunitfour-
vectorn=P/
Standard derivations of ``time-independent perturbation theory'' of quantum mechanics cannot be applied to the general case where potentials are energy dependent or where the inverse free Green function is a non-linear function of energy. Such derivations
1=K1+K′δK1+δ2
2!
whereGbu+...′′(50)
2δ≡M2 Mu(51)
2andeachtermwithoutatildeisevaluatedatP2=Mu,wecanimmediatelywriteM2asa
perturbationserieswithrespecttoordersofK1≡K1(Mu):
2M2=Mu+δ1+δ2+δ3+...(52)
where
¯K1Φδ1=iΦ
¯δ1K′+K1GbK1Φδ2=iΦ1u
¯δ3=iΦ ′δ2K1(53) (54)+2δ1
2 1+GbuK1
2
81
4(57) η2=η3=
etc.1+δ1GbuK1 ′+η1GbuK1δ221 (58)GbuK1 ′′1 1 2+15+η2GbuK1(59)
where iisderivedfromδibyputtinganextraderivativeoneachK1andGbu;thatis,
′¯K1 1=iΦΦ
′′′¯δ1K1 2=iΦ+(K1GbuK1)Φ(60) (61)
¯ 3=iΦ ′′δ2K1+2δ1
Standard derivations of ``time-independent perturbation theory'' of quantum mechanics cannot be applied to the general case where potentials are energy dependent or where the inverse free Green function is a non-linear function of energy. Such derivations
Asimilarprocedurecanbeusedtogeneratetheperturbationseriesforthedegeneratecase.Itisworthnotingthattheperturbativecorrectionstotheboundstatewavefunction,asderivedhere,areparticularlyimportanttotakeintoaccountwhencalculatingcorrectionstovertices(electromagnetic,axial,etc.)withinconstituentmodels.Itisonlybytakingintoaccounttheappropriateorderofwavefunctionperturbationexactly,willsymmetryproper-ties,likeforexamplegaugeinvariance,bepreservedateachorderinthevertexcorrection–foraconcreteexample,seeRef.[10]whereEq.(57)wasusedtodeterminethefulllowestorderpioniccorrectiontothenucleonvertexfunctionintheNJLmodel.
ItisalsoworthpointingoutthatinthecasewheretheperturbationK1istoolargeforaperturbativetreatment,ourexpressionsofEq.(24),Eq.(25)Eq.(43),andEq.(46)maystillbeusefulforperformingpracticalnonperturbativecalculationsofM2andΨ.Indeed,inboththedegenerateandnondegeneratecases,themaincalculationale ortwouldbeinsolvingEq.(12)forthe“background”GreenfunctionGb.Yetthisisanespeciallysimpleequation,ofstandardLippmann-Schwingerform,whereGbhasnopoleatP2=M2and
22GbuhasnopoleatP=Mu(sincetheyhavebeensubtracted),andwherethereareno
singularitiesintheintegrationovermomenta.EvenintheunlikelyeventthatGbuhappens
22tohaveanunsubtractedpoleclosetoP=M,thiscasecanbeeasilyhandlednumerically.
Finally,itisusefultonotethatGbuhasalreadybeenconstructedfortheimportantcaseofthenonrelativisticCoulombproblembySchwinger[11]–aresultthatcanbeeasilyadaptedtotherelativisticCoulombcase[2].
III.DISCUSSIONANDSUMMARY
InthisworkwehavepresentedageneralformulationofperturbationtheoryapplicabletoboundstatesandresonanceswheretheboundstateequationsinvolvekernelsandinversefreeGreenfunctionsthathaveanarbitraryenergydependence.Ourformulationisthusdirectlyapplicabletotheimportantcaseofrelativisticquantum eldtheory.Onecanconsiderourresultsasextendingthewell-knowntime-independentperturbationtheoryofquantummechanicstothecasewherethekernelsareenergy-dependentandwheretheinversepropagatorsarenon-linearintheenergy.
Inparticular,wehavederivedexpressionsfortheboundstate(orresonance)massMandwavefunctionΨofasystemwhoseinteractionkernelKconsistsofapartK0forwhichthecorrespondingGreenfunctionGuisknown,andapartK1whichplaystheroleofaperturbation.OurresultsforMandΨarecontainedinEq.(24)andEq.(25)forthenondegeneratecase,andinEq.(43)andEq.(46)forthedegeneratecase,andhavethefeaturethattheyareexact,withtheperturbationK1takenintoaccounttoallorders.ThekeyelementintheseexpressionsistheGreenfunctionGbwhichneedstobefoundbysolvingEq.(12).Forsu cientlysmallK1,Eq.(12)canbesolvedsimplybyiteration,inthiswaygeneratingaperturbationexpansioninK1thatistheanalogueofthetime-independentperturbationtheoryofquantummechanics.Ontheotherhand,ifK1isnotsmallenoughtogenerateaconvergentperturbationseries,Eq.(12)couldstillbesolvedbystandardnumericaltechniquesforintegralequations.
Asfarasweknow,ourformulationoftheperturbationtheoryproblemisnew.How-ever,thereareafewalternativeformulationsavailableintheliterature,allpresentedfor
Standard derivations of ``time-independent perturbation theory'' of quantum mechanics cannot be applied to the general case where potentials are energy dependent or where the inverse free Green function is a non-linear function of energy. Such derivations
theparticularcaseofrelativisticquantum eldtheory.The rstoftheseisamethodwheretheperturbationseriesforM2andΨareexpressedintermsofcontourintegrals.OriginallydevelopedbyKato[9]anddescribedinMessiah’sstandardtext[12]forthecaseofquantummechanics,thecontourmethodwasextendedtothecovariantcasebyLepage[5]andused,forexample,byMurato[13].Anothermethod,duetoBodwinandYennie[6],isclosestinspirittoourapproach,butdoesnothavethefeatureofhavingclosedexpressionsfortheperturbedmassandwavefunction.AthirdapproachistherecentformulationofIvanovetal.[2]whoseperturbativeexpansionisexpressedintermsofacertain“relativisticgeneral-izationofaprojectionoperator”.Inthisapproachthesecondderivativeoftheinversefree12propagator, 2G 0/ E,looksverymuchlikeagenuineandnecessaryrelativisticfeature,yetitdoesnotappearinourformulationatallandisthusjustanartifactoftheparticu-larderivationused.Similarly,theexpressionforthelowest-orderwavefunctioncorrectionderiveddirectlyfromEq.(9)ofRef.[2]containsfourtermsagainstouronlyone.
Ineachoftheabovethreealternativeapproaches,perturbativecorrectionstotheboundstatewavefunctionwerederivedonlyforthespecialcasewheretheboundstateisatrest.Thus,inordertodescribescatteringprocesswheretheboundstatehasnon-zerototalmomentum,suchwavefunctioncorrectionsneedtobemodi edbytheappropriateLorentzboost(thatitselfdependsontheorderofperturbationbeingconsidered).Bycontrast,ourapproachhasenabledustowriteexpressionsfortheboundstatewavefunctioncorrectionsthatareLorentzcovariantateachorderoftheperturbation,thusavoidingthestepofboostingfromtherestframe.Althoughallperturbationexpansionsmustmathematicallybeidentical,itisevidentthattheexpressionsprovidedbyourEq.(24),Eq.(25),Eq.(43),andEq.(46)arethesimplestbothpracticallyandconceptually.
ACKNOWLEDGMENTS
WewouldliketothankA.G.Rusteskyforfruitfuldiscussions.ThisworkispartiallysupportedbytheEngineeringandPhysicalSciencesResearchCouncil(U.K.).
Standard derivations of ``time-independent perturbation theory'' of quantum mechanics cannot be applied to the general case where potentials are energy dependent or where the inverse free Green function is a non-linear function of energy. Such derivations
REFERENCES
[1]N.Ishii,Phys.Lett.B431,1(1998).
[2]M.A.Ivanov,V.E.Lyubovitskij,E.Z.Lipartia,andA.G.Rusetsky,Phys.Rev.D58,094024(1998).
[3]H.Sazdjian,Phys.Lett.B490,203(2000).
[4]R.N.FaustovandA.P.Martynenko,J.Exp.Theor.Phys.88,672(1999);reporthep-ph/0011344.
[5]G.P.Lepage,Phys.Rev.A16,863(1977).
[6]G.T.BodwinandD.R.Yennie,Phys.Rept.43,267(1978).
[7]H.Feshbach,AnnalsofPhysics5,357(1958);ibid.19,287(1962).
[8]I.R.AfnanandA.T.Stelbovics,Phys.Rev.C23,1384(1981);S.MoriokaandI.R.Afnan,Phys.Rev.C26,1148(1982).
[9]T.Kato,Prog.Theor.Phys.4,514(1949).
[10]A.N.Kvinikhidze,M.C.Birse,andB.Blankleider,Phys.Rev.C66,045203(2002).
[11]J.Schwinger,J.MathPhys.5,1606(1964).
[12]A.Messiah,QuantumMechanics,vol.II,section16.15(North-HollandPublishingCom-
pany,Amsterdam,1999).
[13]T.Murota,Prog.Theor.Phys.Supplement95,46(1988).
[14]S.Gasiorowicz,ElementaryParticlePhysics(JohnWiley&Sons,NewYork,1966).
- 1The American Dream is a national ethos of the United States
- 2Theory of Electrons in Solids Lu
- 3美国法典(United States Code)简介
- 4Branes, Fluxes and Duality in M(atrix)-Theory
- 5Educational systems in the Republic of China and the United States
- 6Skopos Theory 目的论
- 7Wilson and Sperber--Relevance Theory
- 8Wilson and Sperber--Relevance Theory
- 9Skopos Theory 目的论
- 10Skopos Theory 目的论
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- Perturbation
- propagators
- resonances
- potentials
- theory
- states
- bound
- where
- 中传传媒经济学考研难度及跨专业报考人数详细分析
- 双层玻璃与中空玻璃的特点及区别
- 一位妈妈讲诉怎样去除肚子上的妊娠纹
- 精神文明建设文明礼仪常识
- 将混沌引入大学物理教学的探讨
- 后浇带施工工艺标2
- 电子病历操作手册 - 副本
- 劲酒品牌推广员工作手册
- 培训:DB11-693-2017建设工程临建房屋技术标准(培训材料)
- 义务教育语文课程标准(2011年版)(word版本)
- 统计学上机实验报告
- 难治性急性白血病中西医诊治
- 婚纱照注意事项1
- 采用加速折旧法计提固定资产折旧的思考
- “十三五”重点项目-改性石墨烯项目可行性研究报告
- 介绍常见的音频文件格式的特点
- 名匠装饰公众演讲与沟通训练
- 2012秋新目标英语七年级上期末复习
- 班主任经验交流会材料 (1)
- 学校公共场所及物品定期消毒制度