电厂发电原理

更新时间:2024-06-11 19:01:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

火力发电厂基本生产过程

第一部分 概 述

以煤、石油或天然气作为燃料的发电厂统称为火电厂。山东省的电厂95%以上是火力发电厂。 1、火电厂的分类

(1)按燃料分类:①燃煤发电厂,即以煤作为燃料的发电厂;邹县、石横青岛等电厂

②燃油发电厂,即以石油(实际是提取汽油、煤油、柴油后的渣油)为燃料的发电厂;辛电电厂 ③燃气发电厂,即以天然气、煤气等可燃气体为燃料的发电厂;

④余热发电厂,即用工业企业的各种余热进行发电的发电厂。此外还有利用垃圾及工业废料作燃料的发电厂。

(2)按原动机分类:凝汽式汽轮机发电厂、燃汽轮机发电厂、内燃机发电厂和蒸汽-燃汽轮机发电厂等。

(3)按供出能源分类:①凝汽式发电厂,即只向外供应电能的电厂; ②热电厂,即同时向外供应电能和热能的电厂。

(4)按发电厂总装机容量的多少分类:①小容量发电厂,其装机总容量在100MW以下的发电厂;

②中容量发电厂,其装机总容量在100~250MW范围内的发电厂; ③大中容量发电厂,其装机总容量在250~600MW范围内的发电厂; ④大容量发电厂,其装机总容量在600~1000MW范围内的发电厂; ⑤特大容量发电厂,其装机容量在1000MW及以上的发电厂。

(5)按蒸汽压力和温度分类:①中低压发电厂,其蒸汽压力在3.92MPa(40kgf/cm2)、温度为450℃的发电厂,单机功率小于25MW;地方热电厂。

②高压发电厂,其蒸汽压力一般为9.9MPa(101kgf/cm2)、温度为540℃的发电厂,单机功率小于100MW;

③超高压发电厂,其蒸汽压力一般为13.83MPa(141kgf/cm2)、温度为540/540℃的发电厂,单机功率小于200MW;

④亚临界压力发电厂,其蒸汽压力一般为16.77MPa(171 kgf/cm2)、温度为540/540℃的发电厂,单机功率为30OMW直至1O00MW不等;

⑤超临界压力发电厂,其蒸汽压力大于22.llMPa(225.6kgf/cm2)、温度为550/550℃的发电厂,机组功率为600MW及以上,德国的施瓦茨电厂。

(6)按供电范围分类:①区域性发电厂,在电网内运行,承担一定区域性供电的大中型发电厂; ②孤立发电厂,是不并入电网内,单独运行的发电厂;

③自备发电厂,由大型企业自己建造,主要供本单位用电的发电厂(一般也与电网相连)。 2、火电厂的生产流程及特点

火电厂的种类虽很多,但从能量转换的观点分析,其生产过程却是基本相同的,概括地说是把燃料(煤)中含有的化学能转变为电能的过程。整个生产过程可分为三个阶段:

① 燃料的化学能在锅炉中转变为热能,加热锅炉中的水使之变为蒸汽,称为燃烧系统; ② 锅炉产生的蒸汽进入汽轮机,推动汽轮机旋转,将热能转变为机械能,称为汽水系统; ③ 由汽轮机旋转的机械能带动发电机发电,把机械能变为电能,称为电气系统。 其基本生产流程为:

整个电能生产过程如图1

与水电厂和其他类型的电厂相比,火电厂有如下特点:

凝汽式火电厂生产过程示意图

(1)火电厂布局灵活,装机容量的大小可按需要决定。

(2)火电厂建造工期短,一般为水电厂的一半甚至更短。一次性建造投资少,仅为水电厂的一半左右。

(3)火电厂耗煤量大,目前发电用煤约占全国煤碳总产量的25%左右,加上运煤费用和大量用水,其生产成本比水力发电要高出3~4倍。

(4)火电厂动力设备繁多,发电机组控制操作复杂,厂用电量和运行人员都多于水电厂,运行费用高。

(5)汽轮机开、停机过程时间长,耗资大,不宜作为调峰电源用。 (6)火电厂对空气和环境的污染大。 第二部分 三大系统简介 一、燃烧系统

燃烧系统由输煤、磨煤、燃烧、风烟、灰渣等环节组成,其流程如图2所示。

(l)运煤。电厂的用煤量是很大的,一座装机容量4×3O万kW的现代火力发电厂,煤耗率按36Og/kw.h计,每天需用标准煤(每千克煤产生70O0卡热量)360(g)×120万(kw)×24(h)=10368t。因为电厂燃煤多用劣质煤,且中、小汽轮发电机组的煤耗率在40O~5O0g/kw?h左右,所以用煤量会更大。据统计,我国用于发电的煤约占总产量的1/4,主要靠铁路运输,约占铁路全部运输量的4O%。为保证电厂安全生产,一般要求电厂贮备 十天以上的用煤量。

(2)磨煤。用火车或汽车、轮船等将煤运至电厂的储煤场后,经初步筛选处理,用输煤皮带送到锅炉间的原煤仓。煤从原煤仓落入煤斗,由给煤机送入磨煤机磨成煤粉,并经空气预热器来的一次风烘干并带至粗粉分离器。在粉粉分离器中将不合格的粗粉分离返回磨煤机再行磨制,合格的细煤粉被一次风带入旋风分离器,使煤粉与空气分离后进入煤粉仓。

(3)锅炉与燃烧。煤粉由可调节的给粉机按锅炉需要送入一次风管,同时由旋风分离器送来的气体(含有约10%左右未能分离出的细煤粉),由排粉风机提高压头后作为一次风将进入一次风管的煤粉经喷燃器喷入炉膛内燃烧。

电厂煤粉炉燃烧系统流程图

目前我国新建电厂以300MW及以上机组为主。300MW机组的锅炉蒸发量为10O0t/h(亚临界压力),采用强制循环(或自然循环)的汽包炉;600MW机组的锅炉为200Ot/h的(汽包)直流锅炉。在锅炉的四壁上,均匀分布着4支或8支喷燃器,将煤粉(或燃油、天然气)喷入炉膛,火焰呈旋转状燃烧上升,又称为悬浮燃烧炉。在炉的顶端,有贮水、贮汽的汽包,内有汽水分离装置,炉膛内壁有彼此紧密排列的水冷壁管,炉膛内的高温火焰将水冷壁管内的水加热成汽水混合物上升进入汽包,而炉外下降管则将汽包中的低温水靠自重下降至下连箱与炉 内水冷壁管接通,靠炉外冷水下降而炉内水冷壁管中热水自然上升的锅炉叫自然循环汽包炉,而当压力高到16.66~17.64MPa时,水、汽重度差变小,必须在循环回路中加装循环泵,即称为强制循环锅炉。当压力超过18.62MPa时,应采用直流锅炉。

(4)风烟系统。送风机将冷风送到空气预热器加热,加热后的气体一部分经磨煤机、排粉风机进人炉膛,另一部分经喷燃器外侧套筒直接进入炉膛。炉膛内燃烧形成的高温烟气,沿烟道经过热器、省煤器、空气预热器逐渐降温,再经除尘器除去90%~99%(电除尘器可除去99%)的灰尘,经引风机送入烟囱,排向天空。

(5)灰渣系统。炉膛内煤粉燃烧后生成的小灰粒,被除尘器收集成细灰排入冲灰沟,燃烧中因结焦形成的大块炉渣,下落到锅炉底部的渣斗内,经过碎渣机破碎后也排入冲灰沟,再经灰渣水

泵将细灰和碎炉渣经冲灰管道排往灰场(或用汽车将炉渣运走)。 二、汽水系统

火电厂的汽水系统由锅炉、汽轮机、凝汽器、除氧器、加热器等设备及管道构成,包括凝给水系统、再热系统、回热系统、冷却水(循环水)系统和补水系统,如图3所示。

(1)给水系统。由锅炉产生的过热蒸汽沿主蒸汽管道进入汽轮机,高速流动的蒸汽冲动汽轮机叶片转动,带动发电机旋转产生电能。在汽轮机内作功后的蒸汽,其温度和压力大大降低,最后排入凝汽器并被冷却水冷却凝结成水(称为凝结水),汇集在凝汽器的热水井中。凝结水由凝结水泵打至低压加热器中加热,再经除氧器除氧并继续加热。由除氧器出来的水(叫锅炉给水),经给水泵升压和高压加热器加热,最后送人锅炉汽包。在现代大型机组中,一般都从汽轮机的某些中间级抽出作过功的部分蒸汽(称为抽汽),用以加热给水(叫做给水回热循环),或把作过一段功的蒸汽从汽轮机某一中间级全部抽出,送到锅炉的再热器中加热后再引入汽轮机的以后几级中继续做功(叫做再热循环)。

(2)补水系统。在汽水循环过程中总难免有汽、水泄漏等损失,为维持汽水循环的正常进行,必须不断地向系统补充经过化学处理的软化水,这些补给水一般补入除氧器或凝汽器中,即是补水系统。

(3)冷却水(循环水)系统。为了将汽轮机中作功后排入凝汽器中的乏汽冷凝成水,需由循环水泵从凉水塔抽取大量的冷却水送入凝汽器,冷却水吸收乏汽的热量后再回到凉水塔冷却,冷却水是循环使用的。这就是冷却水或循环水系统。

电厂汽水系统流程示意图 三、电气系统

发电厂的电气系统,包括发电机、励磁装置、厂用电系统和升压变电所等,如图4所示。 发电机的机端电压和电流随着容量的不同而各不相同,一般额定电压在10~20kV之间,而额定电流可达2OkA。发电机发出的电能,其中一小部分(约占发电机容量的4%~8%),由厂用变压器降低电压(一般为63kV和400V两个电压等级)后,经厂用配电装置由电缆供给水泵、送风机、磨煤机等各种辅机和电厂照明等设备用电,称为厂用电(或自用电)。其余大部分电能,由主变压器升压后,经高压配电装置、输电线路送入电网。

发电厂电气系统示意图

第三部分 电厂主要设备介绍 锅炉?

锅炉是火力发电厂中主要设备之一。它的作用是使燃料在炉膛中燃烧放热,并将热量传给工质,以产生一定压力和温度的蒸汽,供汽轮发电机组发电。电厂锅炉与其他行业所用锅炉相比,具有容量大、参数高、结构复杂、自动化程度高等特点。 一、电厂锅炉的容量和参数

锅炉容量即锅炉的蒸发量,指锅炉每小时所产生的蒸汽量。在保持额定蒸汽压力、额定蒸汽温度、使用设计燃料和规定的热效率情况下,锅炉所能达到的蒸发量称作额定蒸发量。 电厂锅炉的额定参数是指额定蒸汽压力和额定蒸汽温度。所谓蒸汽压力和温度是指过热器主汽阀出口处的过热蒸汽压力和温度。

对于装有再热器的锅炉,锅炉蒸汽参数还应包括再热蒸汽参数。 我国电厂锅炉的蒸汽参数及容量系列如下表所示。 我国电厂锅炉的蒸汽参数及容量系列

参数 最大连续蒸发量(MCR)

(t/h) 发电功率 (MW) 蒸汽压力

(Mpa) 蒸汽温度(℃) 给水温度 (℃)

2.5 400 105 20 3

3.9 450 145~155 35,65 6,12 165~175 130 25

9.9 540 205~225 220,410 50,100 13.8 540/540 220~250 420,670 125,200 16.8 540/540 250~280 1025 300

17.5 540/540 260~290 1025,2008 300,600 注蒸汽温度栏中的分子、分母分别为过热蒸汽温度和再热蒸汽温度。 二、电厂锅炉的分类 1.按蒸汽参数分类

(1)中压锅炉。压力为3.822MPa(39kgf/cm2),温度为450℃。

(2)高压锅炉。压力为6~10MPa,常用压力为9.8MPa(100kgf/cm2),温度为540℃。 (3)超高压锅炉。压力为10~14MPa,常用压力为13.72MPa(14O kgf/cm2),温度为555℃或540℃。

(4)亚临界压力锅炉。压力为 14~22.2MPa,常用压力为16.66MPa(170 kgf/cm2),温度为 555℃。

(5)超临界压力锅炉。压力大于22.2MPa(225.65 kgf/cm2),温度为 550~570℃。 2、按容量分类

小型锅炉蒸发量小于220t/h。 中型锅炉蒸发量为 22O~410t/h。 大型锅炉蒸发量不小于670t/h。 3.按燃烧方式分类

(l)悬浮燃烧锅炉。燃料在炉膛空间悬浮燃烧,燃烧可为煤粉、油或气体燃料。 (2)沸腾燃烧锅炉。固体燃料颗粒在炉排上呈沸腾状态进行燃烧,又称流化床锅炉。 4按排渣方式分类

固态排渣锅炉。燃料燃烧生成的灰渣呈固态排出。 液态排渣锅炉。燃料燃烧生成的灰渣呈液态排出。 5按循环方式分类

按照锅炉蒸发受热面内工质流动的方式可将锅炉分为下列几种,如图所示。

(1) 自然循环锅炉,是具有由汽包、下降管和上升管组成的循环回路的锅炉。它依靠下降管和上升管中工质柱重差产生自然循环的动力。(邹县电厂)

(2)强制循环锅炉,是在循环回路下降管上装有强制循环泵,以提高循环动力。(石横电厂)

(3)控制循环锅炉,是在强制循环锅炉的上升管入口加装节流圈,以控制各上升管中的工质流,防止发生循环停滞或倒流等故障。(石横电厂)

(4)直流锅炉是没有循环回路的锅炉,工质一次性通过各受热面变为过热蒸汽。(施瓦茨电厂)

锅炉蒸发受热面内工质流动的几种类型

(a)自然循环锅炉;(b)强制循环锅炉;(c)控制循环锅炉(d) 直流锅炉

1-给水泵,2-省煤器,3-汽包,4-下降管,5-联箱,6-蒸发受热面,7-过热器,8-循环泵,9-节流圈

(5)复合循环锅炉,它具有循环回路和再循环泵,同时具有切换阀门,低负荷时按再循环方式运行,高负荷时切换为直流方式运行,如图所示。也可在全部负荷下以较低的循环倍率进行循环,这种锅炉称作低倍率循环锅炉,如图所示。

目前,大型火力发电厂的锅炉多为亚临界压力以上的大型煤粉锅炉。

复合循环锅炉

(a)全负荷复合循环锅炉;比)部分负荷复合循环锅炉

1一来自给水泵;2一省煤器;3一汽水分离器;4一混合器;5一蒸发受热面; 6一循环泵;7一控制阀;8-节流圈;9-去过热器 三、锅炉机组基本工作过程

各种锅炉的工作都是为了通过燃料燃烧放热和高温烟气与受热面的传热来加热给水,最终使水变为具有一定参数的品质合格的过热蒸汽。水在锅炉中要经过预热、蒸发、过热三个阶段才能变为过热蒸汽。实际上,为了提高蒸汽动力循环的效率,还有第四个阶段,即再过热阶段,即将在汽轮机高压缸膨胀做功后压力和温度都降低了的蒸汽送回锅炉中加热,然后再送到汽轮机低压缸继续做功。为适应这四个变化阶段的需要,锅炉中必须布置相应的受热面,即省煤器、水冷壁、过热器和再热器。过热器和再热器布置在水平烟道和尾部烟道上部,省煤器布置在尾部烟道下部。为了利用烟气余热加热燃烧所需要的空气,常在省煤器后再布置空气预热器。大型锅炉有的在炉膛中增设预热受热面或过热、再热受热面。

锅炉机组的基本工作过程是:燃料经制粉系统磨制成粉,送入炉膛中燃烧,使燃料的化学能转变为烟气的热能。高温烟气由炉膛经水平烟道进入尾部烟道,最后从锅炉中排出。锅炉排烟再经过烟气净化系统变为干净的烟气,由风机送入烟囱排入大气中。烟气在锅炉内流动的过程中,将热量以不同的方式传给各种受热面。例如,在炉膛中以辐射方式将热量传给水冷壁,在炉膛烟气出口处以半辐射、半对流方式将热量传给屏式过热器,在水平

烟道和尾部烟道以对流方式传给过热器、再热器、省煤气和空气预热器。于是,锅炉给水便经过省煤器、水冷壁、过热器变成过热蒸汽,并把汽轮机高压缸做功后抽回的蒸汽变成再热蒸汽。 四、锅炉经济技术指标

锅炉的经济技术指标一般用锅炉热效率、钢材消耗率和可靠性来表示。

锅炉热效率是指送人锅炉的全部热量被有效利用的百分数。电厂锅炉热效率一般在90%以上。

钢材消耗率是指锅炉单位蒸发量所用的钢材重量,单位为t?t/h,一般在2.5~5t?t/h范围内。

锅炉可靠性用连续运行时数、事故率和可用率来评价。 连续运行时数是指两次检修之间的运行时数。

目前,国内电厂锅炉连续运行时数可达400Oh以上,事故率为1%左右,可用率可达90%。 汽机?

汽轮机是火力发电厂三大主要设备之一。它是以蒸汽为工质,将热能转变为机械能的高速旋转式原动机。它为发电机的能量转换提供机械能。 一、汽轮机的工作原理

由锅炉来的蒸汽通过汽轮机时,分别在喷嘴(静叶片)和动叶片中进行能量转换。根据蒸汽在动、静叶片中做功原理不同,汽轮机可分为冲动式和反动式两种。

冲动式汽轮机工作原理如图所示。具有一定压力和温度的蒸汽首先在固定不动的喷嘴中膨胀加速,使蒸汽压力和温度降低,部分热能变为动能。从喷嘴喷出的高速汽流以一定的方向进入装在叶轮上的动叶片流道,在动叶片流道中改变速度,产生作用力,推动叶轮和轴转动,使蒸汽的动能转变为轴的机械能。

在反动式汽轮机中,蒸汽流过喷嘴和动叶片时,蒸汽不仅在喷嘴中膨胀加速,而且在动叶片中也要继续膨

胀,使蒸汽在动叶片流道中的流速提高。当由动叶片流道出口喷出时,蒸汽便给动叶片一个反动力。动叶片同时受到喷嘴出口汽流的冲动力和自身出口汽流的反动力。在这两个力的作用下,动叶片带动叶轮和轮高速旋转,这就是反动式汽轮机的工作原理。

冲动式汽轮机工作原理

l一大轴;2一叶轮;3一动叶片;4一喷嘴

二、汽轮机设备的组成

汽轮机设备包括汽轮机本体、调速保护及油系统、辅助设备和热力系统等。 1.汽轮机本体

汽轮机本体由静止和转动两大部分构成。前者又称“静子”,包括汽缸、隔板、喷嘴、汽封和轴承等部件;后者又称“转子”,包括轴、叶轮和动叶片等部件。 2.调速保护及油系统

汽轮机的调速保护及油系统包括调速器、油泵、调速传动机构、调速汽门、安全保护装置和冷油器等部件。 3.辅助设备

汽轮机的辅助设备有凝汽器、抽汽器、除氧器、加热器和凝结水泵等。 4热力系统

汽轮机的热力系统包括主蒸汽系统、给水除氧系统、抽汽回热系统和凝汽系统等。 三、汽轮机的分类 1.按工作原理分类

如前所述,按工作原理不同,汽轮机可分为冲动式和反动式两种。 2按热力过程特性分类

按照热力过程特性的不同,汽轮机可分为下面四种:

(1)凝汽式汽轮机。其特点是在汽轮机中做功后的排汽,在低于大气压力的真空状态下进入凝汽器凝结成水。

(2)背压式汽轮机。其特点是在排汽压力高于大气压力的情况下,将排汽供给热用户。 (3)中间再热式汽轮机。其特点是在汽轮机高压部分做功后蒸汽全部抽出,送到锅炉再热器中加热,然后回到汽轮机中压部分继续做功。

(4)调整抽汽式汽轮机。其特点是从汽轮机的某级抽出部分具有一定压力的蒸汽供热用户使用,排汽仍进入凝汽器。 3.按主蒸汽参数分类

进人汽轮机的蒸汽参数是指蒸汽压力和温度。按不同压力等级可分为: (1)低压汽轮机。主蒸汽压力小于1.47MPa; (2)中压汽轮机。主蒸汽压力为 l.96~3.92MPa; (3)高压汽轮机。主蒸汽压力为 5.88~9.8MPa; (4)超高压汽轮机。主蒸汽压力为11.77~13.93MPa; (5)亚临界压力汽轮机。主蒸汽压力为15.69~17.65MPa; (6)超临界压力汽轮机。主蒸汽压力大于22.15MPa;

此外,按用途分类有电厂汽轮机、工业汽轮机、船用汽轮机;按汽流方向分类有轴流式、辐流式、周流式汽轮机;按汽缸数目分类有单缸、双缸和多缸汽轮机;按机组转轴数目分类有单铀和双轴汽轮机等。 四、汽轮机的型号

国产汽轮机的型号采用三组符号加数字来表示。

第一组用汉语拼音字母及数字来表示。汉语拼音字母表示汽轮机型式,其后的数字表示汽轮机的额定功率,单位为MW。第二组表示蒸汽参数。第三组数字表示设计的先后次序。 汽轮机型号中蒸汽参数表示法 型式 参数表示方法 示例

凝汽式 主蒸汽压力/主蒸汽温度 N100-8.83/535

中间再热式 主蒸汽压力/主蒸汽温度/中间再热温度 N300-16.7/538/538 抽汽式 主蒸汽压力/高压抽汽压力/低压抽汽压力 C50-8.83/0.98/0.118 背压式 主蒸汽压力/背压 B50-8.83/0.98

抽汽背压式 主蒸汽压力/抽汽压力/背压 CB25-8.83/0.98/0.118 注 功率单位为MW;压力单位为MPa;温度单位为℃。

例如 N300-16.7/537/537-2型汽轮机,表示额定功率为300MW,额定进汽压力为16.7MPa,额定主蒸汽温度为537℃,额定再热蒸汽温度为537℃,是中间再热凝汽式汽轮机,属第二次变型设计。

五、汽轮机的经济和安全指标 l。汽轮机运行的经济指标

(1)循环热效率。汽轮机设备的循环热效率是在理想条件下1kg蒸汽在汽轮机内转换机械功的热量与锅炉送出蒸汽热量之比。目前大功率汽轮机的循环热效率已达40%以上。

(2)汽轮机内效率。汽轮机相对内效率是蒸汽在汽轮机内的有效比焓降与等嫡比焓降之比,它是评价汽轮机结构先进程度的一个重要指标。

(3)汽耗率。汽耗率是汽轮发电机组每生产1kw?h电所需要的蒸汽量,一般为3.O~3.2kg/(kw?h)。

(4)热耗率。热耗率是汽轮发电机组每生产Ikw?h电所消耗的热量。一般为8000kJ/(kw?h)左右。

2.汽轮机运行的安全指标

(1)可用率。机组的可用率是指在统计期间,机组运行累计小时数及备用停机小时数之和与统计期间日历小时数的百分比。

(2)等效可用率。等效可用率为考虑到降低出力影响的可用率,即

上式中等效小时数为机组运行中降低出力小时数折算成机组全停的小时数。

(3)强迫停机率。强迫停机率是指在统计期间机组的强迫停运小时数与统计期间小时数的百分比。

(4)等效强迫停机率。等效强迫停机率为考虑到降低出力影响的强迫停机率,即

发电机?

发电机是电厂的主要设备之一,它同锅炉和汽轮机会称为火力发电厂的三大主机。目前,在电力系统中,几乎所有的发电机:汽轮发电机、水轮发电机、核发电机、燃汽轮发电机及太阳能发电机等都属同步发电机。尽管其容量大小、原动机类型、构造形式、冷却方式等各有差异,但其工作原理是相同的。

一、同步发电机的基本构造和工作原理

同步发电机是利用电磁感应原理将机械能转换成电能的设备,其工作原理如图所示。由图可见,同步发电机可分为定子和转子两大部分,定子部分主要由定子铁芯和绕组组成,分为A、B、C三相,均匀的分布在定于槽中;转子部分由转子铁芯和绕组组成,绕组通以直流电,建立发电机的磁场。当转子由原动机(如汽轮机)带动旋转时,产生一旋转磁场,定子绕组(导线)切割了转子磁场的磁力线,就在定子绕组上感应出电动势,当定于绕组接通用电设备时,定于绕组中即产生三相电流,发出电能。

同步发电机的工作原理 二、同步发电视的为类

同步发电机因用途不同,结构也相差甚大,一般可按其原动机的类别、本体结构特点、安装方式等进行分类。

(1)按原动机的类别不同,同步发电机可分为汽轮发电机、水轮发电机、燃汽轮发电机及柴油发电机等。

(2)按冷却介质的不同,可分为空气冷却、氢气冷却和水冷却等。 (3)按主轴安装方式不同,可分为卧式安装和立式安装等。

(4)按本体结构不同,可分为隐极式和凸板式、旋转电枢式和旋转磁极式等。

同步发电机的结构,主要是由原动机的特性决定的。如汽轮发电机,由于转速高达3000r/min,故极对数少,转子采用隐极式,卧式安装;水轮发电机由于转速低(一般在500r/min以下)故其极对数多,转子采用凸极式,立式安装。 三、同步发电机的主要技术数据

为使发电机按设计技术条件运行,一般在发电机出厂时都在铭牌上标注出额定参数,并在说明书中加以说明。这些额定参数主要有:

(1)额定容量(或额定功率)。额定容量是指发电机在设计技术条件下运行输出的视在功率,用kVA或MVA表示;额定功率是指发电机输出的有功功率,用kw或MW表示。 (2)额定定子电压是指发电机在设计技术条件下运行时,定子绕组出线端的线电压,用kV表示。我国生产的300MW和600MW发电机组额定定子电压均为20kV (3)额定定子电流 指发电机定子绕组出线的额定线电流,单位为A。

(4)额定功率因数(COSφ指发电机在额定功率下运行时,定于电压和定子电流之间允许的相角差的余弦值。300MW机组的额定功率因数为0.85,600MW机组的额定功率因数为0.9。 (5)额定转速。指正常运行时发电机的转速,用 r/min(每分钟转数)表示。我国生产的汽轮发电机转速均为3O00r/min。

(6)额定频率。我国电网的额定频率为50HZ(即每秒50周)。

(7)额定励磁电流。指发电机在额定出力时,转子绕组通过的励磁电流,用A或kA表示。 (8)额定励磁电压。指发电机励磁电流达到额定值时,额定出力运行在稳定温度时的励磁电压。

(9)额定温度。指发电机在额定功率运转时的最高允许温度(℃)。

(10)效率。指发电机输出与输入能量之百分比,一般额定效率在93%~98%之间,300MW和600MW大型机组在98%以上。

我国生产的300MW汽轮发电机主要参数如表所示。 生产厂 上海电机厂 东方电机厂 哈尔滨电机厂

型号 QFSN-300-2型 QFSN-300-20型 QFSN-300-2型 额定功率(MW) 300 300 300 额定定子电压(kV) 20 20 20

额定定子电流(A) 10190 10190 10190 额定功率因数 0.85 0.85 0.85

额定转速(r/min) 3000 3000 3000 额定氢压(Mpa) 0.31 0.3 0.3

额定励磁电流/电压(A/V) 2510/302 2203/426 2642/365 绝缘等级 B F/B B(F)/B(F)

励磁系统 三相同轴交流,静止SCR 三相同轴交流,静止SCR 三相同轴交流,静止SCR 冷却方式 水氢氢 水氢氢 水氢氢 效率(%) 98.8 ≥98.8 98.8 短路比 >0.5 0.556 0.656

注:型号中Q-汽轮机;F-发电机;S-定子为水内冷;N-转子为氢内冷;300 -功率为300MW;2-2极;20-额定电压为20kV。

我国上海汽轮发电机厂设计的QFSN-600-2型600MW水氢氢(转子采用氢内冷,定子铁芯采用氢表冷,定子绕组采用水内冷,即简称水氢氢冷却方式)汽轮发电机的主要技术参数为

额定功率 600MW 额定电压:20KV; 额定定子电流 19245A; 额定功率因数 O. 9; 额定转速 3000r/min;额定氢压 0.4MPa; 额定励磁电流/电压 3820A/417V; 效率98.94%; 短路比 0.54;冷却方式 水氢氢。 四、汽轮发电机的励磁系统

发电机要发出电来,除了需要原动机带动其旋转外,还需给转子绕组输人直流电流(称为励磁电流),建立旋转磁场。供给励磁电流的电路,称为励磁系统,包括励磁机、励磁调节器及控制装置等。

励磁系统由两个基本部分组成,即励磁功率单元和励磁调节器。励磁功率单元,包括交流电源及整流装置,它向发电机的励磁绕组提供直流励磁电流;励磁调节器(AVR)是根据发电机发出的电流、电压情况,自动调节励磁功率单元的励磁电流的大小,以满足系统运行的需要。 励磁控制系统指励磁系统及其控制对象——发电机共同组成的闭环反馈控制系统。励磁控制系统原理框图如 下所示。

(一)励磁系统的主要功能

励磁系统的作用不仅是在发电机中建立旋转磁场,而且还对发电机及电网的安全、经济运行起着重要作用。励磁系统的主要功能是:

(1)在正常运行情况下,供给发电机励磁电流,并根据发电机所带负荷的变化,自动调整励磁电流的大小,以维持发电机的机端电压在给定值(额定电压值)。

(2)当发电机并列运行时,使各发电机组所带的无功功率稳定并实现合理分配。 (3)在电力系统发生短路故障、发电机端电压严重下降时,能对发电机强行励磁,使励磁电压迅速增升到顶值(300MW和 600MW发电机强励顶值电压为额定值的2倍),以提高电力系统的暂态稳定性;短路故障切除后,使电压迅速恢复正常。

(4)当发电机突然甩负荷时,能进行强行减磁,将励磁电流迅速降到安全数值,以防止发电机电压过分升高。

(5)当发电机内部发生短路故障(如定于绕组相间短路,转子绕组两点接地短路)跳闸时,能对发电机快速灭磁,将励磁电流减到零,以减小故障损坏程度。 (二)发电机励磁系统简介

发电机的励磁方式主要有三种:①直流励磁机励磁方式;②交流励磁机励磁方式,又分为静止整流器励磁方式(称有刷励磁)和旋转整流器励磁方式(称无刷励磁);③静止励磁方式(如自共励励磁方式)。 1.直流励磁机励磁系统

60年代以前,汽轮发电机的励磁方式均采用同轴直流发电机作为励磁机,通过励磁调节器改变直流励磁机的励磁电流,来改变发电机转子绕组的励磁电压,以调节转子的励磁电流,达到调节发电机机端电压和输出无功功率的目的。目前100MW以下的汽轮发电机仍采用这种励磁

方式。

随着机组容量的不断增大,直流励磁机励磁方式表现出了明显的缺陷,一是受换向器所限其制造容量不可能大;二是整流子、碳刷及滑环磨损,污染环境,运行维护麻烦;三是励磁调节速度慢,可靠性低,直流励磁机励磁方式已无法适应大容量汽轮发电机的需要。 2.交流励磁机静止整流器励磁系统

交流励磁机静止整流器励磁系统通常称为三机励磁方式。发电机、主励磁机和副励磁机三台交流同步发电机同轴旋转,励磁机不需换向器,而整流装置和励磁调节器是静止的,所以励磁容量不会受到限制。交流励磁机静止整流器励磁系统原理图如图所示。发电机的励磁电流由同轴的交流主励磁机经静止整流装置供给,主励磁机的励磁电流由同轴的中频副励磁机经可控整流装置供给。随着发电机运行参数的变化,励磁调节器AVR自动地改变主励磁机励磁回路中可控整流装置的控制角,以改变其励磁电流,从而改变主励磁机的输出电压,也就调节了发电机的励磁电流。

交流励磁机的频率一般采用100Hz,交流副励磁机多采用永磁式中频同步发电机,其频率一般为400~500Hz,以减少励磁绕组的电感及时间常数。这样,即简化了结构,又提高了副励磁机运行的可靠性。目前大型汽轮发电机的励磁系统多采用永磁式中频副励磁机。

整流柜采用三相桥式硅二极管整流电路,通常由两个或两个以上整流柜并联运行,并留有备用,因此整流装置运行是可靠的。

交流励磁机静止硅整流器励磁方式的励磁能源取自主轴功率,不受电力系统扰动的影响,工作稳定可靠。以大容量的静止硅整流器代替转动的换向整流,就解决了整流子和碳刷的运行维护问题。三机励磁方式目前在国产30OMW大容量汽轮发电机组上广为采用。 运行实践表明,三机励磁系统存在以下问题:

(1)旋转部件多,出故障的机率较高,而且修复时间较长,检修维护工作量大。

(2)由于机组轴系长,轴承座多,使轴振和瓦振值较高,对轴系稳定和机组的安全运行不利。 3.交流励磁机旋转硅整流器励磁系统

交流励磁机旋转硅整流器励磁系统与静止硅整流器励磁系统的主要区别,是整流装置是否与轴同转。整流装置与交流主励磁机及发电机同轴旋转时,三者相对静止,所以可直接相连而无需滑环、碳刷,因此又称为无刷励磁系统,如图所示。目前工程中采用的均是旋转二极管形的,旋转可控硅型尚处于试验阶段。

(a)旋转二极管励孩系统;(b)旋转可控硅励磁系统

在无刷旋转二极管励磁系统中,主励磁机一般采用100Hz交流励磁机,其10OHz电流经整流后直接送入发电机转子绕组。因省去了滑环和碳刷,使励磁系统结构简单、便于维护、可靠性高,这对大容量的汽轮发电机组是适用的,但同时也带来两个新问题:一是不能用常规方法直接测量转子电流、温度和对地绝缘,而必须采用其他方法;二是无法在发电机励磁回路装设灭磁开

关,而只能装于交流励磁机励磁回路,使灭磁时间延长(20s),好在这些问题已用其他方法得到解决。目前,美国西屋公司、日本三菱公司、德国西门子公司和法国阿尔斯通公司生产的汽轮发电机多采用无刷励磁系统,而且已用于12OOMW的汽轮发电机。我国近年来引进了西屋公司无刷励磁技术,已在300MW及6OOMW大型汽轮发电机组上应用。 4.自并励励磁(静止励磁)系统

自并励励磁系统,其励磁电源由发电机自身供给,整个励磁装置没有转动部分,因此又称为静止励磁系统或全静态励磁系统。如图所示为自并励励磁系统的原理图。用一只接在机端的励磁变压器取得励磁电源,通过受励磁调节器控制的可控硅整流装置,直接控制发电机的励磁,这种励磁方式比前述几种都简单,因此又称简单自励方式。

自并励励磁系统原理图

自并励励磁系统具有下列优点:

(l)运行可靠。由于没有旋转部件,设备接线简单,减少了事故的机率。据统计,自并励励磁系统的强迫停机率仅为交流励磁机励磁系统的1/3,平均修复时间仅为交流励磁机励磁系统的1/4。大大提高了运行的可靠性。

(2)改善了发电机轴系的稳定性。自并励励磁系统使30OMW机组的输系长度减少了约3m,因无励磁机,轴承座也减少,所以提高了轴系的稳定性,从而提高了机组的安全运行水平。 (3)提高了电力系统的稳定水平。自并励励磁系统响应速度快,调压性能好,短路后机端电压恢复快。由于配置了电力系统稳定器(PSS),对小干扰的稳定水平较交流励磁机系统有明显提高。

(4)经济性好,可降低投资。由于该系统设备简单,轴系长度又有缩短,降低了设备和厂房基础投资;加之调整维护简单,故障修复时间短,可提高发电的效益。

自并励励磁系统存在的问题是:当发电机近端发生三相短路而切除时间又较长时,不能及时提供足够的强行励磁;另外,接于地区网络的发电机,由于短路电流衰减快,继电保护配合较复杂。

目前,在大型汽轮发电机上采用自并励励磁方式已成发展方向。 五、发电机的运行与控制 (一)发电机的起动

发电机由停机状态(检修后或新安装)投入运行,需按规程进行一系列试验及启动前的准备工作。待发电机逐渐升速至额定转速3000r/min。 (二)发电机的并列

现代电力网是由多座发电厂、多台发电机并列运行的大电网方式,省级电网、跨省的区域网,甚至跨国电力网已取得十分成熟的运行经验。多台发电机并列运行的大电网方式对提高电能的质量、供电的可靠性、系统的稳定性以及经济性等都有着重大意义。同时,电网的规模也是一个国家现代科学技术水平和经济发达的标志。

发电机的并列运行,又称为同步运行,就是各发电机的转子以相同的电角速度一齐旋转,而电角度差不超过允许值的运行状态。将发电机与发电机、发电机与系统进行同步运行的操作,称为同步并列(俗称并网)。

发电机常用的同步并列方法有两种:准同步并列法和自同步并列法。此外还有异步起动和非同步合闸法(事故情况下用) 1准同步并列法

准同步(又称精确同步)并列,是常用的基本同步方法。准同步并列是指待并发电机与运行系统间满足同步条件时进行并列操作,即当发电机的频率、电压和相位角与系统的电压、频率和

相位角均相同(或接近)时,将发电机的断路器合闸,完成与系统的并列。这种并列方式实质上是先促成同步状态,然后进行并列操作。

准同步并列分为手动准同步并列和自动准同步并列两种具体方法。 1、1 手动准同步并列

手动准同步即用手操作相关开关,调节发电机电压频率使其满足同步条件,并手动合闸并列的方法。

(1)频率。汽轮机起动后,通过操作其调速开关,使其转速逐渐升高至额定值3000r/min,则同轴旋转的汽轮发电机的转速即达到与电网频率接近同步的要求。

(2)电压。当汽轮发电机升速至额定转速后,经检查各处工作情况正常,即可给转子加上励磁电流,缓慢转动磁场变阻器手轮,减小电阻以增加励磁电流,使发电机定子绕组电压逐渐升高达到与系统电压相等。

(3)相位角。在满足频率和电压相等的条件后,技人同步表,待同步表指针缓慢顺时针转动至接近同步点时,操作断路器控制开关合闸,使发电机与系统并列。并列成功后,无异常现象出现,即可使发电机带上负荷,并退出同步仪表,并列操作完毕。

发电机并列操作是一项非常重要的操作,在一定程度上关系到发电厂甚至电网的安危。手动准同步操作是否成功,与操作者的现场工作经验有很大关系,如果掌握不好合闸时机,发生非同步并列事故,将会产生强烈的冲击电流和振荡现象,会使发电机端部绕组和铁芯遭到破坏。因此,经过考核获得同步操作权的人员才可进行此项操作。 1、2.自动准同步

自动准同步并列装置是一种自动控制装置,它能根据系统的频率,检查待并发电机的转速,并发出调节脉冲去调节待并发电机的转速,使其略高出系统一预定数值。然后检查同步的回路开始工作,当待并发电机以微小的转差向同步点接近,且待并发电机与系统的电压差在±5V以内时,就提前一个预定时间发出合闸脉冲,合上主断路器,使发电机与系统并列。 2、自同步并列

自同步并列法,就是当待并发电机的转速接近额定转速(相差±2%范围之内)时,在未加励磁的情况下,先会上发电机的断路器进行并列,然后再合上励磁开关,加入励磁电流,利用发电机的?自整步”作用,将发电机自动拉入同步。

采用自同步的优点是:操作简单,并列速度快,在紧急情况下能很快将发电机并入系统。缺点是:待并发电机会受到较大电流的冲击(小于三相短路电流)。 (三)发电机的负荷调整 3、1.有功负荷的调整

发电机在运行中对有功负荷的调整,是通过汽轮机的调速系统进行的,当需增加有功负荷时,就加大进汽量;当需减小有功负荷时,就减小进汽量,以保持发电与负荷的平衡,维持发电机的转速恒定。

3、2无功负荷的调整

发电机在运行中对无功负荷的调整,是通过改变发电机励磁电流来实现的。通常利用自动电压调节器(简称调节器)自动调节,也可手动调节。

(1)自动调节方式。这是主要运行方式,即根据发电机端电压的变化,采用负反馈原理对发电机励磁电流进行自动调节,以维持发电机端电压的恒定。

(2)手动控制方式。当自动电压调节器因有故障失去作用时,改用由运行人员手动操作调节方式。一般自动调节为主要方式,手动调节为备用方式。

功率因数(cosφ)是电能质量和经济运行的重要指标。当有功负荷不变而调整无功负荷时,功率因数即改变,无功负荷减少时,功率因数增加;无功负荷增加时,功率因数下降。发电机的功率因数一般应限在0.95以内,否则易进相运行,若发现进相运行,应增大励磁电流;若此时

定子电流过大,则减少有功功率,否则将引起发电机振荡或失步。 四、同步发电机的调相运行

同步发电机空载运行时,从电网吸收有功功率(即发电机变为电动机)以维持同步旋转。此时加大励磁(过励运行),则向电网送感性无功功率;欠励运行时,则吸收电网中的感性无功,发电机变成了调相机(或称同步补偿机)。

当输电线路很长时,线路本身具有电容,当终端负荷变化时要维持端电压不波动是很困难的。所以接上同步补偿机,通过调节其励磁电流,可以控制功率因数,保持电网电压恒定。 五、发电机的解列与停机

发电机要解列时,应先将所带厂用电转至备用电源,然后再将发电机所带的有功负荷和无功负荷转移到其他并列机组上去,并在有功负荷降至零时,断开发电机断路器,将发电机解列。 当跳开发电机断路器解列后,如果发电机需停下来,应再跳开灭磁开关,并通知汽轮机值班员减速停机。停机后拉开发电机出线隔离开关。 电力变压器?

电力变压器是电力系统中输配电能的主要设备。电力变压器利用电磁感应原理,可以把一种电压等级的交流电能方便地变换成同频率的另一种电压等级的交流电能。经输配电线路将发电厂和变电所的变压器连接在一起,便构成了工农业生产的主能源网络——电力网。 -、变压器的基本原理

变压器是根据电磁感应原理工作的,图所示为变压器基本原理示意图。由图可见,变压器由两个互相绝缘且匝数不等的绕组,套在由良好导磁材料制成的同一个铁芯上,其中一个绕组接交流电源,称为一次绕组;另一个绕组接负荷,称为二次绕组。当一次绕经中有交流电流流过时,则在铁芯中产生交变磁通φ,其频率与电源电压的频率相同;铁芯中的磁通同时交链一、二次绕组,由电磁感应定律可知,一、二次绕组中分别感应出与匝数成正比的电动势,其二次绕组内感应的电动势,向负荷输出电能,实现了电压的变换和电能的传递。可见,变压器是利用一、二次绕组匝数的变化实现变压的。

变压器基本原理示意图

变压器在传递电能的过程中效率很高,可以认为两侧电功率基本相等,所以当两侧电压变化时(升压或降压),则两侧电流也相应变化(变小或变大),即变压器在改变电压的同时也改变了电流。

二、变压器的分类

为适应不同的用户要求,变压器分为多种类型。 1.按用途分为

(1)电力变压器。在输配电系统中应用,又进一步分为升压变压器、降压变压器、联络变压器(连接几个不同电压等级的电网)等。

(2) 仪用变压器。指电流互感器和电压互感器等,用于仪表测量、继电保护和操作电源。 (3) 特殊用途变压器。有整流变压器、电炉变压器、焊接变压器、实验变压器等。 2.按统组数分为

(1)自耦变压器。高、低压侧共用一个绕组,两侧接线匝数不同。 (2)双绕组变压器。指每相有高、低压两个绕组。

(3)三绕组变压器。每相有高、中、低压三个绕组,常用于联络变压器。 (4)分裂绕组变压器。用作大容量厂用电变压器。 3.按相数分为

(1)单相变压器。容量过大且受运输条件限制时,在三相电力系统中用三台单相变压器组

合成三相变压器组。

(2)三相变压器。用于三相电力系统,三相绕组和铁芯连为一体。 4按冷却方式分为

(l)油浸式变压器。绕组与铁芯完全浸在变压器油里。又可分为:①油浸自冷式变压器-油自然循环进行冷却;②油浸风冷式变压器-在散热器上装设风扇吹风冷却;③强迫油循环水冷却变压器-用油泵强迫变压器油通过变压器外专设的水冷却器冷却后再送回变压器内。 (2)干式变压器。铁芯和绕组都由空气直接冷却。 三、变压器的额定参数与铭牌

为使变压器能按照设计技术条件安全、经济、合理地运行,制造厂将变压器的设计额定参数标注在铭牌上(又称铭牌值)。按照额定参数运行,可以保证变压器长期可靠的工作,并能达到设计的性能。

1.变压器的额定参数

(1)额定容量初SN。在铭牌规定的额定工作状态下,变压器的容量叫额定容量,对三相变压器而言,即三相容量之和,用视在功率SN表示,单位为kVA或MVA。

(2)额定电压化。一次侧额定电压U1N,指加到一次绕组上的规定电压值;二次侧额定电压U2N,指一次侧加入额定电压U1N时,二次侧的空载电压。额定电压的单位为kV。三相变压器的额定电压都是指线电压。

(3)额定电流IN。在额定使用条件下(或根据发热限制而规定的绕组中允许长期通过的电流值),一次侧输入的电流叫一次侧额定电流,用I1N表示;二次侧输出的电流叫二次侧额定电流,用I2N表示。额定电流都是指线电流,单位为A或kA。

(4)空载电流I0。变压器加额定电压空载运行时的电流,常以额定电流的百分比来表示,可以折算到一次侧,也可折算到二次侧。

(5)空载损耗P0。在变压器一个绕组上加入额定电压,而其余绕组均为开路时,变压器的有功损耗,用P0表示,单位为kw。

(6)短路损耗Pk。当变压器的一个绕组通以额定电流,而另一绕组短接时的有功损耗,用Pk表示,单位为kw。

(7)短路电压(阻抗电压)百分比Uk%。当一个绕组短接时,在另一绕组中为产生额定电流所加入的电压称为短路电压,以额定电压的百分比Uk%来表示。 2.变压器的型号及符号说明

变压器的型号由文字和数字两部分组成,一般格式如下: 1 2 3 4 5

1-绕组耦合方式;2-相数;3-冷却方式;4-绕组数;5-绕组导线材质;6-调压方式。 其符号代表的含义为:

O——自耦;D——单相;S——三相;G——空气自冷式;F——油浸风冷式;W——水冷式;P——强迫油循环;Z——有载调压;L——铝;F——分裂变压器;FP——强迫油循环风冷;WP——强迫油循环水冷。 举例:

SFP7-3600OO/22O:表示三相油浸风冷强迫油循环式电力变压器,设计序号为7,额定容量为36000OkVA,额定电压为220kV。 3.300MW发电机组配用变压器情况

(1)主变压器(升压变压器)。型号为SFP7-360000/22O,中性点直接接地,无载调压。其主要参数为额定容量3600O0kVA;额定电压242/2OkV;额定电流858.9/10392.3A;连接组标号YN,dll(即旧符号Y。/Δ一11);冷却方式ODPF(自耦、单相、强迫油循环风冷);器身重169t;油重48.7t;总重量262.7t;空载损耗177kw;短路损耗809kW;

短路电压11%。

(2)起动变压器。高压侧接系统,低压侧作300MW汽轮发电机组起动电源。当发电机组起动并入系统带上3O%~4O%的负荷后,应切换成高压厂用变压器供电。此时起动变压器处于联动备用状态,故又称起动/备用变压器。

300MW汽轮发电机组配用起动变压器的型号为SFFZ7-4O00/22O,即三相自然油循环风冷却有载调压分裂电力变压器。

(3)高压厂用变压器。型号为SFF7-400O/20,即三相自然油循环风冷式无励磁调压分裂电力变压器。 分散控制系统?

一、概述:分散控制系统( Distributed Control System,简称 DCS )广泛应用于流程工业(如电力、化工等)过程控制。从90年{BANNED}始,我国火力发电厂的控制系统更是以分散控制系统为主。

火电厂属于流程工业,自动控制的任务相当复杂艰巨,除了对锅炉、汽轮机、发电机进行控制外,还要对许多辅助设备,如除氧器、凝汽器、化学水处理设备等进行控制。控制的任务就是要保证电厂生产的产品——电能满足一定的数量和质量要求,同时保证生产过程的安全性和经济性。为达到这一目的,要求完成自动检测、自动控制、顺序控制、自动保护等不同功能,即由这四部分构成电厂生产过程自动化的全部内容。

DCS可以完成电厂生产过程自动化的全部功能。DCS的采用使发电厂的控制具有高度的可靠性和灵活性,可以为高水平的自动化提供有力的技术手段,加快了我国电厂自动化的步伐并缩小了与先进工业国家的差距。 二、分散控制系统功能分层体系

层次化成为分散型控制系统的体系特点,使之体现集中操作管理、分散控制的思想,分散控制系统的层次分成以下四级:锅炉风烟系统:风分别通过一次风机、二次风机(循环流

化床锅炉还有高流化风机)进入锅炉,进入锅炉前要通过空气预热器加热风温,以提高锅炉热效率。一次风机的风一般都作为燃料输送风,二次风机为助燃风,根据机组设计不同用途也不一样,我现在给你简单介绍下我厂的情况:作为循环流化床机组,我厂一次风作用有三,一是流化床料,二是作为给煤机播煤风,三是给煤机出口冷却风;二次风作用:助燃风和给煤机密封风;高流化风:流化返料器内床料,将其送回炉膛循环。当风进入炉膛后,煤燃烧过程将其转变成烟。烟气在炉膛流动,通过对流换热将部分热量传递给水冷壁后进入尾部烟道,尾部烟道有大量的换热器,如过热器、再热器、省煤器、空预器等,烟气自上而下从尾部烟道流过,将热量传导给这些换热器,从尾部烟道出来的烟气温度一般都很低了,一般在130——160℃间,烟气再通过除尘处理被排入大气。

水从水源地输送到电厂化水站经过除盐处理,送到除氧器除氧加热,如果机组较大,需要在进入除氧器前用低温加热器加热(汽源为汽轮机中压或低压缸抽汽,加热后的疏水送入除氧器或凝汽器)后进入除氧器,从除氧器出来的水经过给水泵加压后,再经过高温加热器(汽源为汽轮机高压缸抽汽,疏水送入除氧器)加热后进入省煤器,省煤器将给水加热到一定程度后送入锅炉汽包。汽包将水通过下降管送入水冷壁加热成为汽水混合物,又将水送回汽包,汽包内有汽水分离器,湿饱和蒸汽从汽包出来后进入过热器加热成干饱和蒸汽,干饱和蒸汽为高温高压蒸汽,进入汽轮机做功。从汽轮机做功后的乏汽根据汽轮机种类不同,处理方法也不同,凝汽式机组将乏汽送入凝汽器凝结成水送入除氧器循环使用,被压式机组则将乏汽排走,用于工业用汽或供暖用汽,不做循环使用。火力发电厂基本生产过

程 第一部分概述以煤、石油或天然气作为燃料的发电厂统称为火电厂。山东省的电厂95%以上是火力发电厂。1、火电厂的分类(1)按燃料分类:①燃煤发电厂,即以煤作为燃料的发电厂;邹县、石横青岛等电厂②燃油发电厂,即以石油(实际是提取汽油、煤油、柴油后的渣油)为燃料的发电厂;辛电电厂③燃气发电厂,即以天然气、煤气等可燃气体为燃料的发电厂;④余热发电厂,即用工业企业的各种余热进行发电的发电厂。此外还有利用垃圾及工业废料作燃料的发电厂。(2)按原动机分类:凝汽式汽轮机发电厂、燃汽轮机发电厂、内燃机发电厂和蒸汽-燃汽轮机发电厂等。(3)按供出能源分类:①凝汽式发电厂,即只向外供应电能的电厂;②热电厂,即同时向外供应电能和热能的电厂。(4)按发电厂总装机容量的多少分类:①小容量发电厂,其装机总容量在100MW以下的发电厂;②中容量发电厂,其装机总容量在100~250MW范围内的发电厂;③大中容量发电厂,其装机总容量在250~600MW范围内的发电厂;④大容量发电厂,其装机总容量在600~1000MW范围内的发电厂;⑤特大容量发电厂,其装机容量在1000MW及以上的发电厂。(5)按蒸汽压力和温度分类:①中低压发电厂,其蒸汽压力在3.92MPa(40kgf/cm2)、温度为450℃的发电厂,单机功率小于25MW;地方热电厂。②高压发电厂,其蒸汽压力一般为9.9MPa(101kgf/cm2)、温度为540℃的发电厂,单机功率小于100MW;③超高压发电厂,其蒸汽压力一般为13.83MPa(141kgf/cm2)、温度为540/540℃的发电厂,单机功率小于200MW;④亚临界压力发电厂,其蒸汽压力一般为16.77MPa(171 kgf/cm2)、温度为540/540℃的发电厂,单机功率为30OMW直至1O00MW不等;⑤超临界压力发电厂,其蒸汽压力大于22.llMPa(225.6kgf/cm2)、温度为550/550℃的发电厂,机组功率为600MW及以上,德国的施瓦茨电厂。(6)按供电范围分类:①区域性发电厂,在电网内运行,承担一定区域性供电的大中型发电厂;②孤立发电厂,是不并入电网内,单独运行的发电厂;③自备发电厂,由大型企业自己建造,主要供本单位用电的发电厂(一般也与电网相连)。 2、火电厂的生产流程及特点火电厂的种类虽很多,但从能量转换的观点分析,其生产过程却是基本相同的,概括地说是把燃料(煤)中含有的化学能转变为电能的过程。整个生产过程可分为三个阶段:燃料的化学能在锅炉中转变为热能,加热锅炉中的水使之变为蒸汽,称为燃烧系统;锅炉产生的蒸汽进入汽轮机,推动汽轮机旋转,将热能转变为机械能,称为汽水系统;由汽轮机旋转的机械能带动发电机发电,把机械能变为电能,称为电气系统。其基本生产流程为:整个电能生产过程如图1 与水电厂和其他类型的电厂相比,火电厂有如下特点: 凝汽式火电厂生产过程示意图(1)火电厂布局灵活,装机容量的大小可按需要决定。(2)火电厂建造工期短,一般为水电厂的一半甚至更短。一次性建造投资少,仅为水电厂的一半左右。(3)火电厂耗煤量大,目前发电用煤约占全国煤碳总产量的25%左右,加上运煤费用和大量用水,其生产成本比水力发电要高出3~4倍。(4)火电厂动力设备繁多,发电机组控制操作复杂,厂用电量和运行人员都多于水电厂,运行费用高。(5)汽轮机开、停机过程时间长,耗资大,不宜作为调峰电源用。(6)火电厂对空气和环境的污染大。第二部分三大系统简介一、燃烧系统燃烧系统由输煤、磨煤、燃烧、风烟、灰渣等环节组成,其流程如图2所示。(l)运煤。电厂的用煤量是很大的,一座装机容量4×3O万kW 的现代火力发电厂,煤耗率按36Og/kw . h计,每天需用标准煤(每千克煤产生70O0卡热量)360(g)×120万(kw)×24(h)=10368t。因为电厂燃煤多用劣质煤,且中、小汽轮发电机组的煤耗率在40O ~ 5O0g/kw?h左右,所以用煤量会更大。据统计,我国用于发电的煤约占总产量的1/4,主要靠铁路运输,约占铁路全部运输量的4O%。为保证电厂安全生产,一般要求电厂贮备十天以上的用煤量。(2)磨煤。用火车或汽车、轮船等将煤运至电厂的储煤场后,经初步筛选处理,用输煤皮带送到锅炉间的原煤仓。煤从原煤仓落入煤斗,由给煤机送入磨煤机磨成煤粉,并经空气预热器来的一次风烘干并带至粗粉分离器。在粉粉分离器中将不合格的粗粉分离返回磨煤机再行磨制,合格的细煤粉被一次风带入旋风分离器,使煤粉与空气分离后进入煤粉仓。(3)锅炉与燃烧。煤粉由可调节的给粉机按锅炉需要送入一次风管,同时由旋风分离器送来的气体(含有约10%左右未能分离出的细煤粉),由排粉风机提高压头后作为一次风将进入一次风管的煤粉经喷燃器喷入炉膛内燃烧。电厂煤粉炉燃烧系统流程图 目前我国新建电厂以300MW及以

上机组为主。300MW机组的锅炉蒸发量为10O0t/h(亚临界压力),采用强制循环(或自然循环)的汽包炉;600MW机组的锅炉为200Ot/h的(汽包)直流锅炉。在锅炉的四壁上,均匀分布着4支或8支喷燃器,将煤粉(或燃油、天然气)喷入炉膛,火焰呈旋转状燃烧上升,又称为悬浮燃烧炉。在炉的顶端,有贮水、贮汽的汽包,内有汽水分离装置,炉膛内壁有彼此紧密排列的水冷壁管,炉膛内的高温火焰将水冷壁管内的水加热成汽水混合物上升进入汽包,而炉外下降管则将汽包中的低温水靠自重下降至下连箱与炉已被分享2次 评论(0) 复制链接 分享 转载 举报

火力发电厂-生产过程火力发电厂生产过程燃

煤,用输煤皮带从煤场运至煤斗中。大型火电厂为提高燃煤效率都是燃烧煤粉。因此,煤斗中的原煤要先送至磨煤机内磨成煤粉。磨碎的煤粉由热空气携带经排粉风机送入锅炉的炉膛内燃烧。煤粉燃烧后形成的热烟气沿锅炉的水平烟道和尾部烟道流动,放出热量,最后进入除尘器,将燃烧后的煤灰分离出来。洁净的烟气在引风机的作用下通过烟囱排入大气。助燃用的空气由送风机送入装设在尾部烟道上的空气预热器内,利用热烟气加热空气。这样,一方面除使进入锅炉的空气温度提高,易于煤粉的着火和燃烧外,另一方面也可以降低排烟温度,提高热能的利用率。从空气预热器排出的热空气分为两股:一股去磨煤机干燥和输送煤粉,另一股直接送入炉膛助燃。燃煤燃尽的灰渣落入炉膛下面的渣斗内,与从除尘器分离出的细灰一起用水冲至灰浆泵房内,再由灰浆泵送至灰场。

在除氧器水箱内的水经过给水泵升压后通过

高压加热器送入省煤器。在省煤器内,水受到热烟气的加热,然后进入锅炉顶部的汽包内。在锅炉炉膛四周密布着水管,称为水冷壁。水冷壁水管的上下两端均通过联箱与汽包连通,汽包内的水经由水冷壁不断循环,吸收着煤爱燃烧过程中放出的热量。部分水在冷壁中被加热沸腾后汽化成水蒸汽,这些饱和蒸汽由汽包上部流出进入过热器中。饱和蒸汽在过热器中继续吸热,成为过热蒸汽。过热蒸汽有很高的压力和温度,因此有很大的热势能。具有热势能的过热蒸汽经管道引入汽轮机后,便将热势能转变成动能。高速流动的蒸汽推动汽轮机转子转动,形成机械能。

汽轮机的转子与发电机的转子通过连轴器联在一起。当汽轮机转子转动时便带动发电机转子转动。在发电

机转子的另一端带着一太小直流发电机,叫励磁机。励磁机发出的直流电送至发电机的转子线圈中,使转子成为电磁铁,周围产生磁场。当发电机转子旋转时,磁场也是旋转的,发电机定子内的导线就会切割磁力线感应产生电流。这样,发电机便把汽轮机的机械能转变为电能。电能经变压器将电压升压后,由输电线送至电用户。

释放出热势能的蒸汽从汽轮机下部的排汽口排出,称为乏汽。乏汽在凝汽器内被循环水泵送入凝汽器的冷却水冷却,从新凝结成水,此水成为凝结水。凝结水由凝结水泵送入低压加热器并最终回到除氧器内,完成一个循环。在循环过程中难免有汽水的泄露,即汽水损失,因此要适量地向循环系统内补给一些水,以保证循环的正常进行。高、底压加热器是为提高循环的热效率所采用的装置,除氧器是为了除去水含的氧气以减少对设备及管道的腐蚀。

以上分析虽然较为繁杂,但从能量转换的角度看却很简单,即燃料的化学能→蒸汽的热势能→机械能→电能。在锅炉总,燃料的化学能转变为蒸汽的热能;在汽轮机中,蒸汽的热能转变为轮子旋转的机械能;在发电机中机械能转变为电能。炉、机、电是火电厂中的主要设备,亦称三大主机。与三大主机相辅工作的设备成为辅助设备或称辅机。主机与辅机及其相连的管道、线路等称为系统。火电厂的主要系统有燃烧系统、汽水系统、电气系统等。

除了上述的主要系统外,火电厂还有其它一些辅助生产系统,如燃煤的输送系统、水的化学处理系统、灰浆的排放系统等。这些系统与主系统协调工作,它们相互配合完成电能的生产任务。大型火电厂的保证这些设备的正常运转,火电厂装有大量的仪表,用来监视这些设备的运行状况,同时还设置有自动控制装置,以便及时地对主辅设备进行调节。现代化的火电厂,已采用了先进的计算机分散控制系统。这些控制系统可以对整个生产过程进行控制和自动调节,根据不同情况协调各设备的工作状况,使整个电厂的自动化水平达到了新的高度。自动控制装置及系统已成为火电厂中不可缺少的部分。 火力发电厂-工作原理

火力发电厂采用煤炭作为一次能源----利用皮带传送技术----锅炉

输送经处理的煤粉---煤粉燃烧对锅炉里的水一次加热之后--水蒸汽进入高压缸---为了提高热效率,对水蒸汽进行二次加热---水蒸汽进入中压缸---蒸汽去推动汽轮发电机发电。

从中压缸引出进入对称的低压缸。已经作过功的蒸汽一部分从中间段抽出供给炼油、化肥等兄弟企业,其余部分流经凝汽器水冷,成为40度左右的饱和水作为再利用水。40度左右的饱和水经过凝结水泵,经过低压加热器到除氧器中,此时为160度左右的饱和水,经过除氧器除氧,利用给水泵送入高压加热器中,其中高压加热器利用再加热蒸汽作为加热燃料,最后流入锅炉进行再次利用。以上就是一次生产流程。 火力发电厂-燃料构成

火力发电厂火电厂的燃料构成决定于国家资源情况和能源政

策。20世纪80年代以后,中国火电厂的燃料主要是煤。1987年,火电厂发电量的87%是煤电,其余13%是烧油或其他燃料发出的。有烟煤资源或依赖进口煤的国家,其火电厂主要燃用烟煤,因其热值高、易燃。其他煤种占较大比重的国家,有用褐煤(德国、澳大利亚)、无烟煤(前苏联、西班牙、朝鲜等)的;中国燃用煤一半以上是烟煤,贫煤次之,无烟煤在10%以下。一些国家还根据石油国际市场的情况,采用燃油和天然气发电机组。除蒸汽机组外,还有的用燃气轮机和内燃机发电机组。70年代以来,燃气-蒸汽联合循环机组发电的火电厂得到重视。 火力发电厂-组成与流程

火力发电厂现代化火电厂是一个庞大而又复

杂的生产电能与热能的工厂。它由下列5个系统组成:①燃料系统。②燃烧系统。③汽水系统。④电气系统。⑤控制系统。在上述系统中,最主要的设备是锅炉、汽轮机和发电机,它们安装在发电厂的主厂房内。主变压器和配电装置一般装放在独立的建筑物内或户外,其他辅助设备如给水系统、供水设备、水处理设备、除尘设备、燃料储运设备等,有的安装在主厂房内,有的则安装在辅助建筑中或在露天场地。火电厂基本生产过程是,燃料在锅炉中燃烧,将其热量释放出来,传给锅炉中的水,从而产生高温高压蒸汽;蒸汽通过汽轮机又将热能转化为旋转动力,以驱动发电机输出电能。到80年代为止,世界上最好的火电厂的效率达到40%,即把燃料中40%的热能转化为电能。

在上述系统的所有设备中,最主要的设备是锅炉、汽轮机和发电机,它们安装在发电厂的主厂房内。主变压器和配电设备一般是安装在独立的建筑物内和户外;其他辅助设备如给水系统、供水设备、水处理设备、除尘设备、燃料储运设备等,有的安装在主厂房内,有的则是安装在辅助建筑中或在露天场地。

火力发电厂-运行

代市火电厂近代火电厂由大量各种各样的机

械装置和电工设备所构成。为了生产电能和热能,这些装置和设备必须协调动作,达到安全经济生产的目的。这项工作就是火电厂的运行。为了保证炉、机、电等主要设备及各系统的辅助设备的安全经济运行,就要严格执行一系列运行规程和规章制度。

火电厂的运行主要包括3个方面,即起动和停机运行、经济运行、故障与对策。火电厂运行的基本要求是保证安全性、经济性和电能的质量。

就安全性而言,火电厂如不能安全运行,就会造成人身伤亡、设备损坏和事故,而且不能连续向用户供电,酿成重大经济损失。保证安全运行的基本要求是:①设备制造、安装、检修的质量要优良;②遵守调度指令要求,严格按照运行规程对设备的启动与停机以及负荷的调节进行操作;③监视和记录各项运行参数,以便尽早发现运行偏差和异常现象,并及时排除故障;④巡回监视运行中的设备及系统是否处于良好状态,以便及时发现故障原因,采取预防措施;⑤定期测试各项保护装置,以确保其动作准确、可靠。 就经济性而言,火电厂的运行费用主要是燃料费。因此,采用高效率的运行方式以减少燃料消耗费是非常重要的。具体措施有以下3点。

①滑参数起停。滑参数起动可以缩短起动时间,具有传热效果好、带负荷早、汽水损失少等优点。滑参数停机可以使机组快速冷却,缩短检修停机时间,提高设备利用率和经济性。

②加强燃料管理和设备的运行管理。定期检查设备状态、运行工况,进行各种热平衡和指标计算,以便及时采取措施减少热损失。

③根据各类设备的运行性能及其相互间的协调、制约关系,维持各机组在具有最佳综合经济效益的工况下运行;在电厂负荷变动时,按照各台机组间最佳负荷分配方式进行机组出力的增、减调度。

电厂在安全、经济运行的情况下,还要保证电能的质量指标,即在负荷变化的情况下,通过调整以保持电压和频率的额定值,满足用户的要求。 火力发电厂-效率

效率是衡量火电厂运行水平的一个重要指标。火电厂所需的能量是通过煤、石油或天然气等燃料的燃烧得来的。但是,燃料中所蕴藏的全部能量(即燃料的发热量)并不是100%的都能转换为电能。到80年代为止,世界上最好的火电厂也只能把燃料中40%左右的热能转换为电能。这种把热能转换为电能的百分比,称为火电厂效率。 火力发电厂-保护与控制

华能玉环电厂火电厂中锅炉、汽轮机、发电机

之间的关系极为密切。任何一个环节出现事故都会影响电厂的安全经济运行。因此,为了保证火电厂的安全经济运行,必须装备完善的保护控制装置和系统。基本的保护方式有以下3种。

①联锁保护:当某一设备或工况出现异常现象时,相关联的设备联动跳闸,切除有故障的设备或系统,备用的设备或系统立即投入运行。

②继电器组成的保护:以热工参量和电气参量的限值,以及设备元件的条件联系为动作判据,采用各种继电器组成保护回路,对某一设备或系统进行保护。

③固定的保护装置:有机械的、电动的保护装置,如锅炉的安全门、汽轮机的危急保安器、电机的过电压保护器等。

近代的单元机组均采用综合保护连锁系统,即将机、炉、电的分别保护与单元的整体保护系统相互协调,形成一个完善的保护系统。

火电厂的基本控制方式有以下3种。

①就地控制:锅炉、汽轮机、发电机及辅助设备就地单独进行控制。这种方式适用于小型电厂。 ②集中控制:将锅炉、汽轮机、发电机联系起来进行集中控制。例如大型电厂采用的机、炉、电单元的集中控制。

③综合自动控制:将电厂的整个生产过程作为一个有机整体进行控制,以实现全盘自动化。

上世纪80年代,大型电厂多采用单元机组。对于单元机组自动调节系统的主要控制方式有以下3种。 ①锅炉跟踪调节方式:由电力负荷指令操作调节汽轮机的阀门,以控制发电机的出力。而在锅炉方面则调节燃料输入,保证其产生的蒸汽在流量和参数方面满足汽轮机的需要。

②汽轮机跟踪调节方式:以电力负荷指令控制燃料的输入,改变锅炉出力;对于汽轮机,则通过调节汽压以决定负荷。

③机、炉协调控制方式:将机、炉、电作为一个统一整体进行控制,以机、炉共同调整机组的负荷来适应外界负荷变化的要求。

现代化电厂多采用程序控制,以提高自动化水平。程序控制是将生产过程中大量分散的操作,按辅机与热力系统的工艺流程划分为若干有规律的程序进行控制,并结合保护、联锁条件,使运行人员通过少数开关式按钮,即可由程控系统自动完成控制系统的操作。

随着计算机应用的日益扩大,特别是微机及微处理器的发展,现代火电厂的自动化已实现以小型机、微机和微处理器为基础的分层综合控制方式。 火力发电厂-分类

华能玉环电厂按燃料的类别可分为燃煤火电

厂、燃油火电厂和燃气火电厂等。按功能又可分为发电厂和热电厂。发电厂只生产并供给用户以电能;而热电厂除生产并供给用户电能外,还供应热能。按服务规模可分为区域性火电厂、地方性火电厂以及流动性列车电站。区域性电厂装机容量较大,一般建造在燃料基地,如大型煤矿附近。又称坑口电厂。其电能通过长距离的输电线路供给用户。地方性电厂多建在负荷中心,需经长距离运进燃料,它生产的电能供给比较集中的用户。火电厂还按蒸汽压力分为低压电厂(蒸汽初压力约为0.12~1.5兆帕(MPa)、中压电厂(2~4MPa)、高压电厂(6~10MPa)、超高压电厂(12~14MPa) 、亚临压力电厂(16~18MPa )和超临界压力电厂(22.6MPa)。 火力发电厂-历史

1875年法国巴黎北火车站建成世界上第一座火电厂并开始发电,采用很小的直流电机专供附近照明用电。美国、俄国、英国也相继建成小火电厂。1886年,美国建成第一座交流发电厂。1882年,中国在上海建成一座装有1台12KW直流发电机的火电厂,供电灯照明用。 火力发电厂-火力发电与热电区别

火力是指烧煤发电,热电是指烧煤或油或天然气,来供工业用或取暖用气,现在为了提高效率节省能源,一般是发电与供热联合方式。既是在气轮机某一级抽出一部分气来供热,其余的仍冲转气轮机带动发电机发电,两者可调整,可供热多发电少,也可供热少发电多。目前中国受能源政策影响,正在大力发展核电(广东大亚弯),水电(长江三峡),这些也可供热,有的国为了节约能源,有风力与地热发电,而中国很少。

也就是说火力发电厂主要是用来发电的。热电厂,主要是提供热能的, 也可是火力发电厂的副产品

发电流程

就发电工程的观点而言,一切均求于经济有效,在大容量的电力厂,因为输出的数值很大,因此着重在效率的增进,而不重视设置成本.也就是着重在用最少的燃料输入去完成最大的输出电力.在这个原则要求下,必须增设许许多多的附属设备,而使这个蒸汽动力厂成为一个相当复杂而庞大的组合.以汽轮机 (steam turbine)为原动机,驱动一发电机发电而输送至电力用户.

煤之流程 : 首先从燃煤开始,自储煤场送至原料煤斗后,由给煤器 (feeder)控制几煤量.进入之在粉煤机(pulverizer)内被磨成煤粉,与一部份热空气混合,经燃烧器 (burner)进入炉中,燃烧后的烟道气流经锅炉-省煤器(economizer)-空气预热器(air preheater)等热交换器 (heat exchanger)将热量传给其中的水或空气,最后从烟囱(chimney)逸去.其不可燃之固体,较大者以灰份之形态落入灰坑(ashpit)中,以备清除,以微细者则在集尘器(dust collector)中被收集清除.

空气及燃气流程 : 再就空气观之,首先由送风机(forced draftfan)将气压略以提高,送经空气预热器,接受一部份烟道气之热量使温度升高由管道将其一部份直接送经燃烧器入炉,另一部份则进入粉煤机 后与煤粉一同入炉.炉中燃烧后的烟道气,首先通过炉管(Boilertube)与过热器(super heater)将炉水汽化与过热的使命,随后通过省煤器将剩余热量的一部份交付于于进入锅炉前之水 (Feederwater).再通过空气预热器加热于未进炉前的冷空气.经过如此行程后,因磨擦阻力的关系,已使压力低于大气压力,因此须由吸风机(induced-draft fan)吸出,提高其压力,以便驱于大气中.

水及蒸汽流程 : 此厂使用冷凝器(Condenstate water)由凝水pump送回锅炉重新使用,所要补充者仅少许抵消漏泄损耗之补充水.补充水经由几水软化器予以软化,以免锅炉内壁产生锅垢.凝水pump将冷凝水

送过三个加热器,并附以其它水pump,依次由低压而中压而高压 ,又经省煤器提高其温度,使进入锅炉的水,事先获得相当的热能,故在炉管中巡回受热时,达到汽化程度所需的传热的面积可以稍减.至于已汽化之蒸汽,使之进入过热器的管道中,可以进一步的吸收热能,变成过热蒸汽(Superheated steam),进入汽轮机作功,而后流入冷凝器中,周而复始.但冷凝器所用的冷却水,由另一水pump从河面或海面取水,吸收蒸汽之汽化潜热使之凝结后,本身回至河内或海内,不跟蒸汽作直接接触 .给水的三个加热器,系分别由汽轮机引出若干仅作部份膨胀而尚未降至排气温度与排汽压力之蒸汽,而利用其所含有之热能加热于锅炉给水.

在一蒸汽动力发电厂中,能量转变形式与布骤,如下所述 : 1.燃料与空气混合送至燃烧炉,开始燃料,放出燃料中的化学能. 2.燃烧该混合物于燃炉中发生热能.

3.此热能在燃气中以高温出现 ,一部份辐射于炉管的表面,其于部份由对流作用通过锅炉各受热面,热能被炉管吸收之后,即传导至循环其中的炉水,使水受热变成高压高温之蒸汽 .

4.高温高压之蒸汽经由喷嘴送出转变为动能,产生高速度而发生巨大的动力喷汽.

5.用此高速喷汽吹动汽轮机叶片遂产生回转力于轮翼,此其将动能转为机械能而转动机轴 .

6.主轴转动发电机而产电能. 故一蒸汽动力发电厂乃是将化学能转变

为热能,热能转变为机械能,最终变为电能之工厂也.

发电工程的观点而言,一切均求于经济有效,在大容量的电力厂,因为输出的数值很大,因此着重在效率的增进,而不重视设置成本.也就是着重在用最少的燃料输入去完成最大的输出电力.在这个原则要求下,必须增设许许多多的附属设备,而使这个蒸汽动力厂成为一个相当复杂而庞大的组合.以汽轮机 (steam turbine)为原动机,驱动发电机发电而输送至电力用户.

[b]煤之流程 :[/b] 首先从燃煤开始,自储煤场送至原料煤斗后,由给煤器 (feeder)控制给煤量.进入之在粉煤机(pulverizer)内被磨成煤粉,与一部份热空气混合,经燃烧器 (burner)进入炉中,燃烧后的烟道气流经锅炉-省煤器(economizer)-空气预热器(air preheater)等热交换器 (heat exchanger)将热量传给其中的水或空气,最后从烟囱(chimney)逸去.其不可燃之固体,较大者以灰份之形态落入灰坑(ashpit)中,以备清除,以微细者则在集尘器(dust collector)中被收集清除.

[b]空气及燃气流程 : [/b]再就空气观之,首先由送风机(forced draftfan)将气压略以提高,送经空气预热器,接受一部份烟道气之热量使温度升高由管道将其一部份直接送经燃烧器入炉,另一部份则进入粉煤机后与煤粉一同入炉.炉中燃烧后的烟道气,首先通过炉管(Boilertube)与过热器(super heater)将炉水汽化与过热的使命,随后通过省煤器将剩余热量的一部份交付于于进入锅炉前之水 (Feederwater).再通过空气预热器加热于未进炉前的冷空气.经过如此行程后,因磨擦阻力的关系,已使压力低于大气压力,因此须由吸风机 (induced-draft fan)吸出,提高其压力,以便驱于大气中.

[b]水及蒸汽流程 : [/b]此厂使用冷凝器(Condenstate water)由凝水pump送回锅炉重新使用,所要补充者仅少许抵消漏泄损耗之补充水.补充水经由几水软化器予以软化,以免锅炉内壁产生锅垢.凝水 pump将冷凝水送过三个加热器,并附以其它水pump,依次由低压而中压而高压 ,又经省煤器提高其温度,使进入锅炉的水,事先获得相当的热能,故在炉管中巡回受热时,达到汽化程度所需的传热的面积可以稍减.至于已汽化之蒸汽,使之进入过热器的管道中,可以进一步的吸收热能,变成过热蒸汽(Superheated steam),进入汽轮机作功,而后流入冷凝器中,周而复始.但冷凝器所用的冷却水,由另一水pump从河面或海面取水,吸收蒸汽之汽化潜热使之凝结后, 本身回至河内或海内,不跟蒸汽作直接接触 .给水的三个加热器,系分别由汽轮机引出若干仅作部份膨胀而尚未降至排气温度与排汽压力之蒸汽,而利用其所含有之热能加热于锅炉给水.

在一蒸汽动力发电厂中,能量转变形式与布骤,如下所述 : 1.燃料与空气混合送至燃烧炉,开始燃料,放出燃料中的化学能.

2.燃烧该混合物于燃炉中发生热能.

3.此热能在燃气中以高温出现 ,一部份辐射于炉管的表面,其于部份由对流作用通过锅炉各受热面,热能被炉管吸收之后,即传导至循环其中的炉水,使水受热变成高压高温之蒸汽 .

4.高温高压之蒸汽经由喷嘴送出转变为动能,产生高速度而发生巨大的动力喷汽.

5.用此高速喷汽吹动汽轮机叶片遂产生回转力于轮翼,此其将动能转为机械能而转动机轴 .

6.主轴转动发电机而产电能. 故一蒸汽动力发电厂乃是将化学能转变为热能,热能转变为机械能,最终变为电能之工厂也.

以上分析虽然较为繁杂,但从能量转换的角度看却很简单,即燃料的化学能→蒸汽的热势能→机械能→电能。[b]在锅炉总,燃料的化学能转变为蒸汽的热能;在汽轮机中,蒸汽的热能转变为轮子旋转的机械能;在发电机中机械能转变为电能。炉、机、电是火电厂中的主要设备,亦称三大主机。[/b]与三大主机相辅工作的设备成为辅助设备或称辅机。主机与辅机及其相连的管道、线路等称为系统。

火电厂的主要系统有燃烧系统、汽水系统、电气系统等。

除了上述的主要系统外,火电厂还有其它一些辅助生产系统,如燃煤的输送系统、水的化学处理系统、灰浆的排放系统等。这些系统与主系统协调工作,它们相互配合完成电能的生产任务。大型火电厂的保证这些设备的正常运转,火电厂装有大量的仪表,用来监视这些设备的运行状况,同时还设置有自动控制装置,以便及时地对主辅设备进行调节。现代化的火电厂,已采用了先进的计算机分散控制系统。这些控制系统可以对整个生产过程进行控制和自动调节,根据不同情况协调各设备的工作状况,使整个电厂的自动化水平达到了新的高度。自动控制装置及系统已成为火电厂中不可缺少的部分。

原帖地址:http://bbs.zidonghua.com.cn/read.php?tid=51275

【bbs_武侯】说: 2008-9-11 2:58:01 [b]火电厂的主要特点是:[/b]与相同容量水电站比,建设工期短,工程造价低,投资回收快,厂址选择比较灵活。火电厂的主要缺点是对环境有一定程度的污染。采取的环境保护措施主要有:采用高效电除尘装置和脱硫措施,综合利用粉煤灰,采用循环冷却方式以保护水源等。

[b]组成与流程[/b] 现代化的火电厂是一个庞大而又复杂的生产电能与热能的工厂。它由下列5个系统组成。

①燃料系统:完成燃料输送、储存、制备的系统。燃煤电厂具有卸煤设施、煤场、上煤设施、煤仓、给煤机、磨煤机等设备;燃油电厂备有油罐、加热器、油泵、输油管道等设备。

②燃烧系统:完成燃料燃烧过程,使燃料化学能转化为蒸汽热能的系统。主要有燃烧器、炉膛、送风机、引风机、除尘器、除灰设备等。

③汽水系统:完成蒸汽热能转化为机械能的系统。主要有锅炉的汽水部分、汽轮机及其辅助设备,如凝汽器、除氧器、回水加热器、给水泵、循环水泵、冷却设备等。

④电气系统:完成机械能转化为电能的系统。主要有发电机、主变压器、断路器、隔离开关、母线等。

⑤控制系统:完成生产过程中的参数测量及自动化监控操作的系统。

在上述系统的所有设备中,最主要的设备是锅炉、汽轮机和发电机,它们安装在发电厂的主厂房内。主变压器和配电设备一般是安装在独立的建筑物内和户外;其他辅助设备如给水系统、供水设备、水处理设备、除尘设备、燃料储运设备等,有的安装在主厂房内,有的则是安装在辅助建筑中或在露天场地。

本文来源:https://www.bwwdw.com/article/ior6.html

Top