场效应管参数解释

更新时间:2024-01-16 07:09:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

场效应管

根据三极管的原理开发出的新一代放大元件,有3个极性,栅极,

漏极,源极,它的特点是栅极的内阻极高,采用二氧化硅材料的可以达到几百兆欧,属于电压控制型器件

-------------------------------------------------------------- 1.概念:

场效应晶体管(Field Effect Transistor缩写(FET))简称场效应管.由多数载流子参与导电,也称为单极型晶体管.它属于电压控制型半导体器件. 特点:

具有输入电阻高(100000000~1000000000Ω)、噪声小、功耗低、动态范围大、易于集成、没有二次击穿现象、安全工作区域宽等优点,现已成为双极型晶体管和功率晶体管的强大竞争者. 作用:

场效应管可应用于放大.由于场效应管放大器的输入阻抗很高,因此耦合电容可以容量较小,不必使用电解电容器.

场效应管可以用作电子开关.

场效应管很高的输入阻抗非常适合作阻抗变换.常用于多级放大器的输入级作阻抗变换.场效应管可以用作可变电阻.场效应管可以方便地用作恒流源.

2.场效应管的分类:

场效应管分结型、绝缘栅型(MOS)两大类

按沟道材料:结型和绝缘栅型各分N沟道和P沟道两种.

按导电方式:耗尽型与增强型,结型场效应管均为耗尽型,绝缘栅型场效应管既有耗尽型的,也有增强型的。

场效应晶体管可分为结场效应晶体管和MOS场效应晶体管,而MOS场效应晶体管又分为N沟耗尽型和增强型;P沟耗尽型和增强型四大类.见下图 :

3.场效应管的主要参数 :

Idss — 饱和漏源电流.是指结型或耗尽型绝缘栅场效应管中,栅极电压UGS=0时的漏源电流.

Up — 夹断电压.是指结型或耗尽型绝缘栅场效应管中,使漏源间刚截止时的栅极电压.

Ut — 开启电压.是指增强型绝缘栅场效管中,使漏源间刚导通时的栅极电压.

gM — 跨导.是表示栅源电压UGS — 对漏极电流ID的控制能力,即漏极电流ID变化量与栅源电压UGS变化量的比值.gM 是衡量场效应管放大能力的重要参数.

BVDS — 漏源击穿电压.是指栅源电压UGS一定时,场效应管正常工作所能承受的最大漏源电压.这是一项极限参数,加在场效应管上的工作电压必须小于BVDS.

PDSM — 最大耗散功率,也是一项极限参数,是指场效应管性能不变坏时所允许的最大漏源耗散功率.使用时,场效应管实际功耗应小于PDSM并留有一定余量.

IDSM — 最大漏源电流.是一项极限参数,是指场效应管正常工作时,漏源间所允许通过的最大电流.场效应管的工作电流不应超过IDSM

Cds---漏-源电容 Cdu---漏-衬底电容 Cgd---栅-源电容 Cgs---漏-源电容

Ciss---栅短路共源输入电容 Coss---栅短路共源输出电容 Crss---栅短路共源反向传输电容 D---占空比(占空系数,外电路参数) di/dt---电流上升率(外电路参数) dv/dt---电压上升率(外电路参数) ID---漏极电流(直流) IDM---漏极脉冲电流 ID(on)---通态漏极电流

IDQ---静态漏极电流(射频功率管) IDS---漏源电流 IDSM---最大漏源电流

IDSS---栅-源短路时,漏极电流

IDS(sat)---沟道饱和电流(漏源饱和电流) IG---栅极电流(直流)

IGF---正向栅电流 IGR---反向栅电流

IGDO---源极开路时,截止栅电流 IGSO---漏极开路时,截止栅电流 IGM---栅极脉冲电流 IGP---栅极峰值电流 IF---二极管正向电流

IGSS---漏极短路时截止栅电流 IDSS1---对管第一管漏源饱和电流 IDSS2---对管第二管漏源饱和电流 Iu---衬底电流

Ipr---电流脉冲峰值(外电路参数) gfs---正向跨导 Gp---功率增益

Gps---共源极中和高频功率增益 GpG---共栅极中和高频功率增益 GPD---共漏极中和高频功率增益 ggd---栅漏电导 gds---漏源电导 K---失调电压温度系数 Ku---传输系数

L---负载电感(外电路参数) LD---漏极电感 Ls---源极电感 rDS---漏源电阻 rDS(on)---漏源通态电阻 rDS(of)---漏源断态电阻 rGD---栅漏电阻 rGS---栅源电阻

Rg---栅极外接电阻(外电路参数) RL---负载电阻(外电路参数) R(th)jc---结壳热阻 R(th)ja---结环热阻 PD---漏极耗散功率

PDM---漏极最大允许耗散功率 PIN--输入功率 POUT---输出功率

PPK---脉冲功率峰值(外电路参数) to(on)---开通延迟时间 td(off)---关断延迟时间 ti---上升时间 ton---开通时间

toff---关断时间 tf---下降时间 trr---反向恢复时间 Tj---结温

Tjm---最大允许结温 Ta---环境温度 Tc---管壳温度 Tstg---贮成温度

VDS---漏源电压(直流) VGS---栅源电压(直流) VGSF--正向栅源电压(直流) VGSR---反向栅源电压(直流)

VDD---漏极(直流)电源电压(外电路参数) VGG---栅极(直流)电源电压(外电路参数) Vss---源极(直流)电源电压(外电路参数) VGS(th)---开启电压或阀电压 V(BR)DSS---漏源击穿电压

V(BR)GSS---漏源短路时栅源击穿电压 VDS(on)---漏源通态电压 VDS(sat)---漏源饱和电压 VGD---栅漏电压(直流) Vsu---源衬底电压(直流) VDu---漏衬底电压(直流) VGu---栅衬底电压(直流) Zo---驱动源内阻

η---漏极效率(射频功率管) Vn---噪声电压

aID---漏极电流温度系数 ards---漏源电阻温度系数

4.结型场效应管的管脚识别:

判定栅极G:将万用表拨至R×1k档,用万用表的负极任意接一电极,另一只表笔依次去接触其余的两个极,测其电阻.若两次测得的电阻值近似相等,则负表笔所接触的为栅极,另外两电极为漏极和源极.漏极和源极互换,若两次测出的电阻都很大,则为N沟道;若两次测得的阻值都很小,则为P沟道.

判定源极S、漏极D:

在源-漏之间有一个PN结,因此根据PN结正、反向电阻存在差异,可识别S极与D极.用交换表笔法测两次电阻,其中电阻值较低(一般为几千欧至十几千欧)的一次为正向电阻,此时黑表笔的是S极,红表笔接D极.

5.场效应管与晶体三极管的比较

场效应管是电压控制元件,而晶体管是电流控制元件.在只允许从信号源取较少电流的情况下,应选用场效应管;而在信号电压较低,又允许从信号源取较多电流的条件下,应选用晶体管.

晶体三极管与场效应管工作原理完全不同,但是各极可以近似对应以便于理解和设计: 晶体管: 基极 发射极 集电极 场效应管 : 栅极 源极 漏极

要注意的是,晶体管(NPN型)设计发射极电位比基极电位低(约0.6V),场效应管源极电位比栅极电位高(约0.4V)。

场效应管是利用多数载流子导电,所以称之为单极型器件,而晶体管是即有多数载流子,也利用少数载流子导电,被称之为双极型器件.

有些场效应管的源极和漏极可以互换使用,栅压也可正可负,灵活性比晶体管好.

场效应管能在很小电流和很低电压的条件下工作,而且它的制造工艺可以很方便地把很多场效应管集成在一块硅片上,因此场效应管在大规模集成电路中得到了广泛的应用.

一、场效应管的结构原理及特性 场效应管有结型和绝缘栅两种结构,每种结构又有N沟道和P沟道两种导电沟道。

1、结型场效应管(JFET)

(1)结构原理 它的结构及符号见图1。在N型硅棒两端引出漏极D和源极S两个电极,又在硅棒的两侧各做一个P区,形成两个PN结。在P区引出电极并连接起来,称为栅极Go这样就构成了N型沟道的场效应管

图1、N沟道结构型场效应管的结构及符号

由于PN结中的载流子已经耗尽,故PN基本上是不导电的,形成了所谓耗尽区,从图1中可见,当漏极电源电压ED一定时,如果栅极电压越负,PN结交界面所形成的耗尽区就越厚,则漏、源极之间导电的沟道越窄,漏极电流ID就愈小;反之,如果栅极电压没有那么负,则沟道变宽,ID变大,所以用栅极电压EG可以控制漏极电流ID的变化,就是说,场效应管是电压控制元件。 (2)特性曲线 1)转移特性

图2(a)给出了N沟道结型场效应管的栅压---漏流特性曲线,称为转移特性曲线,它和电子管的动态特性曲线非常相似,当栅极电压VGS=0时的漏源电流。用IDSS表示。VGS变负时,ID逐渐减小。ID接近于零的栅极电压称为夹断电压,用VP表示,在0≥VGS≥VP的区段内,ID与VGS的关系可近似表示为: ID=IDSS(1-|VGS/VP|)

其跨导gm为:gm=(△ID/△VGS)|VDS=常微(微欧)| 式中:△ID------漏极电流增量(微安) ------△VGS-----栅源电压增量(伏)

图2、结型场效应管特性曲线 2)漏极特性(输出特性)

图2(b)给出了场效应管的漏极特性曲线,它和晶体三极管的输出特性曲线 很相似。

①可变电阻区(图中I区)在I区里VDS比较小,沟通电阻随栅压VGS而改变,故称为可变电阻区。当栅压一定时,沟通电阻为定值,ID随VDS近似线性增大,当VGS<VP时,漏源极间电阻很大(关断)。IP=0;当VGS=0时,漏源极间电阻很小(导通),ID=IDSS。这一特性使场效应管具有开关作用。 ②恒流区(区中II区)当漏极电压VDS继续增大到VDS>|VP|时,漏极电流,IP达到了饱和值后基本保持不变,这一区称为恒流区或饱和区,在这里,对于不同的VGS漏极特性曲线近似平行线,即ID与VGS成线性关系,故又称线性放大区。

③击穿区(图中Ⅲ区)如果VDS继续增加,以至超过了PN结所能承受的电压而被击穿,漏极电流ID突然增大,若不加限制措施,管子就会烧坏。 2、绝缘栅场效应管

它是由金属、氧化物和半导体所组成,所以又称为金属---氧化物---半导体场效应管,简称MOS场效应管。 (1)结构原理

它的结构、电极及符号见图3所示,以一块P型薄硅片作为衬底,在它上面扩散两个高杂质的N型区,作为源极S和漏极D。在硅片表覆盖一层绝缘物,然后再用金属铝引出一个电极G(栅极)由于栅极与其它电极绝缘,所以称为绝缘栅场面效应管。

图3、N沟道(耗尽型)绝缘栅场效应管结构及符号

在制造管子时,通过工艺使绝缘层中出现大量正离子,故在交界面的另一侧能感应出较多的负电荷,这些负电荷把高渗杂质的N区接通,形成了导电沟道,即使在VGS=0时也有较大的漏极电流ID。当栅极电压改变时,沟道内被感应的电荷量也改变,导电沟道的宽窄也随之而变,因而漏极电流ID随着栅极电压的变化而变化。

场效应管的式作方式有两种:当栅压为零时有较大漏极电流的称为耗散型,当栅压为零,漏极电流也为零,必须再加一定的栅压之后才有漏极电流的称为增强型。 (2)特性曲线

1)转移特性(栅压----漏流特性)

图4(a)给出了N沟道耗尽型绝缘栅场效应管的转移行性曲线,图中Vp为夹断电压(栅源截止电压);IDSS为饱和漏电流。

图4(b)给出了N沟道增强型绝缘栅场效管的转移特性曲线,图中Vr为开启电压,当栅极电压超过VT时,漏极电流才开始显著增加。 2)漏极特性(输出特性)

图5(a)给出了N沟道耗尽型绝缘栅场效应管的输出特性曲线。 图5(b)为N沟道增强型绝缘栅场效应管的输出特性曲线 。

图4、N沟道MOS场效管的转移特性曲线

图5、N沟道MOS场效应管的输出特性曲线

此外还有N衬底P沟道(见图1)的场效应管,亦分为耗尽型号增强型两种,

各种场效应器件的分类,电压符号和主要伏安特性(转移特性、输出特性) 二、场效应管的主要参数 1、夹断电压VP

当VDS为某一固定数值,使IDS等于某一微小电流时,栅极上所加的偏压VGS就是夹断电压VP。 2、饱和漏电流IDSS

在源、栅极短路条件下,漏源间所加的电压大于VP时的漏极电流称为IDSS。 3、击穿电压BVDS

表示漏、源极间所能承受的最大电压,即漏极饱和电流开始上升进入击穿区时对应的VDS。 4、直流输入电阻RGS

在一定的栅源电压下,栅、源之间的直流电阻,这一特性有以流过栅极的电流来表示,结型场效应管的RGS可达1000000000欧而绝缘栅场效应管的RGS可超过10000000000000欧。 5、低频跨导gm

漏极电流的微变量与引起这个变化的栅源电压微数变量之比,称为跨导,即 gm= △ID/△VGS

它是衡量场效应管栅源电压对漏极电流控制能力的一个参数,也是衡量放大作用的重要参数,此参灵敏常以栅源电压变化1伏时,漏极相应变化多少微安(μA/V)或毫安(mA/V)来表示

-------------------------------------------------------------------------------------------

MOS场效应管即金属-氧化物-半导体型场效应管,英文缩写为MOSFET(Metal-Oxide-Semiconductor Field-Effect-Transistor),属于绝缘栅型。其主要特点是在金属栅极与沟道之间有一层二氧化硅绝缘层,因此具有很高的输入电阻(最高可达1000TΩ)。它也分N沟道管和P沟道管,符号如图1所示。通常是将衬底(基板)与源极S接在一起。根据导电方式的不同,MOSFET又分增强型、耗尽型。所谓增强型是指:当VGS=0时管子是呈截止状态,加上正确的VGS后,多数载流子被吸引到栅极,从而“增强”了该区域的载流子,形成导电沟道。耗尽型则是指,当VGS=0时即形成沟道,加上正确的VGS时,能使多数载流子流出沟道,因而“耗尽”了载流子,使管子转向截止。

本文来源:https://www.bwwdw.com/article/ildo.html

Top