基于PLC 的中央空调控制系统设计2012届本科毕业论文

更新时间:2024-06-04 19:37:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

哈尔滨理工大学

毕 业 设 计

题 目: 基于PLC的中央空调控制系统设计 院、 系: 姓 名: 指导教师: 系主任:

2012年06月 25 日

自动化学院 自动化系

哈尔滨理工大学毕业设计(论文)任务书

学生姓名: 学号: 学 院:自动化学院 专业:自动化 任务起止时间: 2012 年 2 月 27 日 至 2012 年 6 月 25 日 毕业设计(论文)题目: 基于PLC的中央空调控制系统设计 毕业设计工作内容: 1.第1~2周,查阅相关资料并翻译外文资料; 2.第3~4周,了解课题目前在国内外的研究现状、发展趋势,确定中央空调所要实现的功能和了解整个系统的结构框架; 3.第5~8周,进一步了解中央空调的所要实现的具体功能,确定系统中所要用到的原器件,并进行最初的硬件电路的设计,为软件编程做准备; 4.第9~11周,学习PLC程序的设计与开发,确定最终的硬件电路的设计; 5.第12~13周,编写PLC程序,并和硬件一起进行程序调试,来检查程序的可行性; 6.第14~15周,修改必要的程序部分来完善系统,并书写论文的初稿; 7.第16~17周,修改并完成书面论文,准备答辩。 资料: 1.王卫兵,高俊山. 可编程控制器原理及应用.第二版.机械工业出版社,2005 2.任光.可编程序控制器(PC)应用技术与实例.华南理工大学出版社,2001 3.汤蕴缪,史乃. 电机学.机械工业出版社,1999 4.康贤永,万大福. 可编程控制器及其应用. 重庆大学出版社,1998 5.梅晓榕,柏桂珍. 自动控制元件及线路. 科学出版社,2005 6.刘金琨. 先进PID控制Matlab仿真(第二版). 电子工业出版社,2004 指导教师意见: 签名: 年 月 日 系主任意见: 签名: 年 月 日 教务处制表

哈尔滨理工大学学士学位论文

基于PLC的中央空调控制系统设计

摘要

中央空调现已广泛的应用在各大商场、办公大厦等场所中,传统控制系统中在控制较适宜的温度的同时,却消耗了大量的能量。如今,人们越来越重视中央空调的舒适性和节能性,本文重点研究了中央空调冷冻泵机组控制系统,为舒适的生活工作环境及有效节能提供了技术条件。

本文首先介绍了中央空调的结构和工作原理,总结了传统中央空调的缺点,即冷冻泵、冷却泵不能自我调节负载,长期处于满负荷运行,造成了极大的能源浪费,随着变频技术日趋成熟,利用变频器、PLC、数模转换模块、温度传感器等器件的有机结合,构成温差闭环自动控制系统,自动调节水泵的输出流量达到节能目的。该系统采用西门子的S7—200PLC作为主控制单元,利用传统 PID 控制算法,通过西门子 MM440 变频器控制水泵运转速度,保证系统根据实际负荷的情况调整流量,实现恒温控制,同时又可以节约大量能源。

通过对中央空调的理论分析,验证了以出回水温差为根据对其进行变流量控制的可靠性。对变频控制系统进行了设计,为实现温度信号远距离传送,设计了基于 USS 协议的RS-485总线通讯的网络。通过西门子 TD200 文本显示器实现人机界面的设计,最后使用 MCGS 工控组态软件进行了系统的组态设计研究。

关键词 中央空调;PLC;变频器;PID;RS-485

- I -

哈尔滨理工大学学士学位论文

PLC Based Central Air Conditioning Control System

Design Abstract

Central air conditioning has been widely used in major shopping malls, office buildings and other places, the traditional control system in the control of suitable temperature at the same time, it consumes a lot of energy.nowadays, people pay more and more attention to central air conditioning comfort and energy efficiency, this paper focuses on the research of central air conditioning refrigeration pump unit control system, for comfortable living and working environment and effective energy-saving provide technical conditions.

This paper introduces the structure and working principle of central air conditioning, summarizes the traditional central air-conditioning system shortcomings, namely refrigeration pump, cooling pump can not self regulation in long-term load, full load operation, causing great waste of energy, along with the frequency conversion technology is mature with each passing day, the use of frequency converter, PLC, digital to analog conversion module, temperature sensors and other devices the organic combination of form, thermoelectric closed-loop automatic control system, automatically adjust the pump output flow to achieve the purpose of energy saving. The system adopts Siemens S7-200PLC as the main control unit, by using the traditional PID control algorithm, through the MM440 Siemens inverter control pump speed, ensure the system according to the actual load adjusting flow, to achieve constant temperature control, but also can save a lot of energy.

Through the theoretical analysis on the central air conditioning, proved to a backwater temperature based on the variable flow control reliability. The frequency

- II -

哈尔滨理工大学学士学位论文

conversion control system was designed, in order to realize the temperature signal remote transmission based on USS protocol, the design of RS-485 bus communication network. Siemens TD200 text display is realized through the man-machine interface design, finally using the MCGS configuration software for system configuration design and research.

Keywords Central air conditioning;PLC; frequency converter;- III -

PID; RS-485

哈尔滨理工大学学士学位论文

目 录

摘要 ................................................................................................................................. I Abstract ......................................................................................................................... II

第1章 绪论 .................................................................................................................. 1 1.1 课题背景 ............................................................................................................. 1 1.2 中央空调控制的研究现状及发展 ..................................................................... 2 1.2.1 中央空调控制系统的发展 .......................................................................... 2 1.2.2 中央空调变流量控制的发展 ...................................................................... 3 1.3 本研究课题的主要工作 ..................................................................................... 4 第2章 中央空调变流量控制的原理 .......................................................................... 5 2.1 中央空调系统的结构和原理 ............................................................................. 5 2.1.1 概述 .............................................................................................................. 5 2.1.2 制冷原理 ...................................................................................................... 5 2.1.3 中央空调系统的构成 .................................................................................. 5 2.2 中央空调变流量控制的原理及特点 ................................................................. 5 2.2.1 变流量空调系统概述 .................................................................................. 5 2.2.2 中央空调变流量控制的实现方式 .............................................................. 7 2.2.3 中央空调系统变流量系统的特点 .............................................................. 9 2.3 电机的软启动原理及应用 ............................................................................... 10 2.3.1 软启动设备介绍 ........................................................................................ 10 2.3.2 软启动器的应用场合 ................................................................................ 10 2.3.3 软启动器与变频器之间的区别对比 ........................................................ 10 2.4 PID控制的设计 ................................................................................................ 11 2.4.1 PID控制原理 ............................................................................................. 11 2.4.2 PID控制器的参数整定 ............................................................................. 12 2.4.3 PID的反馈逻辑 ......................................................................................... 12 2.4.4 P、I、D参数调整原则 ............................................................................. 13 2.4.5 对空调系统的PID变频控制 ................................................................... 13 2.4.6实现设定值的自动调节 ............................................................................. 13 2.4.7 PID控制器设计及实现 ............................................................................. 13 2.5 本章小结 ........................................................................................................... 15 第3章 中央空调控制系统的硬件设计 .................................................................... 16 3.1 变频器的原理 ................................................................................................... 16 3.2 西门子MM440变频器性能介绍 .................................................................... 16 3.2.1 主要特征 .................................................................................................... 17 3.2.2 控制性能的特点 ........................................................................................ 17

- IV -

哈尔滨理工大学学士学位论文

3.2.3 保护功能 .................................................................................................... 17 3.2.4 变频器运行的环境条件 ............................................................................ 17 3.2.5 使用变频器设计系统时需注意的问题 .................................................... 18 3.3 PLC选型 ........................................................................................................... 18 3.3.1 PLC简介 .................................................................................................... 18 3.3.2 PLC控制功能的选择 ................................................................................ 18 3.3.3 西门子S7-200PLC介绍 ........................................................................... 20 3.3.4 模拟量I/O模块的种类 ............................................................................ 20 3.3.5 EM231技术指标 ........................................................................................ 21 3.3.6 EM232技术指标 ........................................................................................ 21 3.3.7 EM231 RTD接线及注意事项 ................................................................... 21 3.4 PT100温度传感器 ............................................................................................ 21 3.5 PT100温度变送器 ............................................................................................ 22 3.6 人机界面设计 ................................................................................................... 22 3.7 系统硬件设计 ................................................................................................... 23 3.8 本章小结 ........................................................................................................... 25 第4章 控制系统软件设计 ........................................................................................ 26 4.1 设备间通讯 ....................................................................................................... 26 4.1.1 RS-485介绍 ................................................................................................ 26 4.1.2 USS协议 .................................................................................................... 26 4.2 PLC的初始设定 ............................................................................................... 27 4.3 PLC主程序流程图 ........................................................................................... 29 4.4 PLC编程软件 ................................................................................................... 30 4.5 程序设计 ........................................................................................................... 30 4.5.1 中央空调控制系统的I/O分配表 ............................................................ 30 4.5.2 程序中使用的存储器及功能 .................................................................... 31 4.6 中央空调控制系统的MCGS组态 ................................................................. 32 4.6.1 MCGS组态软件简介 ................................................................................ 32 4.6.2 MCGS 6.2通用版介绍 .............................................................................. 32 4.6.4 系统脚本程序编写 .................................................................................... 34 4.6.5 组态运行界面 ............................................................................................ 35 4.7 本章小结 ........................................................................................................... 36 结论 .............................................................................................................................. 37 致谢 .............................................................................................................................. 38 参考文献 ...................................................................................................................... 39 附录C .......................................................................................................................... 40

- V -

哈尔滨理工大学学士学位论文

第1章 绪论

1.1 课题背景

随着国民经济的发展和人民生活水平的日益提高,为了保证温度恒定,中央空调系统已广泛应用于工业与民用建筑领域,例如酒店、宾馆、办公大厦、商场、工厂厂房等场所。随着时间的推移,人们对中央空调控制系统运行效果的评价也改变了。舒适节能才是最符合人们对中央空调系统提出新的要求,希望在能耗更低的情况下保持室内合适的温度、湿度。

统计数字显示,传统的中央空调控制系统耗电量极大,且存在巨大的能源浪费。中央空调系统普遍存在着30%以上的无效能耗,有些中央空调系统的无效能耗甚至可以高达50%以上。采用新技术降低系统能耗成为当务之急。因为能源是发展国民经济的重要因素,我国近年来能源短缺的现实,节能减排才是重中之重。建设节能型社会,促进经济可持续发展,是实现全面建设小康社会宏伟目标,构建和谐社会的重要基础保障[1]。

在传统的设计中,中央空调的制冷机组、冷冻水循环系统、冷却水循环系统、冷却塔风机系统、风机盘管系统等都是按照建筑物最大负荷制定的,且留有充足余量。不管在什么时间,负荷的多少,各电机都长期处在工频状态下全速运行,虽然可满足最大的用户负荷,但不具备随用户负荷动态调节的功能,而在大多数时间里,用户负荷是较低的,这样就造成很大的能源浪费。有个例子可以很好的说明这些,中央空调系统中的冷冻水泵和冷却水泵,一年四季长期在固定的最大流量下工作,但由于季节、昼夜和用户负荷的变化,在绝大部分时间内,空调的实际热负载与决定水泵流量和压力的最大设计负载相比,一年中负载率在50%以下的小时数约占全部运行时间的60%以上。一般冷冻水设计温差为5~7℃,冷却水的设计温差为4~5℃,在系统流量固定的情况下,全年绝大部分运行时间温差仅为1~3℃,即在低温差、大流量情况下工作,从而增加了管路系统的能量损失,严重浪费了水泵运行的输送能量。也就是说,中央空调系统存在着至少30%以上的节能空间。这至少30%的节能空间来源于很多方面:

第一,负荷估算值偏大,系统消耗能量大大增加,现在的新型制冷主机可以根据负载的变化自动加载、卸载,而水泵的流量却不能随制冷主机而调节,必然存在很大的能量浪费;除此之外,每年的气象条件是随季节呈周期性的变化的,系统并不能做出相应的调节,许多环节上都留有节能空间。

第二,空调主机选型容量加大,在冷负荷估算值加大后,空调主机制冷量也相应的加大。

第三,水系统中通过节流阀或调节阀来调节流量、压力,冷冻水系统和冷却水系统中消耗了水泵较大的输送能量。在传统的运行方式下,只要启动水泵,就会在工频满负荷状态下运行。

第四,起停频繁对设备长期安全运行带来不利影响。起动电流通常为额定值

- 1 -

哈尔滨理工大学学士学位论文

的5倍左右,电机在如此大的电流冲击下,进行频繁的起停,对电机、接触器触点产生电弧冲击,也会给电网带来一定冲击,起动时带来的机械冲击和停止时的承重现象也会对机械传动、轴承、阀门等造成疲劳损伤。

为此,如果能通过冷冻水供回水温度、压差,冷却水泵的流量等工艺参数进行调整并对空调设备进行优化起停,使空调系统高效、节能运行,将产生非常明显的经济效果。另外,根据交流电机的特性,要实现连续平滑的速度调节,最佳的方法就是采用变频器调速,采用变频器进行风机、水泵的节能改造,不仅避免了由于采用挡板或阀门造成的电能浪费,而且还会极大提高调节和控制的精度,从而方便地实现恒温空调系统[2]。空调节能的目的是有效利用能源,以最小的能耗创造出一个适合人居住、工作的室内环境。空调水系统实现节能运行可以有效地减少空调系统能耗和建筑总能耗,提高能源利用率,对减少温室气体排放,减轻环境污染,实现人类社会的可持续发展。

1.2 中央空调控制的研究现状及发展

1.2.1 中央空调控制系统的发展

1、在单室内机的房间空调器方面 变频技术、微电脑和电子膨胀阀在空调器上的应用为空调器的智能控制创造了最基本的条件。我国自90年代初开始研究空调器的智能控制,现已研制出多种形式的变频空调器或智能空调器,对推进我国空调业的进步作出了贡献。西安交大朱瑞琪于1991年开始研究制冷空调设备的变频能量调节技术。李家朋针对我国房间空调器普遍采用单相压缩机的现状,探索开发出两相变频器,并应用电子膨胀阀进行变流量控制,利用16位微机并引进模糊概念提高空调器的控制功能,为变频空调器国产化作出了大胆的探索。李家朋在空调器舒适性和节能运行的控制中,提出了用表征房间热负荷大小的“热容C”和表征房间漏热程度的“热阻R”进行模糊辩识的方法。研究表明,用此方法研制的模糊控制空调器会按季节、气温、漏热情况等条件,自动地选择合适的工作模式,保证了空调环境的舒适度和制冷系统的节能要求。

2、在多室内机的房间空调器(一机多挂系统)方面 由于多室内机空调器的节能和舒适性控制,涉及到必须对系统中的工质循环量和进入各室内机的工质流量加以严格精确地控制问题,它不仅与系统的控制有关,同时也与系统的设计有着密切的关系。在这方面,目前国内主要是在研制一拖二和一拖三空调器,根据其结构形式和运转特点可分为如下四种方式。

(1)一台定速压缩机对应一台室内机的多制冷系统。这种机型在控制上难度最小,但结构复杂、体积大、成本高,不能体现一机多挂系统的价格优势和节能优势。

(2)单台定速压缩机多台室内机间歇供冷(热)系统。由于制冷工质按时间交替分配给各室内机,所以根本不能满足室内环境的舒适性要求。

(3)单台定速压缩机多台室内机同时供冷(热)系统。这种系统采用定速压缩

- 2 -

哈尔滨理工大学学士学位论文

机,降低了空调器成本,并能减少压缩机的启停次数,较好地实现房间的舒适性控制。但并不能从本质上解决压缩机的起停损失和对电网的冲击,不能提高空调器的能效比和季节性能比。

(4)单台变频压缩机多台室内机同时供冷(热)系统。通过采用电子膨胀阀调节进入各室内机的工质流量,使之满足各室内的冷(热)负荷要求,改变压缩机的运转频率调节制冷系统所需要的工质循环量,并采用软硬件相结合的方式调节室内外风扇转速、四通阀、室内机的风向调节板等可控部件,实现室内环境的高舒适性和系统的节能控制。

随着智能建筑在中国的飞速发展,楼宇自动控制技术和装置也得到快速的发展。对于楼宇自动控制而言,在确保建筑内舒适和安全的办公环境的同时,还要实现高效节能目的。因此诞生了综合现代计算机技术、现代控制技术、现代通信技术和现代图形显示技术的集散型控制系统。集散型中央空调监控系统在我国的智能建筑中得到广泛应用,其自动监视、测量、控制和管理功能是相当优越的,自动化程度高,节约了大量的劳动力和运行费用[3]。20世纪90年代未至21世纪初,我国在中央空调系统的控制领域,同时推出两项节能技术和产品:中央空调变频调速控制节能系统和中央空调变流量控制节能系统。将这两项技术相结合,在集散型中央空调监控系统的基础上,增加PLC和变频技术,并且与智能控制方法相结合,将原有的定流量系统改为变流量控制系统,从而使中央空调的各泵组和冷却塔风机的运行跟随负荷的变化而同步变化,就能够在保证负荷需求的前提下,实现中央空调系统的最大节能。

国内还有一些科研机构和企业的科研团体,也都开展了智能空调器的研制工作,其核心内容都集中在对单相压缩机变屏调速控制器和智能型室温控制器的研究,其研究成果还未见公开发表。智能型空调器是一个综合技术的聚合体,开发难度较大,现在的样机或产品在控制模式上、控制系统的稳定性和鲁棒性方面相比国际先进技术还存在很大的差距,有待于进一步的研究和提高。

1.2.2 中央空调变流量控制的发展

空调水系统最重要的目的是为空调系统的各末端装置提供能量的交换,如何在满足这个要求的前提下尽可能的节能,是首先需要解决的问题。冷水系统的设计已经历了大约六、七十年的发展,并仍在不断地完善。在这个发展和完善的过程中总是不断的遇到新问题,如:冷水温差过小、水系统阻力损失过大、管网水力不平衡等问题,这些问题的不断解决最终推动了变流量技术的发展。

变流量空调技术的发展,与控制技术和水泵变频技术的发展是紧密相联的,可以说变流量技术是随着变频技术的出现才逐渐发展起来的[4]。这种技术在美国得到了广泛的研究和应用。在变频技术和数字控制技术出现之前,通常不考虑负荷的变化,冷冻水泵以固定的流量输运冷冻水到环路中。这种做法的后果不仅造成了能耗的浪费,还导致冷冻水系统的供、回水低温差运行。

从九十年代术期开始,随着计算机及电子技术的高速发展,变流量技术也得到深入的发展。水泵、变频驱动器、控制器等设备性能的提高大大满足了水系统

- 3 -

哈尔滨理工大学学士学位论文

控制的要求。随着变流量技术的成熟,在国外应用变流量技术开始成为暖通行业的标准。在目前应用的系统中往往偏重于设备的运行管理控制方法,具体控制方法上,基本上采用多个回路的PID控制[5]。各种类型的PID控制器因其参数物理意义明确、易于调整,并且具有一定的鲁棒性,因而得到了广泛的应用。PID控制器之所以能够在过程控制领域获得广泛地应用,是因为在实际的应用中PID控制器的设计可只借助于系统输出等反馈信息进行控制,从而减少了控制系统对对象模型的依赖性。

目前,中央空调控制方法有双位ON/OFF控制、PID控制、最优控制、模糊控制等方法。以PID算法为核心的各种DDC控制系统是目前中央空调工程和设备较普遍的使用方法,这种控制方法在工况较稳定的情况下,可以得到较好的控制效果。

1.3 本研究课题的主要工作

本文在分析和综合了PID控制的特点、发展趋势以及中央空调控制任务的基础上,对中央空调冷冻水机组采用传统PID控制,对基于USS通信协议的RS-485总线设计的控制系统进行了研究,并进行了组态设计,最终设计了中央空调变频节能控制系统。

研究工作的具体内容如下:

1、对空调系统变频控制进行了理论分析。

2、对变频控制系统进行设计,以实现工频/变频切换功能。

3、设计了基于RS-485网络的控制系统。可将采集的出回水温度等数据信号通过网络送到主控系统,实现远距离传送。

4、文中对冷冻水机组的控制系统进行了硬件和软件的设计,采用西门子TD200文本显示屏作为人机界面,西门子S7-200 PLC作为主控制器,用一台变频器结合工频供电的方式,灵活的驱动冷冻水机组的三台水泵。

- 4 -

哈尔滨理工大学学士学位论文

第2章 中央空调变流量控制的原理

2.1 中央空调系统的结构和原理

2.1.1 概述

空调即空气调节器,挂式空调是一种用于给空间区域提供处理空气温度变化的机组。它的功能是对该房间或区域内空气的温度、湿度、洁净度和空气流速等参数进行调节,以满足人体舒适或工艺过程的要求。

中央空调系统是一种大型的对建筑物进行集中空气调节并进行管理的设备,一般由空气处理设备、送(回)风机、送(回)风通道、空气分配装置及冷、热源等组成。根据需要,它们能组成不同形式的系统。在工程实际中,应从建筑物的用途和性质,热湿负荷特点、空调机房面积和位置、初投资和运行维修费用等许多方面去考虑,选择合理的空调系统。

2.1.2 制冷原理

气态制冷工质(如氟利昂)经压缩机压缩成高温高压气体后进入冷凝器,与水(空气)进行等压热交换,变成低温高压液态。液态工质经干燥过滤器去除水份、杂质,进入膨胀阀节流减压,成为低温低压液态工质,在蒸发器内气化。液体气化过程要吸收气化潜热,而且液体压力不同,其饱和温度(沸点)也不同,压力越低,饱和温度越低。例如,1kg的水,在绝对压力为0.00087MPa,饱和温度为5℃,气化时需要吸收2488.7KJ热量;1kg的氨,在1个标准大气压力(0.10133MPa)下,气化时需要吸收1369.59KJ热量,温度可抵达-33.33℃。因此,只要创造一定的低压条件,就可以利用液体的气化获取所要求的低温。依此原理,气化过程吸取冷冻水的热量,使冷冻水温度降低(一般降为7℃)。制冷工质在蒸发器内吸取热量,温度升高变成过热蒸气,进入压缩机重复循环过程。

2.1.3 中央空调系统的构成

中央空调系统包括空调主机,风机盘管系统、水系统及相应的控制系统。空调主机由压缩机、蒸发器和冷凝器组成,风机盘管系统为房间内的末端,水系统出冷冻水循环系统、冷却水循环系统组成[7]。典型的中央空调系统的结构如图2-1所示,冷冻水和冷却水循环系统是能量的主要传递者。因此,对冷冻水和冷却水循环系统的控制是中央空调控制系统的重要组成部分。

2.2 中央空调变流量控制的原理及特点

2.2.1 变流量空调系统概述

早前,国内的中央空调系统,基本上都采用传统的定流量控制方式。也就是说,只要启动空调主机,冷冻水泵、冷却水泵和冷却塔风机都在50Hz工频状态下运行。定流量控制方式的特征是系统的循环水量保持恒定,当负荷发生变化时,

- 5 -

哈尔滨理工大学学士学位论文

通过改变供水或回水温度来满足要求。定流量供水方式最主要的优点是系统简单,不需要复杂的自控设备。但这种控制方式存在以下问题:

(1)中央空调系统是一个多参量、非线性、时变性的复杂系统,由于末端负荷的频繁波动,必然造成系统的运行参量偏离空调主机的最佳工作状态,导致主机热转换效率大大降低,系统长期在低效率状态下运行,也会增加系统的能源消耗。

(2)无论末端负荷大小如何变化,空调系统均在设计的额定状态下运行,系统能耗始终处于设计的最大值。而由于受多种因素不断变化的影响,如:季节交替、气候昼夜变化、使用频率、人流量增减等。空调负荷的这种不恒定性,决定了系统对空调冷量的需求也是一个随机变化的量。若不进行系统优化,定会造成能源浪费。

(3)在工频状态下启停大功率水泵和风机,冲击电流大,不利于电网的安全运行,且水泵、风机等机电设备长期在工额额定状念下高速运行,机械磨损严重,导致使用寿命缩短和设备故障大幅度增加。

综上来看,定流量控制凸显出来的问题很多。变流量系统则是根据实际负荷的大小改变冷冻水流量,水泵也可以根据系统实际所需流量自动调节其转速或运行台数,从而达到节约水泵能耗的目的[7]。如图2-2所示:

风机冷却塔用户风机盘管空调主机 冷冻泵冷却泵 图2-1 中央空调系统结构

温度反馈用户盘管温度设定温度调节变频器电机冷冻泵 图2-2 冷冻水变流量控制系统

- 6 -

哈尔滨理工大学学士学位论文

2.2.2 中央空调变流量控制的实现方式 中央空调循环水变流量控制系统,是将整个中央空调系统从节能、高效、环保、健康、安全、管理等方面进行全面综合考虑,把科学的节能理念和方法与成熟的控制理论技术、网络通讯技术、检测技术、变频技术及其产品进行融合,形成了一个完整的节能与管理体系。 1、变频调速的原理

变频调速技术的基本原理是根据电机转速与工作电源输入频率成正比的关系:

n0?60f/p (2-1)

式中:

n0——为同步转速,单位为r/min; f——为电源频率,单位为Hz; p——为磁极对数。

异步电动机的转速总是小于其同步转速,异步电机的实际转速可由下式给出:

n?n0(1?s)?60f/p(1?s) (2-2)

式中:

n——电动机实际转速; s——异步电动机的转差率。

由式(2.2)可知,改变参数f,s中的任意一个就可以改变电动机的转速,即对异步电动机进行调速控制。因此,可以通过改变该电源的频率来实现对异步电动机的调速控制。从某种意义上说,变频器就是一个可以任意改变频率的交流电源。

在电动机调速时,一个重要的因素是希望保持每极磁通量为额定值不变。磁通太弱,没有充分利用电机的磁心,是一种浪费;若要增大磁通,又会使磁通饱和,从而导致过大的励磁电流,严重时会因为绕组过热而损坏电机。对于直流电机来说,励磁系统是独立的,所以只要对电枢反应的补偿合适,保持磁通量不变是很容易做到的。在交流异步电机中,磁通是定子和转子合成产生的[8]。

三相异步电机定子每相电动势的有效值是:

Eg?4.44f1N1Kn1?m (2-3)

式中:

Eg——气隙磁通在定子每相中感应电动势有效值,单位为V; f1——定子频率,单位为Hz; N1——定子每相绕组串联匝数; Kn1——基波绕组系数; ?m——每极气隙磁通量。

由式(2.3)知只要控制好Eg和f1,便可以控制磁通不变。 需要考虑基频以下和基频以上两种情况:

- 7 -

哈尔滨理工大学学士学位论文

1)基频下调速 即采用恒定的电动势。由上式可知,要保持磁通量不变,但频率f1从额定值fm向下调节,必须同时降低Eg,然而绕组中的感应电动势是很难控制的,但电动势较高,可以忽略电子绕组的漏磁阻抗压降,而认定定子相电压U1=E,则得1/f?常数。

低频时,U1和Eg都较小,定子阻抗压降所占的份量都比较显着,不能在忽略。这时,可以人为的把电压U1抬高一些,以便近似的补偿定子压降。带定子压降补偿的恒压频比控制特性为b线,无补偿的为a线。如图2-3所示。

U1/Vba0fmf/Hz

图2-3 恒压频比控制特性

2)基频以上调速

在基频以上调速时,频率可以从fm往上增高,但电压U1磁通与频率成反比的降低,相当于直流电机弱磁升速的情况。

把基频以下和基频以上两种情况合起来,可得到异步电动机的变频调速控制特性,如图2-4所示。如果电动机在不同的转速下都具有额定电流,则电动机都能长期运行,这时转矩基本上随磁通变化。在基频以下,属于“恒转矩调速”的调速,而在基频以上,基本上属于“恒功率调速”。

U1/V恒转矩调速Um恒功率调速0fmf/Hz

图2-4 异步电动机变频调速控制特性

在中央空调水系统中,最主要的运行设备是水泵。水泵调速运行节电的理论之一是水泵学比例律。幽水泵学比例律可知,对于同一台水泵,当以不同转速运行时,水泵的流量Q,扬程H,轴功率P与转速n有如下关系[9][12][13]:

- 8 -

哈尔滨理工大学学士学位论文

Q1n1? Q2n2H1n1 (2-4) ?()2

H2n23P1?n1? ???

P2?n2?

由公式(2-4)知,流量与转速成正比,扬程与转速的平方成正比,轴功率与转速的立方成正比。由此可见,当降低转速时,功率的减少量远比流量的减少量大得多。因此,控制水泵的转速可以有效地控制水泵的消耗功率,这就是中央空调系统高效节能的基础。

通过频率变化来改变电机转速与传统变速方法相比有以下优点:

1.启动为软启动,减小了启动电流对电网的冲击;2.调速范围广可实现;3.无级平滑调速;4.能做到与直流调速不相上下的程度。

2、变频技术的应用

交流变频调速技术是将电力电子、自动控制、微电子、电机学等技术集成的一项高新科技。它以其优异的调速性能、显著的节能效果以及在国民经济各领域广泛的适用性,被国内外公认为是世界上应用最广、效率最高、最理想的电气传动方案,是电气传动的发展方向。它为提高产品质量和产量、节约能源、降低消耗,提高企业经济效益提供了重要的新手段。

2.2.3 中央空调系统变流量系统的特点

变流量节能控制系统是目前最先进的节能控制技术,它与普遍使用的定流量中央空调控制模式相比,具有以下技术特点:

(1)实现中央空调综合性能最优,必须针对空调系统的各个环节(包括主机、冷冻水泵、冷却水泵、冷却塔风机等)统一考虑,全面控制,使全系统协调运行,才能实现最佳综合节能。变流量控制系统对中央空调的运行进行优化控制,实现最佳节能效果。

(2)实现空调系统负荷的跟随性变流量控制系统突破了传统中央空调冷媒系统的运行方式,通过对中央空调运行系统的动态监测和闭环控制,将空调主机的定流量运行改为变流量运行,实现空调主机冷媒流量跟随末端负荷需求而同步变化,在空调系统的任何负荷条件下,既能确保中央空调系统的舒适性,又实现最大的节能。

(3)空调主机始终保持高的热转换效率众所周知,随着中央空调系统负荷的变化,必将导致整个空调系统运行参数偏离空调主机的最佳设计参数,导致主机热转换效率降低,这一直是传统中央空调运行方式无法解决的一大难题。变流量控制系统的一个基本思想就是按照中央空调主机所要求的最佳运行参数去控制中央空调系统的运行,根据系统的运行工况及制冷剂工质参数的变化,通过PID控制调节,确保空调主机始终处于优化的最佳工作点上,使主机始终保持较高的热

- 9 -

哈尔滨理工大学学士学位论文

转换效率,有效地解决了传统中央空调系统在低负荷状态下热转换效率下降的难题,提高了系统的能源利用率[10]。

随着变频器技术的成熟及其价格的大幅下降,越来越多的设计师开始认识到在空调水系统中应用变频器改变水泵转速所带来的巨大效益。

这里说到了软启动方式,下面来介绍下。

2.3 电机的软启动原理及应用

2.3.1 软启动设备介绍

电压由零慢慢提升到额定电压,使电机启动的全过程都不存在冲击转矩,而是平滑的启动运行。这就是软启动。电机的软启动可以通过软启动器或者变频器来实现。

软起动器是一种集软停车、轻载节能和多种保护功能于一体的新颖电机控制装置,国外称为Soft Starter。它的主要构成是串接于电源与被控电机之间的三相反并联闸管及其电子控制电路。

运用不同的方法,控制三相反并联闸管的导通角,使被控电机的输入电压按不同的要求而变化,就可实现不同的功能。

变频器(Variable-frequency Drive,VFD)是应用变频技术与微电子技术,通过改变电机工作电源频率方式来控制交流电动机的电力控制设备。变频器主要由整流(交流变直流)、滤波、逆变(直流变交流)、制动单元、驱动单元、检测单元微处理单元等组成。通过改变电源的频率来达到改变电源电压的目的,根据电机的实际需要来提供其所需要的电源电压,进而达到节能、调速的目的,另外,变频器还有很多的保护功能,如过流、过压、过载保护等等。随着工业自动化程度的不断提高,变频器也得到了非常广泛的应用。

2.3.2 软启动器的应用场合

原则上,笼型异步电动机凡不需要调速的各种应用场合都可适用。目前的应用范围是交流380V(也可660V),电机功率从几千瓦到800kW。软起动器特别适用于各种泵类负载或风机类负载,需要软起动与软停车的场合。

同样对于变负载工况、电动机长期处于轻载运行,只有短时或瞬间处于重载场合,应用软起动器(不带旁路接触器)则具有轻载节能的效果。

2.3.3 软启动器与变频器之间的区别对比

软起动器和变频器是两种完全不同用途的产品。变频器是用于需要调速的地方,其输出不但改变电压而且同时改变频率;软起动器实际上是个调压器,用于电机起动时,输出只改变电压并没有改变频率。变频器具备所有软起动器功能,但它的价格比软起动器贵得多,结构也复杂得多。软启动器是通过星三角转换来降低启动电流;而变频器是通过改变频率来调节电机的转速的,能降低能耗。变频器也有软启动功能,是通过改变电源频率实现。软启动器只能通过晶闸管调压实现电机软启动、软停车,但不具备调速功能。

- 10 -

哈尔滨理工大学学士学位论文

变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电机控制调速装置。通过变频控制电机运行,是真正的高效调速方式,效率很高。变频器能够实现真正的软启动、软停止和高效调速。两者可以配合使用,大中型供水设备中,常由变频器带动一台泵变速运行,由一台软启动器完成其余各泵开、停操作,变频泵可定时轮换使各泵运行时间均衡,运行中变频与工频可实现平稳切换。

2.4 PID控制的设计

在生产过程自动控制的发展历程中,PID控制是历史最久、生命力最强的基本控制方式。在本世纪40年代以前,除在最简单的情况下可采用开关控制外,它是唯一的控制方式。PID控制具有很多优点[11]。1.适应性强,可以广泛的应用于各种行业;2.算法简单,使用方便,容易通过简单的硬件和软件方式实现。由于其有这些优点,PID控制直到现在仍然是应用最广泛的基本控制方式之一。

温度是一个普通而又重要的物理量,在许多领域里,人们需对温度进行测量和控制,长期以来,国内外科技工作者对温度控制器进行了广泛深入的研究,产生了大批温度控制器,如:性能成熟、应用广泛的PID调节器、智能控制PID调节器、自适应控制等。

2.4.1 PID控制原理

PID在温度控制中已使用数十年,是一种成熟的技术,它具有结构简单,易于理解和实现,且一些高级控制都是以PID为基础改进的。在工业过程控制中,40%以上的控制系统回路具有PID结构。在目前的温度控制领域,应用十分广泛。

PID调节器又称为比例积分微分调节器,它具有比例、积分、微分三种调节, 可见,温度PID调节器有三个可设定参数,即比例放大系数、积分时间常数、微分时间常数。对一个控制系统而言,合理地设置这三个参数,可取得较好的控制效果。

e(t)r(t)-比例积分微分U(t)过程对象c(t)

图2-5 PID控制系统原理图

PID控制器各个部分的作用及其在控制中的调节规律如下: 1、比例增益P

比例增益 P就是用来设置差值信号的放大系数的。任何一种变频器的参数P 都给出一个可设置的数值范围,一般在初次调试时,P可按中间偏大值预置.或者暂时默认出厂值,待设备运转时再按实际情况细调。比例增益部分用于保证控制量的输出含有与系统偏差成线性关系的分量,能够快速反应系统输出偏差的变化情况。由经典控制理论可知,比例环节不能彻底消除系统偏差,系统偏差随比

- 11 -

哈尔滨理工大学学士学位论文

例系数的增大而减少,但比例系数过大将导致系统不稳定。 2、积分时间I

如上所述.比例增益P越大,调节灵敏度越高,但由于传动系统和控制电路都有惯性,调节结果达到最佳值时不能立即停止,导致超调,然后反过来调整,再次超调,形成振荡。为此引入积分环节I,其效果是,使经过比例增益P放大后的差值信号在积分时间内逐渐增大 (或减小) ,从而减缓其变化速度,防止振荡。但积分时间I太长,又会当反馈信号急剧变化时,被控物理量难以迅速恢复。因此,I的取值与拖动系统的时间常数有关:拖动系统的时间常数较小时,积分时间应短些;拖动系统的时间常数较大时,积分时间应长些。

3、微分时间D

微分时间D是根据差值信号变化的速率,提前给出一个相应的调节动作,从而缩短了调节时间,克服因积分时间过长而使恢复滞后的缺陷。D的取值也与拖动系统的时间常数有关:拖动系统的时间常数较小时,微分时间应短些;反之,拖动系统的时间常数较大时,微分时间应长些。由于微分环节在系统传递函数中引入了一个零点,如果使用不当会使系统不稳定。

2.4.2 PID控制器的参数整定

PID控制器的参数整定是控制系统设计的核心内容。它是根据被控过程的特性确定PID控制器的比例系数、积分时间和微分时间的大小。PID控制器参数整定的方法很多,概括起来有两大类:一是理论计算整定法。它主要是依据系统的数学模型,经过理论计算确定控制器参数。这种方法所得到的计算数据未必可以直接用,还必须通过工程实际进行调整和修改。二是工程整定方法,它主要依赖工程经验,直接在控制系统的试验中进行,且方法简单、易于掌握,在工程实际中被广泛采用。PID控制器参数的工程整定方法,主要有临界比例法、反应曲线法和衰减法。两种方法各有其特点,其共同点都是通过试验,然后按照工程经验公式对控制器参数进行整定。但无论采用哪一种方法所得到的控制器参数,都需要在实际运行中进行最后调整与完善。现在一般采用的是临界比例法。利用该方法进行 PID控制器参数的整定步骤如下:

(1)首先预选择一个足够短的采样周期让系统工作; (2)仅加入比例控制环节,直到系统对输入的阶跃响应出现临界振荡,记下这时的比例放大系数和临界振荡周期;

(3)在一定的控制度下通过公式计算得到PID控制器的参数。

2.4.3 PID的反馈逻辑

所谓反馈逻辑,是指被控物理量经传感器检测到的反馈信号对变频器输出频率的控制极性。例如中央空调系统中,用回水温度控制调节变频器的输出频率和水泵电机的转速。冬天制热时,如果回水温度偏低,反馈信号减小,说明房间温度低,要求提高变频器输出频率和电机转速,加大热水的流量;而夏天制冷时,如果回水温度偏低,反馈信号减小,说明房间温度过低,可以降低变频器的输出

- 12 -

哈尔滨理工大学学士学位论文

频率和电机转速,减少冷水的流量。由上可见,同样是温度偏低,反馈信号减小,但要求变频器的频率变化方向却是相反的。这就是引入反馈逻辑的原由。

2.4.4 P、I、D参数调整原则

各参数的预置是相辅相成的,运行现场应根据实际情况进行如下细调:被控物理量在目标值附近振荡,首先加大积分时间I,如仍有振荡,可适当减小比例增益P。被控物理量在发生变化后难以恢复,首先加大比例增益P,如果恢复仍较缓慢,可适当减小积分时间I,还可加大微分时间D。

2.4.5 对空调系统的PID变频控制

在近几年对中央空调系统的变频控制中多采用PI或PID来实现出回水定温差或定压差的水泵频率控制。对冷冻水控制通过检测制冷主机蒸发器的进水口处的回水温度和出水口处的出水温度,将其温差与设定值比对,通过PLC的PID控制功能或PID控制器,调节冷冻泵变频器的频率值,最终使温差值保持在设定值[14]。

对冷冻水控制通过检测制冷主机冷凝器的进水口处的回水温度和出水口处的出水温度,通过PLC的PID控制功能,调节冷却泵变频器的频率值,最终使温度值保持在设定值附近。其比例积分系数凭经验设定。

2.4.6实现设定值的自动调节

由前面的分析可知,系统的冷负荷随着昼夜和季节的不同、大气环境的变化 有很大的差异,室温等因素也会产生较大的影响。即使空调系统的水泵、风机等以同样转速等情况运行,其实际出回水温差也变化很大。因此随环境因素实时的修改设置参数,可更加节能,通过建立温度查询表并通过人机界面输入到PLC存储器中可实现自动控制。温度设置如下表:

表2-1 温度值查询表

室温 设定值 19℃以下 8 19℃~23℃ 7 23℃~26℃ 6 26℃以上 5 2.4.7 PID控制器设计及实现

西门子公司从S7-200系列PLC中的CPU215,CPU216开始增加了用于闭环控制的PID指令。西门予公司的S7-200系列的PLC都有配套的STEP7-Micro/WIN32编程软件,该软件可以在PC机上运行,为用户开发、编辑和监控自己的应用程序提供了良好的编程环境。

STEP7-Micro/WIN32提供了PID指令向导,指导使用者定义一个闭环控制过程的PID算法,该算法程序由编程软件自动插入到主程序中。PID的组态设计包括以下内容:

(1)确定所要控制的PID指令编号(回路编号):(2)选择参数控制表存放的位置以及闭环控制的参数;(3)确定PID回路的输入和输出控制参数;(4)确定PID回

- 13 -

哈尔滨理工大学学士学位论文

路的报警选项以及报警参数;(5)指定用于计算的数据存储区域;(6)指定初始化子过程和中断的名称;(7)确认设计的PID算法名称。

PID设置向导过程如图2-9:

图2-6(a) PID向导设置过程

图2-6(b) PID向导设置过程

- 14 -

哈尔滨理工大学学士学位论文

2.5 本章小结 本章介绍了中央空调的结构和原理,对变流量控制进行了研究阐述了变频调速原理,分别对比了软启动器和变频器的优缺点,最后对传统PID控制进行了细致的研究和探讨可行性及PID控制环节的实现。

- 15 -

哈尔滨理工大学学士学位论文

第3章 中央空调控制系统的硬件设计

中央空调控制系统硬件有变频器、PLC、温度变送器、人机界面。实现功能如下:

1、变频器:为了调速,并降低启动电流。

2、PLC:PLC作为控制单元,是整个系统的控制核心,PLC 控制器通过温度传感器测量进出水温度,编入控制器内存,最后来控制变频器的频率,以控制电机的转速,调节水量,根据室内的温度高低,控制热交换的速度,达到节能目的。

3、温度变送器:将温度变量转化为可传送的标准化输出信号。主要用于工业过程温度参数的测量和控制。

4、人机界面:系统和用户之间进行交互和信息交换的媒介,它实现信息的内部形式与人类可以接受形式之间的转换。凡参与人机信息交流的领域都存在着人机界面。

3.1 变频器的原理

主电路是给异步电动机提供调压调频电源的电力变换部分,变频器的主电路大体上可分为两类:电压型是将电压源的直流变换为交流的变频器,直流回路的滤波是电容。电流型是将电流源的直流变换为交流的变频器,其直流回路滤波是电感。 它由三部分构成,将工频电源变换为直流功率的“整流器”,吸收在变流器和逆变器产生的电压脉动的“平波回路”,以及将直流功率变换为交流功率的“逆变器”。

整流器:最近大量使用的是二极管的变流器,它把工频电源变换为直流电源。也可用两组晶体管变流器构成可逆变流器,由于其功率方向可逆,可以进行再生运转。

平波回路:在整流器整流后的直流电压中,含有电源6倍频率的脉动电压,此外逆变器产生的脉动电流也使直流电压变动。为了抑制电压波动,采用电感和电容吸收脉动电压(电流)。装置容量小时,如果电源和主电路构成器件有余量,可以省去电感采用简单的平波回路。

逆变器:同整流器相反,逆变器是将直流功率变换为所要求频率的交流功率,以所确定的时间使6个开关器件导通、关断就可以得到3相交流输出。

3.2 西门子MM440变频器性能介绍

MICROMASTER 440全新一代用于控制三相交流电动机速度和转矩的多功能标准变频器。本变频器由微处理器控制,并采用具有现代先进技术水平的绝缘栅双极型晶体管(IGBT)作为功率输出器件。因此,它们具有很高的运行可靠性和功能的多样性。采用脉冲频率可选的专用脉宽调制技术,可使电动机低噪声运行。全面而完善的保护功能为变频器和电动机提供了良好的保护创新的BiCo(内部功

- 16 -

哈尔滨理工大学学士学位论文

能互联)功能有无可比拟的灵活性[15]。 其具有缺省的工厂设置参数,它是给数量众多的可变速控制系统供电的理想变频传动装置。由于MICROMASTER 440具有全面而完善的控制功能,在设置相关参数以后,它也可用于更高级的电动机控制系统。既可用于单独传动系统,也可集成到自动化系统中。

变频器适用于各种变速驱动装置。由于它具有高度的灵活性因而可以在广泛的领域得到应用。它尤其适合用于吊车和起重系统、立体仓储系统、食品、饮料和烟草工业以及包装工业的定位系统。

3.2.1 主要特征

易于安装;易于调试;牢固的EMC设计;可由IT电源供电;对控制信号的响应是快速和可重复的;参数设置的范围很广,确保它可对广泛的应用对象进行配置;电缆连接简便;具有多个继电器输出;具有多个模拟量输出(0~20mA);6 个带隔离的数字输入,并可切换可NPN/PNP 接线;2 个模拟输入:1)ADC1:0~10V,0~20mA 和-10 至+10V 2)ADC2:0~10V,0~20mA;2 个模拟输入可以作为第7 和第8 个数字输入;BICO 技术;模块化设计,配置非常灵活;开关频率高(传动变频器可到16kHz),因而电动机运行的噪音低;内部RS485 接口(端口);详细的变频器状态信息和完整的信息功能。

3.2.2 控制性能的特点

最新的IGBT技术;数字微处理器控制;高质量的矢量控制系统;磁通电流控制(FCC)改善动态响应,并且优化电动机的控制;线性V/F特性;平方V/F特性;多点v/f特性(可编程V/F特性);力矩控制;捕捉再起动;滑差补偿;在电源中断或故障跳闸以后,自动再起动;可以由用户定义的自由功能块,实现逻辑运算和算术运算的操作;动态缓冲;用于定位控制的减速斜坡函数曲线;高品质的PID控制器(具有参数自整定功能),可用于一般的过程控制;可编程的加速/减速斜坡函数,0秒至650秒;斜坡起始段和结束段的平滑功能;快速电流限制(FCL)功能,避免运行中不应有的跳闸;快速、可重复的数字输入响应时间;使用两个高分辨率的10位二进制模拟输入,实现速度精调;复合制动,实现快速制动控制;4个跳转频率。

3.2.3 保护功能

过压/欠压保护;变频器过温保护;使用PTC通过数字输入实现电动机过热保护;接地故障保护;短路保护;闭锁电动机保护;防止电动机失速;参数联锁。

3.2.4 变频器运行的环境条件

1.变频器要求的环境温度都是0~40度,这个温度比较适合变频器正常运行。2.空气的相对湿度≤95%,无凝露。3.不允许变频器掉到地上或遭受突然的撞击。不允许把变频器安装在有可能经常受到振动的地方。4.不允许把变频器安装在接近电磁辐射源的地方。5.不要把变频器安装在存在大气污染的环境中,例如,安

- 17 -

哈尔滨理工大学学士学位论文

装在存在灰尘、腐蚀性气体等的环境中。6.变频器的安装位置切记要远离有可能出现淋水的地方。例如,不要把变频器安装在水管的下面,因为水管的表面有可能结露。禁止把变频器安装在湿度过大和有可能出现凝露的地方。7.在变频器附近不要安装有对冷却空气流通造成负面影响的其它设备。确认变频器的冷却风口处于正确的位置,不妨碍空气的流通。

3.2.5 使用变频器设计系统时需注意的问题

1. 变频器柜内除本机专用的空气开关外,不宜安置其它操作性开关电器,以免开关噪声入侵变频器,造成误动作;

2. 变频器电源输入侧可采用容量适宜的空气开关作为短路保护,但切记不可频繁操作。由于变频器内部具有大电容,其放电过程较为缓慢,频繁操作将造成过电压而损坏内部元件;

3. 注意防止发生共振现象。由于定子电流中含有高次谐波成分,电机转矩中含有脉动分量,有可能造成电机的振动与机械振动产生共振,使设备出现故障。应预先找到负载固有的共振频率后,利用变频器频率跳跃功能设置,躲开共振频率点。

为了控制电源,一般在变频器电源进线上串接一个超过变频器额定电流两倍以上的交流接触器。但应注意,除紧急情况外,接触器的通断只能在变频器停止运行的情况下才能进行。

3.3 PLC选型

3.3.1 PLC简介

可编程逻辑控制器(Programmable Logic Controller,PLC),它采用一类可编程的存储器,用于其内部存储程序,执行逻辑运算、顺序控制、定时、计数与算术操作等面向用户的指令,并通过数字或模拟式输入/输出控制各种类型的机械或生产过程。

3.3.2 PLC控制功能的选择

该选择包括运算功能、控制功能、通信功能、编程功能、诊断功能和处理速度等特性的选择。

1、运算功能

简单可编程逻辑控制器的运算功能包括逻辑运算、计时和计数功能;普通可编程逻辑控制器的运算功能还包括数据移位、比较等运算功能;较复杂运算功能有代数运算、数据传送等;大型可编程逻辑控制器中还有模拟量的PID运算和其他高级运算功能。随着开放系统的出现,目前在可编程逻辑控制器中都已具有通信功能,有些产品具有与下位机的通信,有些产品具有与同位机或上位机的通信,有些产品还具有与工厂或企业网进行数据通信的功能。

2、控制功能

控制功能包括PID控制运算、前馈补偿控制运算、比值控制运算等,应根据

- 18 -

哈尔滨理工大学学士学位论文

控制要求确定。可编程逻辑控制器主要用于顺序逻辑控制,因此,大多数场合常采用单回路或多回路控制器解决模拟量的控制,有时也采用专用的智能输入输出单元完成所需的控制功能,提高可编程逻辑控制器的处理速度和节省存储器容量。例如采用PID控制单元、高速计数器、带速度补偿的模拟单元、ASC码转换单元等。

3、通信功能

大中型可编程逻辑控制器系统应支持多种现场总线和标准通信协议(如TCP/IP),需要时应能与工厂管理网(TCP/IP)相连接。通信协议应符合ISO/IEEE通信标准,应是开放的通信网络。可编程逻辑控制器系统的通信接口应包括串行和并行通信接口、RIO通信口、常用DCS接口等;大中型可编程逻辑控制器通信总线(含接口设备和电缆)应1:1冗余配置,通信总线应符合国际标准,通信距离应满足装置实际要求。为减轻CPU通信任务,根据网络组成的实际需要,应选择具有不同通信功能的(如点对点、现场总线)通信处理器。

4、编程功能 离线编程方式:可编程逻辑控制器和编程器公用一个CPU,编程器在编程模式时,CPU只为编程器提供服务,不对现场设备进行控制。完成编程后,编程器切换到运行模式,CPU对现场设备进行控制,不能进行编程。离线编程方式可降低系统成本,但使用和调试不方便。

在线编程方式:CPU和编程器有各自的CPU,主机CPU负责现场控制,并在一个扫描周期内与编程器进行数据交换,编程器把在线编制的程序或数据发送到主机,下一扫描周期,主机就根据新收到的程序运行。这种方式成本较高,但系统调试和操作方便,在大中型可编程逻辑控制器中常采用。

五种标准化编程语言:顺序功能图(SFC)、梯形图(LD)、功能模块图(FBD)三种图形化语言和语句表(IL)、结构文本(ST)两种文本语言。选用的编程语言应遵守其标准(IEC6113123),同时,还应支持多种语言编程形式,如C,Basic等,以满足特殊控制场合的控制要求。

5、诊断功能

可编程逻辑控制器的诊断功能包括硬件和软件的诊断。硬件诊断通过硬件的逻辑判断确定硬件的故障位置,软件诊断分内诊断和外诊断。通过软件对PLC内部的性能和功能进行诊断是内诊断,通过软件对可编程逻辑控制器的CPU与外部输入输出等部件信息交换功能进行诊断是外诊断。可编程逻辑控制器的诊断功能的强弱,直接影响对操作和维护人员技术能力的要求,并影响平均维修时间。

6、处理速度

可编程逻辑控制器采用扫描方式工作。从实时性要求来看,处理速度应越快越好,如果信号持续时间小于扫描时间,则可编程逻辑控制器将扫描不到该信号,造成信号数据的丢失。处理速度与用户程序的长度、CPU处理速度、软件质量等有关。目前,可编程逻辑控制器接点的响应快、速度高,因此能适应控制要求高、相应要求快的应用需要。扫描周期应满足:小型可编程逻辑控制器的扫描时间不大于0.5ms/K;大中型可编程逻辑控制器的扫描时间不大于0.2ms/K。

- 19 -

哈尔滨理工大学学士学位论文

综上所述,再结合实际情况,为便于今后系统的改造或者升级,需要留出一定的I/O点以做扩展使用。我们选用西门子S7-200PLC作为主控制器,其中主机型号:CPU226。

3.3.3 西门子S7-200PLC介绍

S7-200 是一种小型的可编程序控制器,适用于各行各业,各种场合中的检测、监测及控制的自动化。S7-200系列的强大功能使其无论在独立运行中,或相连成网络皆能实现复杂控制功能。因此S7-200系列具有极高的性能/价格比。

S7-200系列出色表现在以下几个方面:1)极高的可靠性;2)极丰富的指令集;3)易于掌握;4)便捷的操作;5)丰富的内置集成功能;6)实时特性;7)强劲的通讯能力;8)丰富的扩展模块。

S7-200系列在集散自动化系统中充分发挥其强大功能。使用范围可覆盖从替代继电器的简单控制到更复杂的自动化控制。应用领域极为广泛,覆盖所有与自动检测,自动化控制有关的工业及民用领域,包括各种机床、机械、电力设施、民用设施、环境保护设备等等。如:冲压机床,磨床,印刷机械,橡胶化工机械,中央空调,电梯控制。

CPU226的主要技术指标:

1.集成24输入/16输出共40个数字量I/O点。2.可连接7个扩展模块,最大扩展至248路数字量I/O 点或35路模拟量I/O 点。3. 13K字节程序和数据存储空间。4. 6个独立的30kHz高速计数器,2路独立的20kHz高速脉冲输出,具有PID控制器。5. 2个RS485通讯/编程口,具有PPI通讯协议、MPI通讯协议和自由方式通讯能力。6.I/O端子排可很容易地整体拆卸。7.用于较高要求的控制系统,具有更多的输入/输出点,更强的模块扩展能力,更快的运行速度和功能更强的内部集成特殊功能。8.可完全适应于一些复杂的中小型控制系统。 S7-200的工作模式:

S7-200系列PLC有3中工作模式,即RUN,STOP和TERM模式。 RUN模式:CPU在RUN模式下执行完整的扫描过程,通过执行反映控制要求的用户程序来实现控制功能。此时,在CPU模式的LED显示面板上“RUN”显示当前的工作模式。在此模式时,不能向PLC装入程序、

STOP模式:PLC处于停止方式,CPU不执行用户程序,可装载编程软件的计算机通信,可以创建和编辑用户程序,设置PLC的硬件功能,向PLC装入用户程序和硬件设置信息。

TERM模式:是一种暂态,可以用程序将TERM转换为RUN或STOP状态,在现场调试程序时很有用处。TERM状态还和机器的特殊标志位SM0.7有关,可用于自由口通信时的控制。

3.3.4 模拟量I/O模块的种类

在工业控制中,某些输入量(例如压力、温度、流量、速度等)是模拟量,某些执行机构(例如电动调节阀、变频器等)要求PLC输出模拟信号,而PLC的CPU

- 20 -

哈尔滨理工大学学士学位论文

只能处理数字量。模拟量首先被传感器和变送器转换为标准量程的电流或电压,PLC用A/D转换器把这些模拟量转换为数字量,带正负号的电流、电压在A/D转换后用二进制补码表示。D/A转换器把数字输出量转换为模拟电压或电流,再去控制执行机构。模拟量I/O模块的主要任务就是实现A/D转换和D/A转换。

A/D转换器和D/A转换其的二进制位数反映了它们的分辨率,位数越多,分辨率越高。转换时间也是模拟I/O模块的一个重要指标。

S7-200PLC主要有3种模拟量扩展模块: 1.模拟量输入模块(EM231,4路) 2.模拟量输出模块(EM232,2路)

3.模拟量输入输出模块(EM235,4路输入,1路输出)

S7-200PLC模拟量扩展模块中的A/D、D/A转换器位数均为12位。

3.3.5 EM231技术指标

1.具有4个模拟量输入通道。2.电压输入范围:单极性0~10V、0~5V;双极性±5V,±2.5V。3.电流输入范围:0~20mA。4.每个通道占用存储器AI区域2个字节。该模块模拟量的输入值为只读数据。5.输入信号经模数转换后的数字量数据值是12位二进制数。最高有效位是符号位:0表示正值数据,1表示负值数据。6.模拟量输入数据字格式有单极性数据格式和双极性数据格式。前者的全量程范围设置为0~32000.后者为-32000~+32000。

3.3.6 EM232技术指标

1.提供2路模拟量输出。2.输出信号的范围:电压输出为±10V,电流输出为0~20mA。3.每个输出通道占用存储器AQ区域2个字节,用户程序无法读取模拟量输出值。4.PLC运算处理后的数字量信号(BIN数)为12位,最高有效位是符号位:0表示正值,1表示负值。5.电流输出数据格式为0~+32000。6.电压输出的数据格式为-32000~+32000。

3.3.7 EM231 RTD接线及注意事项

热电阻模块EM231 RTD接线如图3-1所示,使用屏蔽线连接可达到最好的抗噪性。如果用户使用屏蔽线,应将屏蔽层接到信号连接器的1~4针接地点上。该接地点与电源连接器的3~7针共地。如果有的热电阻输入通道没有使用,用户应将一个电阻器与没有的通道输入相连,已防止由于浮地输入信号产生的误差,影响有效通道产生错误显示。用户须将电源练到电源连接器的1和2针上。用户必须讲电源连接器的针3连到附近的机壳地。

3.4 PT100温度传感器

温度是自然界中和人类打交道最多的物理参数之一,无论是在生产实验场所,还是在居住休闲场所,温度的采集或控制都十分频繁和重要,而且,网络化远程采集温度并报警是现代科技发展的一个必然趋势。 由于温度不管是从物理量本身还是在实际人们的生活中都有着密切的关系,所以温度传感器就会相应产

- 21 -

哈尔滨理工大学学士学位论文

生。 其设计原理:PT100是铂热电阻,它的阻值跟温度的变化成正比。PT100的阻值与温度变化关系为:当PT100温度为0℃时它的阻值为100欧姆,在100℃时它的阻值约为138.5欧姆。它的工业原理:当PT100在0摄氏度的时候他的阻值为100欧姆,它的阻值会随着温度上升而成匀速增长的。应用在医疗、电机、工业、温度计算、阻值计算等高精温度设备,应用范围非常之广泛。

A+A-a+a-3.5 PT100温度变送器

铂电阻温度变送器直接安装于PT100铂电阻接线盒内(与不同结构形式的铂电阻构成热电阻一体化温度变送器)将热电阻PT100的电阻信号转化为二线制4~20mA输出。

PT100温度变送器用于PT100铂电阻信号需要远距离传送、现场有较强干扰源存在或信号需要接入DCS系统时使用。产品特点:

1.线性化输出两线制4-20mA标准电流信号,模块化结构。 2.变送器有电源极性反接保护电路,当输出接线接反时对线路起保护作用(此时回路电流为零);传感器的不正确接线无论是高限或低限都将导致变送器输出饱和;产品具有RFI/EMI保护,有利于提高了测量的稳定性。

3.SWP-TR全部采用进口电子元件,性能可靠,低温度漂移。

4.SWP-TR温度变送器量程用户不能自由修改,由生产商出厂时确认生产。 5.热电阻变送器的接线通过壳体顶部的螺丝端子完成。为符合CE认证,信号输入接线长度不能超过3米,输出接线必须是屏蔽电缆,屏蔽线只能在一端接地。

6.变送器的中心孔用于热电阻信号接线,热电阻信号线通过螺丝直接拧在变送器的输入端子上。设计的螺丝端子接受内部或外部接线方式。

RTD

图3-1 RTD与传感器的接线(3线)

3.6 人机界面设计

人机界面(又称用户界面或使用者界面)是系统和用户之间进行交互和信息交换的媒介,它实现信息的内部形式与人类可以接受形式之间的转换。在工艺过程

- 22 -

哈尔滨理工大学学士学位论文

日趋复杂、对机器和设备功能的要求不断增加的环境中,获得最大的透明性对操作员来说至关重要。人机界面(HMI)提供了这种透明性[16]。

S7-200TD设备是一种低成本的人机界面(HMI),使操作员或用户能够与应用程序进行交互。可以使用TD设备组态一组层级式用户菜单,从而提供更多应用程序交互结构。您也可以组态TD设备,使其显示由S7-200 CPU中的特定位使能的报警或信息。

S7-200TD设备是一个2行或4行的文本显示设备,可以连接到S7-200CPU。TD设备可用于查看、监视和改变属于您的应用程序的过程变量。我们选用TD200文本显示屏来完成中央空调控制系统的人机界面设计。其提供了四个具有预定义的置位功能的按键,如果使用 SHIFT键,则最多可提供八个置位功能。

TD200设备的组态需要完成以下操作:1)STEP 7-Micro/WIN 的文本显示向导,创作操作员界面和报警和组态TD设备的参数块;2)TD参数中,选择TD设备的类型、启用CPU功能、选择更新速率、选择语言和字符集和组态按键;3)屏幕设置中,创建用户菜单,定义屏幕;4)报警设置中,选择显示选项,定义报警信息;5)语言集设置中,选择提示和菜单的语言,选择字符集;6)翻译报警和屏幕,把翻译后的信息反馈回报警和屏幕;7)参数块地址设置中,定义参数块的地址,即V存储区。

3.7 系统硬件设计

假设该系统应用在100平米的公寓,根据公寓的冷负荷为114~138瓦/平方米来算,大体的空调系统的设备如下:

1)冷冻机主机2台;

2)冷冻水水泵6台,3用3备用,冷冻水水泵功率22千瓦; 3)制冷主机的控制根据自身设定的冷冻水出口温度。此主机的冷冻水出口温 度设为7℃,在其冷冻水入水温度高于7℃情况下,制冷主机会正常工作;如入水温度达到或接近7℃时,制冷主机会自动停机。

表3-1 中央空调控制系统的环境参数

季节 冬季 夏季 舒适度等级 Ⅰ Ⅱ Ⅰ Ⅱ 温度(℃) 22~24 18~21 24~26 27~28 相对湿度(%) 30~60 60 40~70 40~70 风速(m/s) ≤0.2 ≤0.2 ≤0.25 ≤0.25 系统主回路示意图、系统电路图、主要设备的端口连接图如下: 图3-2:系统PLC选用西门子S7-200,CPU型号为226。该PLC上集成了通讯接口可供RS-485线缆通讯,并设置了TD200文本显示器,用来显示系统工作状态和报警信息等。变频器MM440可通过串口与PLC通讯。通过变频器的控

- 23 -

哈尔滨理工大学学士学位论文

制来决定冷冻泵的工作频率和工作台数。

图3-3:该控制系统分手动和自动模式,手动模式下通过开关的闭合控制电机的运转,自动模式下通过PLC及变频器控制,启动时1#冷冻泵变频启动,当温度条件不满足需要增加工频泵数量时,工频触点吸合1#冷冻泵转为工频运行,2#冷冻泵待机等待启动脉冲信号,当温度条件满足不需要多台冷冻泵工频运行时,工频触点断开减少工频工作台数,变频触点吸合转为变频运行。以此类推。

图3-4:EM231、EM232由PLC L+端口输出的24V电源供电,变频器的3、4接口是用于接受模拟量输入信号,29、30接口用于通过RS-485与PLC通讯。

温度变送器TD200人机界面西门子S7-200 CPU226EM231EM232驱动柜驱动柜驱动柜远程I/O口MM440变频器远程I/O口远程I/O口冷冻泵冷冻泵冷冻泵冷冻泵(备用)冷冻泵(备用)冷冻泵(备用) 图3-2 中央空调冷冻水循环控制系统主回路连接示意图

- 24 -

哈尔滨理工大学学士学位论文

NL3L2L1SAVVVFKM1SB1SB3KM3SB5KM5L1UL2VL3WKM1KM3KM5KM2SB2SB4SB6KM4KM6FR1Q0.4Q0.5Q0.6Q0.7Q1.1Q1.2FR2FR3KM2KM1KM4KM3KM6KM5MMMPLCKM1KM2KM3KM4KM5KM6 图3-3 中央空调控制系统电路图

Q0.0Q0.1Q0.2Q0.3Q0.4 Q0.5 Q0.6 Q0.7 Q1.1Q1.2 120/240VACPT100变送器PT100变送器1L 00 01 02 03 04 05 06 07 2L 01 02 M ⊥ N L+RA A+ A RB B+ BM0 V0 S7-200 CPU226串口 1M0001020304050607 2M 00 01 02 03 04 05 L+EM231M L+ ⊥EM232M L+ ⊥24VDCSB2SB1SASB6SB5SB4SB3380VLQS3 4LKM5KM3KM1MM440变频器 V 29 30KM6KM4KM2MMMRS-485网络线缆用于USS通讯

图3-4 中央空调控制系统主要设备的端口连接图

3.8 本章小结

本章介绍了中央空调控制系统的硬件设计,对变频器、PLC、温度传感器进行了选型,并设计了人机界面。最后对整体系统进行了硬件连接的设计。

- 25 -

哈尔滨理工大学学士学位论文

第4章 控制系统软件设计

4.1 设备间通讯

4.1.1 RS-485介绍

智能仪表是随着80年代初单片机技术的成熟而发展起来的,现在世界仪表市场基本被智能仪表所垄断。究其原因就是企业信息化的需要,企业在仪表选型时其中的一个必要条件就是要具有联网通信接口。最初是数据模拟信号输出简单过程量,后来仪表接口是RS-232接口,这种接口可以实现点对点的通信方式,但这种方式不能实现联网功能。随后出现的RS485解决了这个问题。

RS-485电缆:在低速、短距离、无干扰的场合可以采用普通的双绞线,反之,在高速、长线传输时,则必须采用阻抗匹配(一般为120Ω)的RS-485专用电缆,而在干扰恶劣的环境下还应采用铠装型双绞屏蔽电缆。在使用RS-485接口时,对于特定的传输线路,从RS-485接口到负载其数据信号传输所允许的最大电缆长度与信号传输的波特率成反比,这个长度数据主要是受信号失真及噪声等影响所影响。理论上,通信速率在100Kbps及以下时,RS-485的最长传输距离可达1200米,但在实际应用中传输的距离也因芯片及电缆的传输特性而所差异。在传输过程中可以采用增加中继的方法对信号进行放大,最多可以加八个中继,也就是说理论上RS-485的最大传输距离可以达到9.6公里。如果真需要长距离传输,可以采用光纤为传播介质,收发两端各加一个光电转换器,多模光纤的传输距离是5~10公里,而采用单模光纤可达50公里的传播距离。

4.1.2 USS协议

S7-200 与西门子 MicroMaster 系列变频器(如MM440、MM420、MM430以及MM3系列、新的变频器SINAMICS G110)之间使用 USS通信协议进行通信。通过STEP7-Micro/WIN32 V3.2 以上版本指令库中的 USS 库指令,可简单方便地实现通信,控制实际驱动器和读取/写入驱动器参数[17]。

USS 通信总是由主站发起,USS 主站不断循环轮询各个从站,从站根据收到的指令,决定是否、以及如何响应。从站永远不会主动发送数据。从站在以下条件满足时应答:

(1)接收到的主站报文没有错误。

(2)本从站在接收到主站报文中被寻址 。

上述条件不满足,或者主站发出的是广播报文,从站不会做任何响应。对于主站来说,从站必须在接收到主站报文之后的一定时间内发回响应。否则主站将视为出错。

USS 协议的特点为:

(1)支持多点通信(因而可以应用在 RS-485 等网络上)。 (2)采用单主站的“主-从”访问机制。

- 26 -

哈尔滨理工大学学士学位论文

(3)一个网络上最多可以有32个节点(最多31个从站)。 (4)简单可靠的报文格式,使数据传输灵活高效。 (5)容易实现,成本较低。

通过上面的介绍,就可以使用USS协议进行RS-485串行通讯。为完成USS通讯,还需要对MM440进行参数设置。

P0003=3,答应变频器的所有参数;

P0971=1,数据保存入MM 440 的 EEPROM 中; P0700=5,变频器的控制方式选择为通讯方式; P2010[2]=6,变频器的USS波特率选择为9600; P2011[0]=11,变频器的通讯地址为0~31。

USS通信是由 S7-200 和驱动装置配合,因此相关参数一定要配合设置。如通信速率设置不一样,当然无法通信。

4.2 PLC的初始设定

要实现PLC对变频器的通讯控制,必须对PLC进行编程;通过程序实现PLC对变频器的各种运行控制和数据的采集。

图4-1 初始程序段a

网络1:运行开始或I1.0由关到开是清楚标志位,以及参数读写控制位。网络2:运行开始或I1.0由关到开时初始化PORT0为USS通讯。

图4-2 初始程序段b

- 27 -

哈尔滨理工大学学士学位论文

网络3:当I1.0由关到开时PORT0恢复为PPI通讯。网络4:控制功能块,通过PLC的输入输出可以控制并诊断驱动器的工作。

图4-3 初始程序段c

图4-4 初始程序段d

网络5:当I1.1有关到开时启动读参数指令。网络6:读取驱动器中的参数R0068(输出电流)

图4-5 初始程序段e

网络7:读写操作轮替功能,由于在同一时间USS网络上读参数或写参数只能有一种操作,因此有必要设置读写操作的轮替功能,当读参数完成时M0.3被置1一个扫描周期,从而M1.0复位为0,读参数操作被屏蔽,同时M1.1被置位,开始写参数操作。

图4-6 初始程序段f

- 28 -

哈尔滨理工大学学士学位论文

网络8:向驱动器中写参数:P1082=50.0。

图4-7 初始程序段g

网络9:读写操作轮替,功能同网络7。

4.3 PLC主程序流程图

启动1#空调开启制冷系统Y冷却塔风机启动N停止冷却水泵启动N冷冻水泵运行Y冷冻泵启动备用泵启动冷冻机组启动冷负荷冷负荷是否满足N启动2#空调N冷负荷是否满足YY启动3#空调正常运行返回 图4-8 程序设计流程图

- 29 -

哈尔滨理工大学学士学位论文

4.4 PLC编程软件 PLC控制程序采用西门子公司提供的STEP7-micro/win32 V4.0编程。

我们使用梯形图来完成系统软件的开发。因为梯形图(LAD)语言最接近于继电器接触器控制系统中的电气控制原理图,是应用最多的一种编程语言,与计算机语言相比,梯形图可以看作是PLC的高级语言,几乎不用去考虑系统内部的结构原理和硬件逻辑,因此,它很容易被一般的电气工程设计和运行维护人员所接受。

STEP7软件的一个特点是调试功能很强大,不仅能在线读取数据,而且能在线修改过程数据,对于调试大型复杂控制程序非常有效。STEP7软件还附带一些控制程序模块,如PID调节模块,这些模块可以从主控制程序中直接调用,实现不同的功能。

通过STEP 7编程软件,不仅可以非常方便的使用梯形图和语句表等形式进行离线编程,经过编译后通过转接电缆直接下载入PLC的内存中执行,而且在调试运行时,还可以在线监视程序中各个输入输出或状态点的通断状况,给调试工作也带来极大的方便。

4.5 程序设计

4.5.1 中央空调控制系统的I/O分配表

表4-1 I/O分配表

名称 SA SB1 SB2 SB3 SB4 SB5 SB6 地址编号 输入信号 I0.0 I0.1 I0.2 I0.3 I0.4 I1.0 I1.1 I0.5 I0.6 I0.7 I1.2 I1.3 I1.4 I1.5 AIW0

- 30 -

说明 驱动装置的启动/停止控制 停车信号2,封锁主回路输出,自由停车 停车信号3,快速停车 故障确认 电机运转方向控制 USS通讯和PPI通讯转换 读/写操作开始按钮 手动/自动切换按钮 手动模式1#冷冻泵启动按钮 手动模式1#冷冻泵停止按钮 手动模式2#冷冻泵启动按钮 手动模式2#冷冻泵停止按钮 手动模式3#冷冻泵启动按钮 手动模式3#冷冻泵停止按钮 用户房间内温度传感器

哈尔滨理工大学学士学位论文

续表4-1 I/O分配表 输出信号 KM2 KM1 KM4 KM3 KM6 KM5 Q0.0 Q0.1 Q0.2 Q0.3 Q0.4 Q0.5 Q0.6 Q0.7 Q1.1 Q1.2 AQW0 运行模式反馈 指示运转方向 驱动装置禁止状态指示 故障指示位 1#冷冻泵变频运行接触器及指示灯 1#冷冻泵工频运行接触器及指示灯 2#冷冻泵变频运行接触器及指示灯 2#冷冻泵工频运行接触器及指示灯 3#冷冻泵变频运行接触器及指示灯 3#冷冻泵工频运行接触器及指示灯 输出模拟信号到变频器

4.5.2 程序中使用的存储器及功能

表4-2 存储器及功能

地址 VD108 VD104 VD106 VD300 VD301 T33 T34 T37 T38 T39 M0.0/M0.1 M0.3/M0.4 M1.0/M1.1 M2.0 M2.1 M2.4 M2.5 M2.6 M3.0 功能 传感器反馈的电压值 房间内压力下限对应的电压值 房间内压力上限对应的电压值 变频工作泵的泵号 工频运行泵的总台数 产生关断变频脉冲信号的时间控制 产生启动工频脉冲信号的时间控制 增加工频泵的时间控制 减少工频泵的时间控制 产生下一台泵变频启动信号的时间控制 初始化完成标志位 读写功能块完成标志位,用于功能块轮替 读写功能块控制位 工频启动脉冲 变频启动脉冲 关断当前泵脉冲 当前泵工频启动脉冲 下一台泵变频运行脉冲 泵工频/变频转换控制逻辑

- 31 -

哈尔滨理工大学学士学位论文

续表4-2存储器及功能 M3.1 M3.2 泵工频/变频转换控制逻辑 泵工频/变频转换控制逻辑 软件编程详见附录C 4.6 中央空调控制系统的MCGS组态

4.6.1 MCGS组态软件简介

MCGS(Monitor and Control Generated System,监视与控制通用系统)是北京昆仑通态自动化软件科技有限公司研发的一套基于Windows平台的,用于快速构造和生成上位机监控系统的组态软件系统,主要完成现场数据的采集与监测、前端数据的处理与控制,可运行于Microsoft Windows 95/98/Me/NT/2000/XP等操作系统。具有功能完善、操作简便、可视性好、可维护性强的突出特点。通过与其他相关的硬件设备结合,可以快速、方便的开发各种用于现场采集、数据处理和控制的设备。用户只需要通过简单的模块化组态就可构造自己的应用系统,如可以灵活组态各种智能仪表、数据采集模块,无纸记录仪、无人值守的现场采集站、人机界面等专用设备[18]。

4.6.2 MCGS 6.2通用版介绍

MCGS 6.2通用版全中文可视化组态软件,简洁、大方,使用方便灵活。完善的中文在线帮助系统和多媒体教程,真正的32位程序,支持多任务、多线程,运行于Win95/98/NT/2000平台,提供近百种绘图工具和基本图符,快速构造图形界面。

MCGS 6.2通用版提供渐进色、旋转动画、透明位图、流动块等多种动画方式,可以达到良好的动画效果。功能强大的网络数据同步、网络数据库同步构建,保证多个系统完美结合。完善的网络体系结构,可以支持最新流行的各种通讯方式,包括电话通讯网,宽带通讯网,ISDN通讯网,GPRS通讯网和无线通讯网。 并支持设备众多如采集版、PLC、智能模块、称重仪表和变频器

4.6.3 工程设计

图4-9 定义变量

- 32 -

哈尔滨理工大学学士学位论文

图4-10 组态画面

图4-11(a) 数据报表

图4-11(b) 数据报表

- 33 -

本文来源:https://www.bwwdw.com/article/ikj6.html

Top