SEPARATION OF VARIABLES AND THE XXZ GAUDIN MAGNET
更新时间:2023-07-25 12:18:01 阅读量: 实用文档 文档下载
- separation推荐度:
- 相关推荐
Abstract. In this work we generalise previous results connecting (rational) Gaudin magnet models and classical separation of variables. It is shown that the connection persists for the case of linear r-matrix algebra which corresponds to the trigonometric
SEPARATION OF VARIABLES AND THE XXZ GAUDIN MAGNET
E.G. KALNINS, V.B. KUZNETSOV and WILLARD MILLER, Jr.Department of Mathematics and Statistics, University of Waikato, Hamilton, New Zealand Department of Mathematics y x University of Amsterdam, Plantage Muidergracht 24, 1018 TV Amsterdam, The Netherlands School of Mathematics z and Institute for Mathematics and its Applications, University of Minnesota, Minneapolis, Minnesota 55455, USA.Abstract. In this work we generalise previous results connecting (rational) Gaudin magnet models and classical separation of variables. It is shown that the connection persists for the case of linear r-matrix algebra which corresponds to the trigonometric 4 4 r-matrix (of the XXZ type). We comment also on the corresponding problem for the elliptic (XYZ) r-matrix. A prescription for obtaining integrable systems associated with multiple poles of an L-operator is given.
1. Introduction. Separation of variables for the Hamilton-Jacobi and Schrodinger
equations have long been known as methods for explicit solution of these equations in appropriate circumstances. The technical requirements for this method of solution have quite fully developed in recent years (see 1{8]). In particular the relationship between the separable systems and the Gaudin magnet 4,9] integrable systems models has been established via r-matrix algebra methods, where the rmatrix corresponds to the rational or so called XXX case, 4{8]. This relationship works very clearly with separable coordinate systems on spaces of constant curvature. The question we answer here is how these notions can be extended to include the so-called trigonometric r-matrix algebra in the XXZ case. To do this let usy Work supported by the Netherlands Organisation for Scienti c Research (NWO) z Work supported in part by the National Science Foundation under grant DMS 94{00533 x On leave from Department of Mathematical and Computational Physics, Institute of Physics,Typeset by AMS-TEX
St. Petersburg University, St. Petersburg 198904, Russia
Abstract. In this work we generalise previous results connecting (rational) Gaudin magnet models and classical separation of variables. It is shown that the connection persists for the case of linear r-matrix algebra which corresponds to the trigonometric
2
E.G. KALNINS, V.B. KUZNETSOV AND WILLARD MILLER, JR.
recall the fundamental ideas of the r-matrix formalism (see 10,11] and references in there). For a classical mechanical system the basic (linear) r-matrix algebra is (1.1)
fL(u) I; I L(v)g= r(u? v); L(u) I+ I L(v)];L(u)11=?L(u)22= A(u); L(u)12= B (u); L(u)21= C (u);
where f; g is the Poisson bracket and;] the matrix commutator bracket. The operator L(u) is taken to be the 2 2 matrix and r(u) is a suitable 4 4 matrix of scalars solving the classical Yang-Baxter equation 10,11]; u being arbitrary constant is called the spectral parameter. In the case of the XXZ r-matrix algebra the non zero elements of r can be taken to be 1 (1.2) r(u)11= r(u)44= coth(u); r(u)23= r(u)32= sinh(u): In component form, the r-matrix algebra relations are (1.3)
1 fA(u); C (v)g= sinh(u? v) (? cosh(u? v)C (v)+ C (u));? fB (u); C (v)g= sinh(u2? v) (A(u)? A(v)): If we now ma
ke the ansatz A(u)= coth(u)S3; B (u)= (1= sinh(u))S+ and C (u)= (1= sinh(u))S? these relations imply (1.4)n X
fA(u); A(v)g= fB (u); B (v)g= fC (u); C (v)g= 0; 1 fA(u); B (v)g= sinh(u? v) (cosh(u? v)B (v)? B (u));
fS3; S g= S;
fS+; S?g= 2S3:n X
To relate this observation to the separation of variables methods, we form the L(u) operator with elements 1 B (u)= sinh(u? e ) S+;=1
C (u)=
(1.5) where (1.6) (1.7)
1 sinh(u? e ) S?;=1
A(u)=
n X=1
coth(u? e ) S3;
fS3; S g=
S;
fS+; S? g= 2 S3:
The r-matrix algebra relations, (1.1) or (1.3), imply
fdet L(u); det L(v)g= 0;
Abstract. In this work we generalise previous results connecting (rational) Gaudin magnet models and classical separation of variables. It is shown that the connection persists for the case of linear r-matrix algebra which corresponds to the trigonometric
SEPARATION OF VARIABLES AND THE XXZ GAUDIN MAGNET
3
i.e., that det L(u) is a generating function of the constants of the motion. In particular we have (1.8) n X C 2 2? det L(u)= A (u)+ B (u)C (u)=+ H coth(u? e )+ H0; 2 sinh (u? e )=1 where C= (S3 )2+ S+ S? are the Casimir elements of the algebra generated P by elements S+; S? and S3 . Furthermore H0= S3 and (1.9) H=
X6=
2S3 S3 coth(e? e )+ sinh(e1? e ) (S+ S?+ S+ S? ):
With the following realization of the algebra in terms of the canonical coordinates x and p, fp; x g=?:
i 1 i S+= 2 x2; S?= 2 p2; S3=? 2 x p; the constants (1.9) have the form X?x2 p2+ x2 p2? 2x x p p cosh(e? e );?1 (1.12) H= 1 4 6= sinh(e? e )(1.10) . Notice that all C= 0 in such a representation. 2. Variable Separation for the XXZ Magnet. Proceeding as in 4,7,8], we choose separable coordinates such that B (u)= 0, i.e., u= uj; j= 1;:::; n? 1. P x2=sinh(u? e )= 0 for u= u;:::; u, which in turn implies This implies 1 n?1 that we choose coordinates according to (2.1)n X
and H0=? 1 2
P xp
x
2
= eun
n?1 sinh(uj? e ) j=1; 6= sinh(e? e )
motivated by the general formula (2.2)n?1 x2 un j=1 sinh(u? uj ): sinh(u? e )= e n=1 sinh(u? e )=1
For each uj we can de ne the canonically conjugate coordinate vj as follows:n 1 X coth(u? e ) x p; 1 j n? 1; (2.3) vj= A(uj )=? 2 j=1
v n= H0:
The coordinates ui; vj (i; j= 1;:::; n) satisfy the canonical bracket relations (2.4)
fui; uj g= 0; fvi; uj g=
ij;
fvi; vj g= 0:
Abstract. In this work we generalise previous results connecting (rational) Gaudin magnet models and classical separation of variables. It is shown that the connection persists for the case of linear r-matrix algebra which corresponds to the trigonometric
4
E.G. KALNINS, V.B. KUZNETSOV AND WILLARD MILLER, JR.
The changing of variables x; p for the new variables ui; vi is the procedure of separation of variables. The matrix elements of the L-operator can be expressed in terms of these variables according to the formulas?? A(u)=iB (u) 2 cosh u+ n=11 uj? n=1 e vn j (2.5)+n?1 X
?2vj=1 sinh(u? uj ) k=j sinh(uj? uk ) 6 j=1n?1 X
n
3 sinh(uj? e ) 5 e?un: 3 sinh(uj? e ) 5:
The entry C (u) can be computed by using the formula?? p=x e?un 2 cosh n=11 uj? 6= e vn j (2.6)+n
?2vj=1 sinh(e? uj ) k=j sinh(uj? uk ) 6 j=1
This gives the relation between the coordinates x; p and ui; vi where vn= H0. The equation for the eigenvalue curve?: det(L(u)? I )= 0, has the form 2? A(u)2? B (u)C (u)= 0: If we put u= uj; j= 1;:::; n?
1 into this equation then= vj . Thus variables uj and vj (j= 1;:::; n? 1) lie on the curve?: (2.7)
vj?2
n X
=1
2 2 H coth(uj? e )? H0 vj+ det L(uj )= 0:
Equations (2.7) are the separation equations forP degrees of freedom connected the with the values of the integrals H . (Note that n=1 H= 0.) For illustrative reasons it is more transparent to use the variables Ai= eei and Ui= eui . Then many of the expressions given have algebraic form. For example, the nearest object we have to a Hamiltonian in the case of XXZ r-matrix algebra P is H= n=1 A2Hi which has the form i i
H=(2.8) Note that
n sinh(ui? e )=1 j=i sinh(ui? uj ) 6 i=1 n?1? n 2 2 X 2 2 k Ui pUi+ H0 U 2 k=1(AU 2?? U) ):= (4 n=1Aj )?1(?1)n j 2 6 i j=i ( i j i=1
n?1 X
e?
Pj6=i uj?? uie2
2 vi2+ H0
n U1 Un?1 X A x2: A1 An=1 If we adopt the standard procedure and write pUi=@W=@UiP the equation then? H= E admits separation of variables via the usual ansatz W= n=11 Wi (Ui ): The i separation equations can be written in the alternate form n?1 2 n (U 2? A2 )@Wj= H0 U 2n?2+ H0 (?1)n? k A2 U?2+ X k U 2k?2; k j k=1 j k j j@Uj k=1
eun=
Abstract. In this work we generalise previous results connecting (rational) Gaudin magnet models and classical separation of variables. It is shown that the connection persists for the case of linear r-matrix algebra which corresponds to the trigonometric
SEPARATION OF VARIABLES AND THE XXZ GAUDIN MAGNET
5
where the k are related to the Hj via
P2n?4 (u)k= H01
2u?2
n (u2? A2 ) k=1 k
X<:::< n?k
n X HiAi u?A;2
i=1
2
2
i
(?1)n?k A2 1
1 A2 n?k+ (2k? 2)! P2(2k?2) (0); n?4n X k=1
n?1= E? H0
A2: k
From what has been developed so far we see that separation of variables goes through for XXZ r-matrix algebras constructed in this way. In the previous article 8] for the case of spaces of constant curvature we essentially have the rational rmatrix algebra and it is possible to formulate using well de ned limiting procedures the cases of integrable systems for which some of the ei parameters are equal. What was also established previously was the construction of integrable systems given on the algebra with commutation relations (2.9)J f(ZjJ )`; (Zk 0 )mg=? JJ 0 (ZjJ+k?NJ )s`ms;
where`; m; s= 1; 2; 3; 0< j< NJ; 0< k< NJ 0; 0< J p and`ms is the usual totally antisymmetric tensor, and the vector ZjJ has the form (2.10)
0 P (pJ pJ i i j J=@ i P (pJ pJ Zj j i iP1 4 4
1 J J?i+ xi xj+1?i ) J J A+1?i? xi xj+1?i ) i J xJ i pi j+1?i 2+1
in the coordinate representation. Indeed, if we adopt the limiting procedure
AJ ! AJ+ J 1?1; j= 1;:::; NJ; J= 1;:::; p; j 1 j !(2.11) whereJ i?1= i (J 1? J 1 );`=2 j?1`?2 j+1?i NJ J+ XJ p1 ! i=2 NJ q X xJ ! aJ xJ+ J j j 1 i=2
pJ j
q
aJ j
i?1 pJ j+1?i i
i?1 xJ j+1?i i
!
;
;1
aJ= j
; k6=j (J 1?1? J 1?1 ) j k
and N1+:::+ Np= n+ 1, then the Hamiltonian H has the form (2.12)
n p 2 2 N X? 2+1 2 k? ) k pUi+ H0 Uk=1 (A(U 2 Ui U 2 ) H= ( n=1 Aj )?1 j 2 i j 6=i i? j i=1
Abstract. In this work we generalise previous results connecting (rational) Gaudin magnet models and classical separation of variables. It is shown that the connection persists for the case of linear r-matrix algebra which corresponds to the trigonometric
6
E.G. KALNINS, V.B. KUZNETSOV AND WILLARD MILLER, JR.
with obvious separation equations. (We require J i= 0 and take the limit as the 0 J 1 ! 0 for h= 1;:::; NJ? 1, se
e 8].) The generating function for the constants h can be derived by applying these procedures to det L(u). We will, however, adopt a di erent and more general strategy. If we leave the matrix elements of L(u) in the form (1.5) and subject the resulting expression for det L(U ) 1? 2 det L(U )= 2 (2.13) where U= eu, and S+n 1 X=1
S3
!
2
n X S
3 U 2? A2?=1
2 n X X A Si !+ 2U 4 U?A i n n X X S !#2 2 2=1=1 2 2
S3+ U 2
=1
U 2? A2=1
3
;
= S1
iS2, to the transformations j= 1;:::; NJ; J= 1;:::; p; k= 0;:::; NJ;
AJ ! AJ+ J 1?1; j 1 j
NJ J S1 k0+ X(J 1 )k (J Sj )= Z J j?1 NJ?k; j=2
then we arrive at a general expression for the generating function det L(U ). The constants of the motion are obtained by the usual means of expanding the expression following from (2.13) in partial fractions and reading o the independant components. In the case of degenerate roots the expression can be readily modi ed. Accordingly we havep X J 1? 2 det L(U )= 1 2 J=1(ZNJ )3 22 2=1 1
!
2
(2.14)
+
0 p J? X@X NX 1+ 2U 6 4 i J j j! p J? X NX 1@ j1=1=0
2 !@ j Aj J (ZNJ?j )i A 2? A2@Aj U j
1
@Aj U? Aj J=1 j=0 j ! 0 p NJ?1 1 X@ J X?(ZNJ )3+ U 2 j=0 j ! J=12
1
!
2
J (ZNJ?j )3 j2
@@Aj
U? A2 j
1
!
13 J (ZNJ?j ) A5:3
From this expression constants of the motion can be deduced just as before. The separation of variables proceeds as usual in the case of the choice of coordinates as given in 8]. The expressions for the coordinates corresponding to multiple roots with signature N1; N2;:::; Np can be obtained from the generic case by the limiting procedures already outlined. In rational form the generic coordinates are (2.15)6=? x2= n=1(A2? Ui2 )] n=11Us] (kA2i AkA2 ): i j j s`6=i`? i
Abstract. In this work we generalise previous results connecting (rational) Gaudin magnet models and classical separation of variables. It is shown that the connection persists for the case of linear r-matrix algebra which corresponds to the trigonometric
SEPARATION OF VARIABLES AND THE XXZ GAUDIN MAGNET
7
For the case of signature N1; N2;:::; Np the coordinates are given by the relationsj X i=1
xJ xJ+1?i= i j
@ r n=1 ((AJ )2? Ui2): 1 i@AJ AJ L6=J (2AL)NL 1 1 1 This gives a complete description of the separation of variables procedure for the signature N1; N2;:::; Np case. We illustrate these ideas with two examples. A. The case of signature 2,1 and dimension 3. In this case the generating function assumes the form?(Z 1) (Z 2) 1 1 (Z 1:Z 1+ Z 1:Z 1)? 1 det L(u)= 1 1 2 2 2 sinh(e1? e3 ) 1 2 1 2 sinh (u? e1 ) 2 1 2 1 2+(Z1 )1 (Z1 )1+ cosh(e1? e3 )(Z1 )3(Z1 )3g 1 1? 1 2 1 2+ Z1:Z1 coth(u? e1 ) sinh(e1? e ) (Z2 )1(Z1 )1+ (Z2 )2(Z1 )2 4 2 sinh (u? e1 ) 1 3?(Z 1) (Z 2) 1 1 2+ cosh(e1? e3 )(Z2 )3 (Z1 )3? 2 sinh (e1? e3 ) 1 3 1 3 1 2 1 2+ cosh(e1? e3 )((Z1 )2(Z1 )2+ (Z1 )1(Z1 )1?? 2 1 2 1? coth(u? e3 ) sinh(e1? e )? (Z1 )2(Z2 )2+ (Z1 )1(Z2 )1 1 3?(Z 2) (Z 1) 1 2 1+ cosh(e1? e3 )(Z1 )3 (Z2 )3+ sinh2(e1? e3 ) 1 3 1 3? 2 1 2 1+ cosh(e1? e3 ) (Z1 )1 (Z2 )1+ (Z1 )2 (Z2 )2: The constants of the motion can be deduced from the coe cents of independent functions of u. In the coordinate representation these
constants have the form? H1= x2p2+ p2 x2? 2x1 x2p1 p2+ sinh(e1? e ) x2p2+ x2 p2? 2x1 x3p1 p3; 1 2 1 2 1 3 3 1 1 3? H2= sinh(e2? e ) x1 x2p2+ p1 p2x2? (x1x3 p2 p3+ p1 p3 x2x3 ) cosh(e1? e3 ) 3 3 1 3? 21 (x1p3+ p1 x3)2; sinh (e1? e3 ) where we have used the notation x1= x1; x2= x1 and x3= x2, with similar 1 2 1 relations for the pi 's. The coordinates are given by the formulas? e1 ) x2=? sinh(u1sinh(e sinh(u2? e1 ); 1 1? e3 ) 2x1 x2=? sinh(u1? e1 ) sinh(u2? e1 ) cosh(e1? e3 )? sinh(e1? e ) sinh2(e1? e3 ) 1 3 (sinh(u1? e1 ) cosh(u2? e1 )+ sinh(u1? e3 ) cosh(u2? e3 )); x2= sinh(u1? e3 ) sinh(u2? e3 ): 3 sinh2 (e1? e3 )
r=1 L )NL] L6=J (A1 (2NJ )AJ r! 1
n Uk] k=1
(X j?2
(NJ? r? 3) r?2(NJ+ q? 2)] q=0
Abstract. In this work we generalise previous results connecting (rational) Gaudin magnet models and classical separation of variables. It is shown that the connection persists for the case of linear r-matrix algebra which corresponds to the trigonometric
8
E.G. KALNINS, V.B. KUZNETSOV AND WILLARD MILLER, JR.
has the form 1 L(U )= (U 2? A2)6 32A8Z1:Z2 1 1 1+ (U 2? A2)5 16A2 5Z1:Z1+ (Z1)2 (Z2)2+ 2A1 ((Z1)3 (Z2)3+ (Z1 )1(Z2 )1)] 1 1 1+ (U 2? A2)4 2A4 33Z1:Z1+ 36Z1:Z2+ 8A2Z1:Z3+ 4A2Z2:Z3 1 1 1 1 1+ (U 2? A2)3 2A2 26A1Z1:Z2+ 8A2Z2:Z2 1 1 1+14A2Z1:Z3+ Z1:Z1+ 4A3Z3 Z2+ (Z1 )2 1 1 3 1+ (U 2? A2)2 2 A4Z3:Z3+ 6A3Z2:Z3 1 1?5?(Z1 )2+ (Z )2+ 6(Z ) (Z )+ 4(Z )2+ A2 1 1?6(Z )2 (2Z )+2 (1 ) (Z )3 2+ 4(Z1 ) (Z )2 3+ (Z )2+A1 Z2 1 1 1 2 2 1 2 2 3 1 3 1 1+ U 2? A2 2 A2Z3:Z3+ 2A1Z2:Z3+ (Z2)2+ (Z2 )2+ (Z1 )3(Z3)3: 1 2 1 1 The coordinates are given by 2 1 A4 U x2= 4 U1 U2? A1 U1+ U2+ 4U 1; 1 4 U1 2 1 U2 3 5 3 U U 1 2x1x2=? 8A U1 U2? A1 U1+ U2+ 8UAU; 8 1 2 1 1 2 3 2 U U 1 1 2x1 x3+ x2= 3UAU2+ 1 U1+ U2+ 8UAU: 2 8 2 8 2 1 1 2 1 3. The XYZ Magnet. These methods can be extended to the case of elliptic or XYZ r-matrix algebras. The only di erence is that in this case a solution of the problem via separation of variables is not yet known1 but the coalescing of indices goes through just as before. Indeed, the operator L(u) can be taken just as in (1.1). The non zero elements of the r-matrix in this case are? dn( u) r(u)11= r(u)44= cn(u); r(u)14= r(u)41= 1 2sn(u)u); sn( (3.1) We now make the ansatz 1 u) A(u)= cn(u) S3; B (u)= 2sn(u) (1+ dn(u))S?+ (1? dn(u))S+]; sn( 1 C (u)= 2sn(u) (1+ dn(u))S++ (1? dn(u))S?]:+ dn( r(u)23= r(u)32= 1 2sn(u)u):
B. The Case of Signature 3 and Dimension 3. The generating function
(3.2)1
See 12] where the variable separation has been done for the periodic classical XYZ-chain from which the system in question can be obtained through the limit.
Abstract. In this work we generalise previous results connecting (rational) Gaudin magnet models and classical separation of variables. It is shown that the connection persists for the case of linear r-matrix algebra which corresponds to the trigonometric
SEPARATION OF VARIABLES AND THE XXZ GAUDIN MAGNET
9
Here the S, S3 obey the same commutation relations as (1.4). We choose the L(u) operator to be (3.3) )S; sn(u? e ) 3=1 n X 1 B (u)= 2sn(u? e ) (1+ dn(u? e ))S?+ (1? dn(u? e ))S+];=1 n X C (u)= 2sn(u1? e ) (1+ dn(u? e ))S++ (1? dn(u? e ))S?]:=1
A(u)=
n X cn(u? e
The determinant of L(u) is once again a generator of the constants of the motion. It has the form (3.4) where det L(u)=n X
H E (u? e+ iK 0 )+ H0
=1
sn(e? e ) S1 S1
+ dn(e? e )S2 S2+ cn(e? e )S3 S3]; X E( H0= 2k2 0 sn(e? e ) S1 S1+ dn(e? e )S2 S2+ cn(e? e )S3 S3] e?e ); (3.5)
H= 2k2
X6=
1
?
X0;
k cn(e? e )S2 S2+ dn(e? e )S3 S3]?2
n X
2 2 k2S2+ S3]:
Here E (z)= z dn2(u)du is Jacobi's epsilon function. The same is now true as for the case of XXZ r-matrix algebras: if we subject the e 's and the Si 's to the transformations given by (2.11), then we arrive at the generating function for the constants of motion for a root structure having the signature N1; N2;::::; Np. The expression for this function is (3.6) det L(u)=J? X NX3 1
R
=1
k=1
r=0
!2@ r f (u? J e )(Z J ); 1 NJ?r k@ J e1 k
where f1 (z)= 1=sn(z), f2(z)= dn(z)=sn(z), and f3(z)= cn(z)=sn(z). As an example, the generating function corresponding to signature 2,1 is det L(u)= H1E (u? e1+ iK 0 )+ H2E (u? e3+ iK 0 )+ H3+ sn4 (u1? e ) H4 1 cn(u? e1 )dn(u? e1 ) H+ 1 1+ 5 sn3(u? e ) sn2(u? e ) H6+ sn2(u? e ) H7;1 1 3
Abstract. In this work we generalise previous results connecting (rational) Gaudin magnet models and classical separation of variables. It is shown that the connection persists for the case of linear r-matrix algebra which corresponds to the trigonometric
10
E.G. KALNINS, V.B. KUZNETSOV AND WILLARD MILLER, JR.2 1 2 1 H1= k2 sn(e2? e ) (Z1 )1 (Z2 )1? k2cn(e1? e3 )(Z1 )3(Z2 )3 1 3 k2 cn(e1? e3 )dn(e1? e3 ) (Z 2 ) (Z 1 )+ dn(e1? e3 ) (Z 2) (Z 1);? 1 1 1 1 sn(e1? e3 ) sn(e1? e3 ) 1 3 1 3 H2=?H1;? 1 E (e e 1 2 2 2 H3= k2 sn(1?? 3e) ) H1+ k2 (Z1 )2? (Z2 )2? (Z1 )2? (Z1 )2? (Z1 )2 1 2 2 2 3 e1 3 2 1 2 1? 2k2 sn(e1? e3 )(Z1 )1 (Z1 )1+ 2dn(e1? e3 )(Z1 )3(Z2 )3; 1 1 1 1 H4= Z1:Z1; H5= 2Z1:Z2; 1 1 1 1 1 2 1 H6= Z2:Z2? (Z1 )2? (Z1 )2? k2(Z1 )2+ sn(e 2? e ) (Z1 )1(Z1 )1 1 2 3 1 3 cn(e1? e3 ) (Z 2) (Z 1);? 2 sn(e? e ) 1 3 2 3 1 3 2 2 H7= Z1:Z1:
where
We note that the ideas developed here also work in the case of separation of variables for spaces of constant Riemannian curvature, as developed in previous articles 6{8]. Indeed, in that case the rational r-matrix algebra is as before and the non zero elements of the r-matrix are (3.7)
r(u)11= r(u)44= r(u)23= r(u)32= 1:
The generating function of the constants of the motion for signature N1;::::; Np is then (3.8)
0 p NJ? X XX det L(u)=@3
1
k=1 J=1 j=0
(ZjJ+1 )k A (u? J e1 )NJ?j+ k
1
2
:
This is the generalisation of the generating function for separable coordinates on P spaces of constant curvature of dimension n= p=1 NJ+ 1. Indeed, if we use the j form (3.8) and if k= 0 for k= 1; 2; 3 then we have the generating function on the sphere for generic ellipsoidal coordinates, and if 1=?1=4, 2= 1=4, 3= 0 then we have the generating function of ellipsoidal coordinates in n-dimensional Euclidean space. As an example consider the system with signature 2,1. The generating function is thenZ:Z det L(u)= e1?e3:: 1) (? ((Z1?:eZ)22) (Z11 )2(Z21 )? (Ze121)?(eZ311 ) e 3+ u? e1 (u? e1 )2 1 (Z1 ):(Z 1 ) (Z 2 ):(Z 1 ) 1 1 2 2 1 2 (Z1 ):(Z1 )+ (Z1 ):(Z1 )? e11?e32? (e1?e3 )22+ (Z1 ):(Z1 ):+ (u? e )3 (u? e )4 u? e3 (u? e3 )2 1 12 1 ( 1) ( 2) 1 1
Abstract. In this work we generalise previous results connecting (rational) Gaudin magnet models and classical separation of variables. It is shown that the connection persists for the case of linear r-matrix algebra which corresponds to the trigonometric
SEPARATION OF VARIABLES AND THE XXZ GAUDIN MAGNET
11
1. E.G
. Kalnins, Separation of Variables for Riemannian Spaces of Constant Curvature, Pitman Monographs and Surveys in Pure and Applied Mathematics 28, Longman Scienti c and Technical, Essex, England, 1986. 2. E.G. Kalnins and W.Miller Jr., Separation of variables on n-dimensional Riemannian manifolds.1.The n-sphere Sn and Euclidean n-space Rn, J. Math. Phys. 27 (1986), 1721. 3. E.G. Kalnins, W. Miller Jr. and G.J. Reid, Separation of variables for complex Riemannian spaces of constant curvature 1. Orthogonal separable coordinates for coordinates SnC and EnC, Proc. Roy. Soc. Lond. A394 (1984), 183. 4. E.K. Sklyanin, Separation of variables in the Gaudin model, J. Sov. Math. 47 (1989), 2473. 5. I.V. Komarov and V.B. Kuznetsov, Quantum Euler-Manakov top on the 3-sphere S3, J. Phys. A: Math. Gen. 24 (1991), L737. 6. V.B. Kuznetsov, Equivalence of two graphical calculi, J. Phys. A: Math. Gen. 25 (1992), 6005. 7. V.B. Kuznetsov, Quadrics on real Riemannian spaces of constant curvature. Separation of variables and connection with Gaudin magnet, J. Math. Phys. 33 (1992), 3240. 8. E.G. Kalnins, V.B. Kuznetsov and W. Miller, Quadrics on complex Riemannian spaces of constant curvature, separation of variables and the Gaudin magnet, J. Math. Phys. 35 (1994), 1710. 9. M. Gaudin, La fonction d onde de Bethe, Masson, Paris, 1983. 10. L.D. Faddeev and L.A. Takhtajan, Hamiltonian Methods in the Theory of Solitons, Springer, Berlin, 1987. 11. A.G. Reyman and M.A. Semenov-Tian-Shansky, Group-theoretic methods in the theory of integrable systems, In: Encyclopedia of Mathematical Sciences, Dynamical Systems 7, volume 16, Springer, Berlin, 1994. 12. E.K. Sklyanin, On the Poisson structure of the periodic classical XYZ-chain, J. Sov. Math. 46 (1989), 1664.0
References
正在阅读:
SEPARATION OF VARIABLES AND THE XXZ GAUDIN MAGNET07-25
中国政治制度史期末复习题02-02
消防部队官兵英模人物先进事迹材料03-08
《操作系统B》教学大纲计算机 金虎]资料03-08
初中军训第五天日记5篇10-29
山西省“晋商四校”2011-2012学年高二下学期联考试题数学理05-14
黎明小学三年级上学期健康教育教案03-09
和差问题208-17
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- SEPARATION
- VARIABLES
- GAUDIN
- MAGNET
- XXZ
- 6与角平分线有关的辅助线
- 迅达9300调试资料
- 等腰三角形与直角三角形常见题型
- 广东茂名市2015高考英语语法填空和阅读系列练习(10)
- 社保缴费等计提基数和比率
- 水产品加工贸易居间合同
- 大学生学习四个全面的心得体会
- 将相和_课后练习题
- Web_of_Science数据库教程(2013年)
- 自学考试 市场营销学 00058 知识点重点整理 考试必过
- 企业干部职工健康知识调查问卷(A卷)
- 2017年海南省材料员专业知识与专业技能试题
- “宽猛相济” 思想对现代企业管理的启示
- 我国早期阅读相关研究现状的文献调查与分析
- 电子产品包装工艺设计
- 小学语文各年段必背古诗
- 1.6完全平方公式1
- 2-公司层面控制测试
- 下坝村扶贫发展规划项目书
- 岩、土边坡稳定性要求