硅石墨烯复合负极材料体积膨胀及SEI膜的原因机理及解决方法

更新时间:2023-11-19 11:45:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

硅/石墨烯复合负极材料

1、硅体积膨胀的原因及反应机理

迄今为止,负极材料中硅的理论容量最高,Li和Si形成合金LixSi(0

图1.1 Li―Si 合金相图和容量对应图[2]

图1.1为 Limthongkul 等人[2]根据热力学计算出的锂硅合金相图,从图中可以看出硅中插入的 Li+越多,会依次形成 Li12Si7、Li7Si3、Li13Si4、Li22Si5等合金相。这些合金相吉布斯自由能小,为稳定态相,理论上硅电极中嵌入的锂越多,所对应的容量就越大。但是实际上在锂离子电池中,当硅颗粒作为负极时,锂嵌入硅后会首先生成无定形的亚稳态合金 LixSi。Limthongkul 解释为 Si 中的相变情况不应该从热力学角度去分析,而是应该从电子和离子的动力学来分析,该文献称 Li 与 Si 反应生成无定形态的亚稳态合金的过程为电化学驱动的固相

非晶化过程(electrochemically-driven solid-state amorphization)。晶相的硅锂合金还有其它的化合物包括 LiSi、Li21Si5、Li15Si4等,常见的几种硅锂合金的晶格结构如表 1.1。

表1.1 锂硅合金的晶体结构

LiSi 四方晶系

Li12Si7 正交晶系

Li7Si3 菱方晶系

Li13Si4 正交晶系

Li15Si4 体心立方

Li21Si5 面心立方

Li22Si5 面心立方

对于常温下锂与晶体硅的电化学合金化机理,Obrvac[3]等人对近几年的相关研究成果进行了总结,如图1.2和1.3所述。

图1.2晶体硅颗粒作为负极时的前两次的电化学性能曲线(a)硅电极电压-容量曲线(b)硅

电极C-V曲线[3]

图1.3 硅电极与锂反应过程的示意图[3]

从图中可看出Si与Li反应过程为:

1)过程Ⅰ:在电压―容量曲线中,首次放电中的 0.1~0.2V 平台处的反应对应着Li+与晶体 Si 的合金化过程,此过程中形成两相区域分别为未反应完的晶体 Si 和无定形 LixSi,如式 1-1 所示:

Si(晶态)+ Li→LixSi(非晶态) (1-1)

2)过程Ⅱ:在首次放电的最后 0~0.07V 区域内,无定形的 LixSi 快速结晶化为晶体 Li15Si4,如式1-2 所示:

LixSi(非晶态)+ Li→Li15Si4(晶态) (1-2)

3)过程Ⅲ:在电压―容量曲线中,首次充电中的 0.4~0.5V 附近存在一个平台,对应着晶体 Li15Si4的去合金化过程,形成无定形的Si,与之前首次放电过程中未参加反应的单晶 Si 形成两相区域,如式 1-3所示:

Li15Si4(晶态)→Li +Si(非晶态) (1-3)

在这一步中,关于硅锂合金的去合金化过程存在争议,Li等人[4]认为存在着如 1-4与1-5式一样的反应:

低电位: Li15Si4(晶态)→LizSi(非晶态)+(3.75-z)Li (1-4) 高电位: LizSi(非晶态)→LixSi(非晶态)+(z-x)Li (1-5) 而Kang[5]等人和Nanda[6]等人则认为是:

低电位: Li15Si4(晶态)→LixSi(非晶态)+(3.75-x)Li (1-6) 高电位: LixSi(非晶态)→Li + Si(非晶态) (1-7) 但无论是哪种反应过程,电极充电完全后呈无定形态。

4)过程Ⅳ:第2次放电到0.05V 的过程中,会先后有两个相变过程为 高电位: Si(非晶态)+ Li→LiySi(非晶态) (1-8) 低电位: LiySi(非晶态)+ Li→LizSi(非晶态) (1-9) 5)过程Ⅴ:在第2次充电过程中,低电位出现LizSi去合金化生成无定形LiySi,高电位继续去合金化生成无定形Si,与过程IV正好颠倒过来; 6)过程VI:若第2次放电到0.07V以下,则会发生

LizSi(非晶态)+ Li→Li15Si4(晶态) (1-10) 7)过程VII:则在第2次充电过程中,则只发生Li15Si4去合金化反应生成无定 形Si,即

Li15Si4(晶态)→Si(非晶态)+ Li (1-11)

第3次循环和第2次循环过程类似,但随着充放电的进一步深入,后续的反应过程是否会延续前 3 次类似的反应过程,暂时还没有相关报道。

Obrvac[3]认为,在常温下,其中的Li15Si4合金对应的容量最大,利用XRD数据,可计算其密度为1.179g/cm3,当硅完全合金化生成Li15Si4,其体积膨胀率为280%,此时对应的容量为3579mAh/g。Kang等人[7]利用交流阻抗再结合其他研究人员的研究成果认为纯Si容量的下降主要是无定形LixSi和晶态Li15Si4间的相变过程造成了硅电极的体积膨胀,从而导致硅颗粒之间的电接触不良,所以几次循环后硅电极逐渐粉化,容量下降快。

Boukamp 等[8]总结了Li-Si合金化过程中各相稳定存在的对锂电位范围均在0.34V以下;同时,总结了各相体积变化情况如表1.2所示。

表1-2 Li-Si 合金的体积变化[8]

相 Si Li12Si7 Li7Si3 Li3.25Si Li4.4Si

体积膨胀解决方法

体积变化系数

1.00 2.90 2.58 3.37 4.17

为了解决硅基负极材料的体积变化,目前主要的方法有:1)硅材料的纳米化;2)复合化,分别为与金属的复合(合金化)和与非金属的复合。

硅材料的纳米化可以减轻硅的绝对体积膨胀程度,同时还能减小锂离子的扩散距离,提高电化学反应速率。其中,纳米硅材料包括零维硅纳米颗粒、一维硅纳米线、二维硅纳米薄膜和三维多孔硅。

对于零维的硅纳米颗粒(SiNP),尽管很容易制成100nm以下的硅颗粒,但通常这些硅颗粒会团聚成微米级的二次颗粒,采用这种粉体制成的电极的比容量衰减较快。为了克服SiNP团聚的问题,G.Yushin[9]等人采用SiH4在碳黑表面沉积一层SiNP,然后在沉积碳,得到具有多级结构的复合材料,其中SiNP均匀分散在微米级的高度分支碳球中,其中高度分支碳球起到以下作用:1)导电网络;

2)分散骨架,阻止SiNP团聚;3)内部空隙可以容纳硅嵌锂过程中的体积膨胀,缓解甚至消除体积效应导致的粉化;4)微米级的球形颗粒具有良好的工艺性,易于制成均匀的电极浆料。虽然在一定程度上取得了成功,但所用原料较贵,工艺成本较高。

对于一维的硅纳米线,Y.Cui[10]等人采用化学气相沉积法在不锈钢基体上沉积生成垂直于基体的硅纳米线,发现首次比容量高达4277mAh/g,跟硅的理论比容量一致,并且循环10次后依旧保持3500mAh/g的充电容量。这种特殊结构具有如下三种优点:1)硅纳米线不会由于充放电过程中的巨大体积变化而粉化;2)硅纳米线之间的孔隙可以容纳硅纳米线嵌锂过程中的直径膨胀,而不会导致硅纳米线从集流体上脱落;3)每根硅纳米线都直接连接到集流体上,保证每根硅纳米线都能充分发挥其嵌锂容量,且由于每根硅纳米线均长在不锈钢集流体上,接触电阻小,同时也无需粘结剂和导电剂,使得活性物质的占比得以提高。但是该方法工艺成本较高,精密程度难以控制。

对于二维硅纳米薄膜,可以通过离子溅射[11-13]或真空沉淀[14-15]等技术制备薄膜。在这两种情况下,薄膜电极是不需要粘结剂的,能够牢固地附着在铜集流体上,即不存在降低容量的客体,显示出较高的比容量和非常好的循环性能。尽管硅薄膜电极具有如此良好的特性,但尚未得到商业化。

鉴于低维纳米硅负极材料固有缺点,J.Cho[16]等人进一步开发出三维多孔硅负极材料,其合成方法是采用萘钠溶剂热还原SiCl4,并将得到的凝胶与SiO2颗粒混合,然后在900℃下煅烧,最后用氢氟酸除去SiO2层后得到多孔硅,循环100次后其容量仍然保持2800mAh/g,显示出非常好的循环稳定性和高容量特性。多孔硅具有如下三个方面的优点:1)多孔硅是微米量级,无强烈团聚趋势,易于制成分散良好的电极浆料;2)多孔硅的孔壁只有几十纳米厚,有利于缩短锂离子在硅基体中的扩散路径,极大地提高硅基负极材料的倍率性能;3)多孔硅中含有大量空隙,可以容纳硅嵌锂过程中的体积膨胀,并为电解液中的锂离子提供快速传输通道。总体而言,多孔硅复合负极材料的制备工艺复杂,成本高,需要大量的研究来降低成本。

硅的复合化也是改善体积膨胀的有效手段之一。目前对硅基负极材料的复合主要分为硅与金属材料的复合和硅与非金属材料的复合两大类。

硅合金是用体积效应较小硅合金替代纯硅用作负极材料,在牺牲一定容量的基础上,获得较好的循环性能。硅与金属的复合存在两种情况[17]:一是金属(如 Ni、Ti)在整个充放电过程中不具有嵌脱锂活性,纯粹起支撑结构作用;二是金属(如金属 Al、Sn、Mg)本生具有嵌脱锂活性,但与硅的电位不同,因此它们的复合将使材料的体积膨胀发生在不同电位下,缓解由此产生的内应力,从而提高材料的循环稳定性。从目前的研究来看,这类材料的容量都非常高,但其循环稳定性均低于Si/惰性嵌锂金属体系。

对于第一种情况的硅合金,Wang 等[18,19]研究了NiSi和FeSi的电化学性能,它们的容量都高于1100mAh/g,循环性能明显好于纯硅负极。这种材料中,只有硅是活性中心,而Ni和Fe都不参与电化学反应,电化学机理如下:首次嵌锂过程中,硅就被锂从合金中还原出来形成LixSi,超细的硅均匀分散在Fe基体中,在随后的嵌脱锂过程中,电化学反应只发生在硅和锂之间,惰性合金元素起到了缓冲硅体积变化的作用,反应式见1-12和1-13式:

xLi++ xe- + NiSi→LixSi+Ni=Ni+Si+xLi++ xe- (1-12) xLi++ xe- + FeSi→LixSi+Fe=Fe+Si+xLi++ xe- (1-13)

Lee等[20]研究了TiSi合金的电化学性能,随着合金元素含量的增加,TiSi合金的比容量降低,循环稳定性提高。

对于第二种情况的硅合金研究,Kim等[21]研究了Mg2Si合金作为锂离子电池负极材料的可能性,并提出了Mg2Si合金与锂离子发生,作用机制如下: 第一步: Mg2Si+xLi+e-→LixMg2Si (1-14) 第二步: LixMg2Si+Li++e-→LicriticalMg2Si→LicriticalMg2Si+Mg+LiySi (1-15) 第三步: Mg+Li++e-→LizMg (1-16) Mg2Si合金的首次比容量为1370mAh/g,但循环过程中,Mg2Si的体积效应增大了材料内阻,降低了其循环性能。XRD分析表明,锂嵌入后生成新相Li2MgSi,脱锂时Li2MgSi转化为含锂的两相合金,部分还原成Mg2Si。

硅与非金属的复合的方法中,它们之间的不同点是缓冲介质的选择和复合物的合成方法,其中研究较多的是硅与碳的复合,这是科学的选择,这是由于碳不仅是电化学活性的,而且还具有良好的导电性和锂离子渗透性[22]。这里所说的碳,包括软碳、硬碳、石墨或石墨烯等。

Tao等[23]成功制备了具有中空核壳结构的硅/碳纳米复合材料。其将SiO2和碳先后包覆在硅纳米颗粒表面,然后用氢氟酸刻蚀SiO2层,从而得到了中空核壳结构的硅/碳纳米复合材料。硅核和碳壳间具有内部空隙,有效地缓冲了硅的体积效应,同时有利于锂离子的扩散。另外,碳包覆层还可以明显改善电极的电子传导性能。基于以上特性,该中空核壳结构硅/碳纳米复合材料表现出较高的比容量和优异的循环稳定性。37%硅-63%碳的中空核壳纳米复合材料的初始放电容量为1370mAh/g,接近于其理论容量(1788mAh/g)。经过100次循环,该复合材料的容量保持率为98%,这相当于每次循环的容量衰减仅为0.02%。

Chen等[24]通过液相包覆法合成了在硅纳米颗粒和空心碳壳间具有可控空隙的硅核-中空碳壳纳米复合材料。通过对比得出,空隙/硅的体积比为3:1的硅@中空碳纳米复合材料(Si@HC-3)具有最佳的电化学循环性能。在第一次循环,其充放电容量分别为2630和4065mAh/g,库仑效率为65%。经过100次循环,相比于Si@HC-1.5和Si@HC-6纳米复合材料,Si@HC-3纳米材料表现出最高的稳定比容量(1625mAh/g)和最高的容量保持率(69%)。

石墨烯具有较大的比表面积、较强的机械韧性、优异的导电性和化学稳定性。将石墨烯与硅复合,石墨烯的柔韧特性能够有效限制硅的体积膨胀,同时石墨烯的加入也能改善电极材料的导电性能,从而可以很好地提高电极材料的电化学性能。近年来硅与石墨烯的复合作为锂离子电池负极材料的研究得到了越来越广泛的关注。

Li等[25]通过原位生长的方法设计了一种新型硅-石墨烯复合负极材料。该材料是用石墨烯纳米片包覆在硅纳米颗粒表面,同时,将石墨烯纳米片包覆的硅纳米颗粒垂直固定在排列整齐的、带有松散的、相互交缠的叶片的石墨烯“树”上。下图为石墨烯纳米片包覆的硅纳米颗粒“生长”在石墨烯“树”上的图解模型。在最终生成的产物中,作为密封外壳,石墨烯纳米片可以很好地限制被包裹的硅纳米颗粒的体积变化,同时在循环过程中,可有效地避免硅纳米颗粒和电解液的直接接触,使硅纳米颗粒的结构更加稳定。石墨烯“树”在集流器上直接生长,支撑着硅纳米颗粒,以确保其均匀分散,并为锂离子和电子提供了较短的传输路径。综上因素,该复合材料表现出了较高的比容量(1528mAh/g,150mA/g放电速率下),良好的循环稳定性(88.6%,50次循环)和优异的快速充放电性能(412mAh/g,

8A/g放电速率下)。

石墨烯树上生长的石墨烯纳米片包覆硅纳米颗粒的图解模型[25]

Jing等[26]通过一种简单易行的方法合成了一种新的纳米硅-石墨烯复合电极。其先通过硼掺杂和硝酸银刻蚀的方法制备出了多孔硅球,溶于乙醇后与氧化石墨烯溶液先后浸涂在泡沫铜上,利用氢碘酸还原氧化石墨烯后,最终制备得到该纳米硅-石墨烯复合电极。作为锂离子电池负极,该复合纳米材料表现出较高的可逆容量(1703mAh/g,在200mA/g的放电速率下)和快速充放电稳定性(390mA/g,在5000mA/g的放电速率下)。200mA/g的放电速率下经过160次循环和5000mA/g的放电速率下经过130次循环,该电极仍未表现出明显的容量衰减。

2、硅表面形成SEI膜的原因及机理

对于脱嵌锂电位区间小于0.5V(vs. Li+/Li)的负极材料而言,能否在表面生成一层稳定的固体电解质界面膜(SEI膜, solid electrolyte interface)对于电池的循环性能至关重要。SEI膜一般形成于首次嵌锂过程,在电解液成热力学不稳定电位范围内,由于电解液成分与电极表面直接接触,电子具有一定的隧道效应,电解液能够得到电子被还原,从而分解生成一些还原产物,这些产物覆盖在电极表面上,隔绝了电解液与电极的接触,屏蔽了电子的隧道效应,从而使电解液能够在后续循环中,不再继续分解,只进行锂离子的嵌入与脱出反应,避免了电解液的大量损失。石墨之所以能够成为一种成功地商业化应用的锂离子电池负极材料,其中很重要的一点正是因为在石墨表面的SEI膜能够稳定存在。

蔡杰健[27]通过CV、XPS、EIS等研究了纳米硅电极首次和第二次循环不同电极下的表面状态进行了检测分析,得出了以下几点结论:1)通过循环伏安扫描,发现纳米硅在首次循环中存在着不可逆的还原峰,其发生的电极电位与石墨SEI膜生成的电位接近,说明纳米硅在LiPF6基电解液中能够形成SEI膜;2)对纳米硅电极在首次和第二次循环过程中,不同氧化还原峰的峰前以及峰后电位下,电极表面形貌、表面元素相对含量及键合情况以及电化学阻抗分别进行表征,认为硅表面的SEI膜过程是一个生成、破坏、修复、再破坏、再生成的一个过程,并且这个过程伴随着硅体积效应进行;3)通过XPS分析,发现纳米硅表面的SEI膜成分与石墨表面的SEI成分基本一致,并且在首次循环嵌锂过程中,能够生成较均匀、致密的SEI膜。

硅可以与常规电解液因LiPF6分解而产生的HF进行反应,因此不易形成稳定的SEI膜,与常规电解液相容性较差。同时,更为重要的是,由于硅存在着巨大的体积膨胀效应,材料表面会不断暴露出新的硅表面,不断加剧这一反应,如图所示,在反复充放电过程中硅表面所形成的SEI膜经历不断的“形成——碎裂——在新鲜界面再形成”过程,其SEI膜不断地增厚[28],直至锂离子不能通过且严重消耗了电解液当中的锂离子,使电池循环性能严重下降。

充放电过程中硅表面SEI膜形成规律[28]

C. K. Chan 等人[29,30]对硅纳米线上SEI膜的形成机理进行了探讨,经过 XPS,SEM 等表面表征及分析手段表明,由于锂离子不断嵌入与脱出,硅不断暴露出新的表面,纳米线上 SEI 膜是一个不断形成溶解的过程,而生成的还原产物不可逆,从而造成电解液的不断分解,使得最后电极失效。又经过对脱锂截止电位的研究,认为脱锂至0.4~1.2V时,SEI膜不至于大量溶解,在下一个嵌锂的循环过程中,不需要消耗过多的电解液,从而电池具有较好的循环稳定性。

因此,要解决这个问题,我们尽量避免硅与电解液的直接接触,采用碳材料如无定形碳、石墨烯等进行包覆处理就是行之有效的方法。这样一方面使得SEI膜的形成直接在碳材料上,从而改善了负极材料与电解液的兼容性,;另一方面有效的缓冲了硅的体积膨胀效应。

参考文献

[1] Obrovac M N, Christensen L. Structural changes in silicon anodes during lithium insertion/extraction. Electrochem. Solid State Lett., 2004, 7(5): A93-A96. [2] Limthongkul P, Jang Y I, Dudney N J, et al. Electrochemically-driven solid-state amorphization in lithium-silicon alloys and implications for lithium storage. Acta Materialia, 2003, 51: 1103-1113

[3] Obrovac M N, Kraus L J. Reversible cycling of crystalline silicon powder. J. Electrochemical Society, 2007, 154 (2): A103-A108

[4] Li J, Dahn J R. An in situ X-ray diffraction study of the reaction of Li with crystalline Si. J. Electrochemical Society, 2007, 154 (3): A156-A161 [5] Kang Y M, Lee S M, Kim S J, et al. Phase transitions explanatory of the electrochemical degradation mechanism of Si based materials. Electrochemistry Communications, 2007, 9: 959-964

[6] Nanda J, Datta M K, Remillard J T, et al. In situ Raman microscopy during discharge of a high capacity silicon–carbon composite Li-ion battery negative electrode. Electrochemistry Communications, 2009, 11: 235-237

[7] Kang Y M, Go J Y, Lee S M, et al. Impedance study on the correlation between phase transition and electrochemical degradation of Si-based materials. Electrochemistry Communications, 2007, 9: 1276-1281

[8] Boukamp B A, Lesh G C,Huggins R A. All-solid lithium electrodes with mixed-conductor matrix. Journal of the Electrochemical Society, 1981, 128(4): 725-729.

[9] Magasinski A, Dixon P, Hertzberg B, et al. High-performance lithium-ion anodes using a hierarchical bottom-up approach[J]. Nature materials, 2010, 9(4): 353-358.

[10] Chan C K, Peng H, Liu G, et al. High-performance lithium battery anodes using silicon nanowires[J]. Nature nanotechnology, 2008, 3(1): 31-35.

[11] Neudecker B J, Zuhr R A, Bates J B. Lithium silicon tin oxynitride (Li y SiTON): high-performance anode in thin-film lithium-ion batteries for microelectronics[J]. Journal of power sources, 1999, 81: 27-32.

[12] Bourderau S, Brousse T, Schleich D M. Amorphous silicon as a possible anode material for Li-ion batteries[J]. Journal of power sources, 1999, 81: 233-236. [13] Lee S J, Lee J K, Chung S H, et al. Stress effect on cycle properties of the silicon thin-film anode[J]. Journal of power sources, 2001, 97: 191-193.

[14] Green M, Fielder E, Scrosati B, et al. Structured silicon anodes for lithium battery applications[J]. Electrochemical and Solid-State Letters, 2003, 6(5): A75-A79.

[15] Takamura T, Ohara S, Uehara M, et al. A vacuum deposited Si film having a Li extraction capacity over 2000 mAh/g with a long cycle life[J]. Journal of Power Sources, 2004, 129(1): 96-100.

[16] Kim H, Han B, Choo J, et al. Three‐dimensional porous silicon particles for use in high‐performance lithium secondary batteries[J]. Angewandte Chemie, 2008, 120(52): 10305-10308.

[17] 李昌明,张仁元,李伟善. 硅材料在锂离子电池中的应用研究进展. 材料导报,2006, 20 (9): 34-37

[18] Wang G X, Sun L, Bradhurst D H, et al. Innovative nanosize lithium storage alloys with silica as active center. J. Power Soureces, 2000, 88: 278-281

[19] Wang G X, Sun L, Bradhurst D H, et al. Nanocrystalline NiSi alloy as an anode material for lithium-ion batteries. J. Alloy. Compd., 2000, 306: 249-252

[20] Lee Y S, Lee J H, Kim Y W, et al. Rapidly solidified Ti–Si alloys/carbon composites as anode for Li-ion batteries. Electrochimica Acta, 2006, 52: 1523-1526

[21] Kim H, Choi J, Sohn H J, et al. The insertion mechanism of lithium into Mg2Si anode

material

for

Li-ion

batteries.J.Electrochemical

Society,

1999,

146(12):4401-4405

[22]Masaki Yoshio, Ralph J. Brodd, et al. Lithium-Ion Batteries Science and Technologies[M].2014.162-163.

[23] Tao H, Fan L Z, Song W L, et al. Hollow core–shell structured Si/C nanocomposites as high-performance anode materials for lithium-ion batteries[J]. Nanoscale, 2014, 6(6): 3138-3142.

[24] Chen S, Gordin M L, Yi R, et al. Silicon core–hollow carbon shell nanocomposites with tunable buffer voids for high capacity anodes of lithium-ion batteries[J]. Physical Chemistry Chemical Physics, 2012, 14(37): 12741-12745. [25] Li N, Jin S, Liao Q, et al. Encapsulated within graphene shell silicon nanoparticles anchored on vertically aligned graphene trees as lithium ion battery anodes[J]. Nano Energy, 2014, 5: 105-115.

[26] Jing S, Jiang H, Hu Y, et al. Graphene supported mesoporous single crystal silicon on Cu foam as a stable lithium-ion battery anode[J]. Journal of Materials Chemistry A, 2014, 2(39): 16360-16364.

[27]蔡杰健,高容量锂离子电池硅基材料的研究[D],哈尔滨工业大学,2010,39-57.

[28] Wu H, Zheng G, Liu N, et al. Engineering Empty Space between Si Nanoparticles for Lithium-Ion Battery Anodes. Nano letters, 2012, 12(2): 904-909.

[29] C. K. Chan, R. Ruffo, S. Hong, et al. Structural and Electrochemical Study of the

Reaction of Lithium with Silicon Nanowires. J. Power Sources. 2009,189: 34–39 [30] C. K. Chan, R. Ruffo, S. S. Hong, et al. Surface Chemistry and Morphology of

the Solid Electrolyte Interphase on SiliconnanoWire Lithium-ion Battery Anodes. J.Power Sources. 2009,189: 1132–1140

本文来源:https://www.bwwdw.com/article/ibxv.html

Top