三角恒等变换讲义
更新时间:2024-04-17 14:10:01 阅读量: 综合文库 文档下载
《三角恒等变换》
广州卓越教育集团教育学院2011级第三期数学班 沈荣春
开心哈哈
三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。 同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割。
制胜装备
(1) 和与差的三角函数公式
(a) 会用向量的数量积推导出两角差的余弦公式;
(b) 能利用两角差的余弦公式推导出两角差的正弦、正切公式;
(c) 能利用两角差的余弦公式推导出两角和的正弦、余弦、正切公式,推导出二倍角的
正弦、余弦、正切公式,了解他们的内在联系;
(2) 简单的三角恒等变换
能运用上述公式进行简单的恒等变换;
战前动员
失之毫厘,谬以千里
1967年8月23日,苏联的联盟一号宇宙飞船在返回大气层时,突然发生了恶性事故——减速降落伞无法打开。苏联中央领导研究后决定:向全国实况转播这次事故。当电视台的播音员用沉重的语调宣布,宇宙飞船在两小时后将坠毁,观众将目睹宇航员弗拉迪米·科马洛夫殉难的消息后,举国上下顿时被震撼了,人们都沉浸在巨大的悲痛之中。
在电视上,观众们看到了宇航员科马洛夫镇定自若的形象。他面带微笑叮嘱女儿说:“你学习时,要认真对待每一个小数点。联盟一号今天发生的一切,就是因为地面检查时忽略了一个小数点……”
即使是一个小数点的错误,也会导致永远无法弥补的悲壮告别。
古罗马的恺撒大帝有句名言:“在战争中,重大事件常常就是小事所造成的后果。” 换成我们中国的警句大概就是“失之毫厘,谬以千里”吧。
1
战况分析
重点 导出两角和差的三角函数的十一个公式,并了解它们的内在联系,为运用这些公式进行简单的恒等变换打好基础; 难点 考点 两角差的余弦公式的探索与证明。 两角和与差的三角函数;二倍角的三角函数在求值、化简中的应用;化一公式的使用。 易错点 用方程的思想把求多项式取值范围问题转化为求变量取值范围问题是扩大了自变量的取值范围。
扫清障碍
1.两角和与差的三角函数
sin(???)?sin?cos??cos?sin?;
cos(???)?cos?cos??sin?sin?; tan(???)?2.二倍角公式
tan??tan?。
1?tan?tan?sin2??2sin?cos?;
cos2??cos2??sin2??2cos2??1?1?2sin2?; tan2??2tan?。
1?tan2?3.半角公式
sin?2??1?cos??1?co?s?1?co?s cos?? tan?? 22221?co?ssin?1?cos??)
1?cos?sin?(tan?2?4.三角函数式的化简
常用方法:①直接应用公式进行降次、消项;②切割化弦,异名化同名,异角化同角;③ 三角公式的逆用等。(2)化简要求:①能求出值的应求出值;②使三角函数种数尽量少;③使项数尽量少;④尽量使分母不含三角函数;⑤尽量使被开方数不含三角函数。
(1)降幂公式
sin?cos??11?cos2?1?cos2?2sin2?;sin2??;cos??。 222 2
s?) (2sin??1?cos2? 2cos??1?co2(2)辅助角公式
22asinx?bcosx?a2?b2?sin?x???,
其中sin??ba?b22,cos??aa?b22。
5.三角函数的求值类型有三类
(1)给角求值:一般所给出的角都是非特殊角,要观察所给角与特殊角间的关系,利用三角变换消去非特殊角,转化为求特殊角的三角函数值问题;
(2)给值求值:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题的关键在于“变角”,如??(???)??,2??(???)?(???)等,把所求角用含已知角的式子表示,求解时要注意角的范围的讨论;
(3)给值求角:实质上转化为“给值求值”问题,由所得的所求角的函数值结合所求角的范围及函数的单调性求得角。
6.三角等式的证明
(1)三角恒等式的证题思路是根据等式两端的特征,通过三角恒等变换,应用化繁为简、左右同一等方法,使等式两端化“异”为“同”;
(2)三角条件等式的证题思路是通过观察,发现已知条件和待证等式间的关系,采用代入法、消参法或分析法进行证明。
小试牛刀
3sin2a???1.已知sin?=,且?∈?,??,那么的值等于 .
5cos2a?2?2.已知tan(?+?)=3,tan(?-?)=5,则tan2?= . 3. 设?∈(0,
?3?),若sin?=,则2cos(?+)= . 2454??7????3,则sin???4.(2008·山东理)已知cos????+sin?=?的值是 . 56?6???5.函数y=cosx(sinx+cosx)的最小正周期为 . 6.若sinA=
510,sinB=,且A,B均为钝角,求A+B的值. 510
卓越兵法
3
【兵法案例】
1、已知??(0,2π),sin?,cos?是方程4x2?2mx?m?0的两根,则m的值为? ?
2、若sinx?siny?22,则conx?cony的取值范围是? ?【作战策略】 (1)
解析:由题意得(2m)2?4?4?m?0, sin?+cos?=-m2, sin??cos??m4,
1)式得m?4或m?0,由(2)(3)得1+mm2由(2?4,解得m=1?5.综上可知,m=1-5.(2)解析:
令t?cosx?cosy,则t2?cos2x?2cosxcosy?cos2y. 又12=sin2x?2sinxsiny?sin2y,两式相加得t2?12?2?2cos(x?y).
?t2?32?2cos(x?y).又-1?cos(x?y)?1,?0?t2?7?1414?2,?t???,?22?.?【适用兵法】
在利用判别式进行三角函数运算时,不要忽视对判别式△≥0的情况;
沙场点兵
4
1.y=sinx+2sinxcosx+3cosx的最小正周期和最小值分别为 . 2.(2009·徐州六县一区联考)设sin?=(值等于 .
3??5????3.cos(?+?)=,sin?,?,?∈?那么cos?????=????的值为 . ?0,?,
522
35?1<?<?),tan(?-?)=,则tan(?-?)的22?4?13?2??4?4.若cos(?+?)=,cos(?-?)=,则tan?·tan?= .
335?????5.已知?∈?,cos?=-.求sin?. ?0,?,?∈?,??且sin(?+?)=
1535?
2??2?65136.如图,在平面直角坐标系xOy中,
以Ox轴为始边作两个锐角?、?,它们的终边分别与单位圆相交于
A,B两点,已知A,B的横坐标分别为(1)求tan(?+?)的值; (2)求?+2?的值. 7.已知cos(??
?2225,.
510)=-,sin(
19?2?????-?)=,且<?<π,0<?<,求cos的值. 22223锦旗飘扬
已知tan?、tan?是方程x-4x-2=0的两个实根,
求:cos(?+?)+2sin(?+?)cos(?+?)-3sin(?+?)的值.
2
2
2
课后小结
1、
在学习中要切实掌握公式之间的内在联系,把我哥哥公式的结构特征,要善于变通,体现一个活字,明确各个公式的适用范围;
2、
在解三角问题时,我们常常根据具体问题运用函数与方程的思想,构造相关的函数或方程来解题。
5
3、 掌握各个公式的推导过程,是理解和运用公式的首要环节,熟练地运用公式进行“升幂”和“降幂”;
4、 三角函数的化简与求值的难点在于众多三角公式的灵活运用和解题突破口的合理选择,认真分析所求式子的整体结构,分析各个三角函数及角的相互关系式灵活选用公式的基础,是恰当寻找解题思路起点的关键所在;
5、 求值常用的方法:切割化弦法,升幂降幂法,和积互化法,辅助元素法、“1”的代换法等;
6、 要掌握求值问题的解题规律和途径,寻求角之间关系的特殊性,化非特殊角为特殊角,正确选用公式,灵活地掌握各个公式的正用、逆用、变形用。
小试牛刀答案:1、 ?3441 ;2、 - ;3、 4、? 5、 ?
52756、解 ∵A、B均为钝角且sinA=
251025,sinB=,∴cosA=-1?sin2A=-=-, 51055cosB=-1?sin2B=-
310=-
310,∴cos(A+B)=cosAcosB-sinAsinB 10?25??310??×???-5×10=2 ① 又∵?<A<?, ?<B<?, =?????225?210???10?5∴?<A+B<2? ②, 由①②知,A+B=
沙场点兵答案:1.?,2-2 2. -?5. 解 ∵?∈??,??,cos?=-?2?2156 3. 4.
651127? 4?512???,∴sin?=,又∵0<?<,<?<?,∴<
2221313?+?<
3?, 2233?56?33?又sin(?+?)=,∴<?+?<?,cos(?+?)=-1?sin2(???)=-1???=-,
65265?65?∴sin?=sin[(?+?)-?]=sin(?+?)cos?-cos(?+?)sin? =
331235??56?·?=. ???-???·65135?13??65?6.解 由条件得cos?=
22572,cos?=.∵?,?为锐角,∴sin?=1?cos2?=,
510106
sin?=1?cos2?=
55.因此tan?=sin?sin?1cos?=7,tan?=cos?=2.
7?1(1)tan(?+?)=
tan??tan?21?tan??tan?==-3.
1?7?1212tan?2?(2)∵tan2?=
21?tan2?==
41?(13,∴
2)27?4tan(?+2?)=tan??tan2?31?tan??tan2?=
=-1. 1?7?43∵?,?为锐角,∴0<?+2?<3?2,∴?+2?=3?4.
7.解 ???????2???????2?????????2,∵?2<?<π,0<?<?2 ∴
?4<?-?2<π,- ?4<?2-?<???????454,∴sin????2??=1?cos2????2??=9,
cos????2?????=1?sin2????5?2????=3
∴cos???????2??=cos???????2??cos??????????75?2????+sin????2??sin??2????=
27.
锦旗飘扬答案:
解 由已知有tan?+tan?=4,tan?·tan?=-2,∴tan(?+?)=tan??tan?41?tan?tan?=3,
cos2
(?+?)+2sin(?+?)cos(?+?)-3sin2
(?+?) =
cos2(???)?2sin(???)cos(???)?3sin2(???)cos2(???)?sin=
1?2tan(???)?3tan2(???)2(???)1?tan2(???)
1?2?43?3?16=
9=-31?165. 9
7
正在阅读:
三角恒等变换讲义04-17
高中英语选修 7 unit 4语法限制性定语从句精讲精练01-10
行为矫正技术资料整理11-25
2015年山东滨州中考物理试卷及答案08-15
2016言语理解专项真题库1 - 图文06-24
养蚕作文400字07-09
2016年会计从业考试《会计电算化》考点:应收处理考试题库12-21
公寓施工组织设计(框架)1 03-15
义务劳动心得体会300003-20
GSM-R在广州动车段的应用03-29
- 多层物业服务方案
- (审判实务)习惯法与少数民族地区民间纠纷解决问题(孙 潋)
- 人教版新课标六年级下册语文全册教案
- 词语打卡
- photoshop实习报告
- 钢结构设计原理综合测试2
- 2014年期末练习题
- 高中数学中的逆向思维解题方法探讨
- 名师原创 全国通用2014-2015学年高二寒假作业 政治(一)Word版
- 北航《建筑结构检测鉴定与加固》在线作业三
- XX县卫生监督所工程建设项目可行性研究报告
- 小学四年级观察作文经典评语
- 浅谈110KV变电站电气一次设计-程泉焱(1)
- 安全员考试题库
- 国家电网公司变电运维管理规定(试行)
- 义务教育课程标准稿征求意见提纲
- 教学秘书面试技巧
- 钢结构工程施工组织设计
- 水利工程概论论文
- 09届九年级数学第四次模拟试卷
- 三角
- 讲义
- 变换
- 潮州学英语-饶平县英语培训-广东成人英语学习-广东学英语
- 从中学地理教学的视角谈如何进行高师地理教学的改革 王伟红
- VERTEX 70傅立叶变换红外光谱仪作业指导书
- 地铁风水电安装及装修工程现场技术管理
- 模型组合讲解 - 绳件、弹簧、杆件模型(动力学问题)
- 探放水工培训教案 - 图文
- 《三字经》阅读指导课教案
- 参加全国农村改革试验区工作会议及赴浙江省、江苏省考察支农资金
- 数据结构实验报告-数据结构的程序实现
- 苏政发〔2009〕111号
- 企业文化学理论原理
- 中级-高压线路带电检修工理论-复习题
- 花样跳绳之两人一绳教案
- PR系列打印机教材2005.12 - 图文
- 浪涛公司新产品开发
- 如何在语文阅读教学中提高学生的思维能力
- 地形对聚落及交通线路分布的影响
- 国际金融实务试卷四答案
- 分析化学考试试卷及答案1
- 大学游泳考试题库