数字图像处理ch5(英文版)
更新时间:2023-05-21 20:02:01 阅读量: 实用文档 文档下载
Chapter 5: Image Restoration
Lecturer: JianbingShen
Email : shenjianbing@
Office room : 212
/~shenjianbing
Things which we see are not by
themselves what we see…It remains completely unknown to us what the objects may be by themselves and
apart from the receptivity of our sense. We know nothing but our manner of perceiving them.
–Immanuel Kant
The distinction between image enhancement and restoration Image enhancement is a subjective process
(1) Heuristic procedures designed to manipulate an image in order to take advantage of the psychophysical aspects of the human vision system
(2) Contrast stretching
The distinction between image enhancement and restoration Image restoration is an objective process
(1) Recover the image using a priori knowledge of the degradation phenomenon
(2) To model the degradation and apply the inverse process to recover the original image
(3) Formulating a criterion of goodness that will yield an optimal estimate of the desired result
(4) Image deblurring
Image Restoration
Image restoration vs. image enhance
Enhancement:
largely a subjective processPriori knowledge about the degradation is not a must (sometimes no degradation is involved)Procedures are heuristic and take advantage of the psychophysical aspects of human visual system
more an objective process
Images are degraded
Tries to recover the images by using the knowledge about the degradation
Restoration:
An Image Degradation Model Two types of degradation
Additive noise
Spatial domain restoration (denoising) techniques are preferred
Image blur
Frequency domain methods are preferred
An Image Degradation Model We model the degradation process by a degradation function h(x,y), an additive noise term, η(x,y), as g(x,y)=h(x,y)*f(x,y)+ η(x,y) f(x,y) is the (input) image free from any degradation
g(x,y) is the degraded image
* is the convolution operator
The goal is to obtain an estimate of f(x,y) according to the knowledge about the degradation function h and the additive noise η In frequency domain: G(u,v)=H(u,v)F(u,v)+N(u,v)
An Image Degradation Model Three cases are considered in this Chapter
g(x,y)=f(x,y)+ η(x,y) (5-2~5-4) g(x,y)=h(x,y)*f(x,y) (5-5~5-6) g(x,y)=h(x,y)*f(x,y)+ η(x,y) (5-7~5-9)
A model of the image
degradation/restoration process
The purpose of image restoration is to restore a degraded/distorted image to its original content and quality.Distinctions to Image Enhancement
Image restoration assumes a degradation model that is known or can be estimated.
Original content and quality ≠Good looking
Image Degradation Model Spatial variant degradation model
g(x,y)=∑∑h(x,y,m,n)f(m,n)+η(x,y)
Spatial-invariant degradation model
g(x,y)=∑∑h(x m,y n)f(m,n)+η(x,y)
Frequency domain representation
G(u,v)=H(u,v)F(u,v)+N(u,v)
Noise Models
We first consider the degradation due to noise only
h is an impulse for now ( H is a constant)
Autocorrelation function is an impulse function multiplied by a constantN 1M 1
a(x,y)=∑∑η(s,t) η(s x,t y)=N0δ(x,y)
t=0s=0 White noise
It means there is no correlation between any two pixels in the noise imageThere is no way to predict the next noise value
The spectrum of the autocorrelation function is a constant(white) (the statement in page 222 about white noise is wrong)
Gaussian Noise
Noise (image) can be classified according the distribution of the values of pixels (of the noise image) or its (normalized) histogram Gaussian noise is characterized by two parameters,μ (mean) andσ2 (variance), by1 1( z μ ) 2/ 2σ 2 p( z )= e 2πσ
70% values of z fall in the range[(μ-σ),(μ+σ)] 95% values of z fall in the range[(μ-2σ),(μ+2σ)]12
Other Noise Models
Rayleigh noise 2 2 ( z a )e ( z a )/ b p( z )= b 0
for z≥ a for z< a
The mean and variance of this density are given by a and b can be obtained through mean and variance14
b( 4 π )μ= a+πb/ 4 andσ= 42
Other Noise Models
Erlang (Gamma) noise
a b z b 1 az e p ( z )= (b 1)! 0
for z≥ 0 for z< 0
The mean and variance of this density are given by bμ= b/ a andσ 2=
a and b can be obtained through mean and variance15
a2
Other Noise Models
Exponential noise
ae az p( z )= 0
for z≥ 0 for z< 0
The mean and variance of this density are given by 1 2μ= 1/ a andσ=a2
Special case pf Erlang PDF with b=1
Uniform noise
Other Noise Models 1 p( z )= b a 0 if a≤ z≤ b otherwise
The mean and variance of this density are given by2
(b a ) 2μ= (a+ b)/ 2 andσ= 12
Other Noise Models
Impuse(salt-and-pepper) noise
Pa for z=a p(z)= Pb for z=b
0 otherwise
If either Pa or Pbis zero, the impulse noise is called unipolara and b usually are extreme values because impulse corruption is usually large compared with the strength of
the image signal It is the only type of noise that can be distinguished from others visually
Periodic Noise
Arises typically from electrical or electromechanical interference during image acquisition It can be observed by visual inspection both in the spatial domain and frequency domainThe only spatially dependent noise will be considered
正在阅读:
数字图像处理ch5(英文版)05-21
2016年咨询工程师(投资)继续教育化工医药工艺技术方案试卷及答案05-18
2022-2022年高二数学第六章不等式教材分析 新课标 人教版04-17
房地产公司管控模式 - 图文04-22
初中化学计算题类型及解题技巧总结04-29
netlink的使用方法05-28
工程竣工结算管理制度05-04
侠客英雄传ios版攻略03-29
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- 图像处理
- 英文版
- 数字
- ch5
- 南方电网公司标准设计和典型造价V1.0宣贯2014之一(总体架构、主网G3、应用管理)平台新闻用
- 2011-2012学年上学期期中六年级数学教学质量检测试卷质量分析报告
- 3.1.1直线倾斜角与斜率
- 初中物理电学知识总结
- 中美会计制度对比分析
- 应聘笔试题_运营推广专员面试题
- EG的临界值表Dickey-Fuller
- 物联网专业职业生涯规划
- 新手开车注意事项
- 茶叶中游离氨基酸的测定
- 公路工程机械化施工中的机械设备管理
- 大工《企业管理》课程考试模拟试卷A
- 在校生代表毕业典礼发言稿
- 人民版必修三历史期中考试题
- 校园网组建论文终稿
- 音乐学院毕业音乐会管理方案
- 2013全国二级建造师考前精讲-法律法规
- 上海交通大学论文模板
- The+Relationship+between+Men+and+Nature+Reflected+by+the+Conflict+between+Captain+Ahab+and+Moby+Dick
- DB-222A检测与转换(传感器)技术实验台(20种传感器)