Honeycomb Carbon A Review of Graphene 石墨烯综述
更新时间:2023-08-16 04:46:01 阅读量: 教学研究 文档下载
纳米材料在生物医学中的应用
132Chem.Rev.2010,110,132–145
HoneycombCarbon:AReviewofGraphene
MatthewJ.Allen, VincentC.Tung, andRichardB.Kaner*, ,
DepartmentofChemistryandBiochemistryandCaliforniaNanoSystemsInstitute,andDepartmentofMaterialsScienceandEngineering,University
ofCalifornia,LosAngeles,LosAngeles,California90095
ReceivedFebruary20,2009
Contents
1.Introduction
2.BriefHistoryofGraphene2.1.ChemistryofGraphite3.DowntoSingleLayers
3.1.CharacterizingGrapheneFlakes3.1.1.ScanningProbeMicroscopy3.1.2.RamanSpectroscopy
4.ExtraordinaryDeviceswithPeeledGraphene4.1.High-SpeedElectronics4.2.SingleMoleculeDetection
5.AlternativestoMechanicalExfoliation
5.1.ChemicallyDerivedGraphenefromGraphite
Oxide
5.1.1.Depositions
5.1.2.DefectDensityinChemicallyDerived
Graphene
5.1.3.Field-EffectDevices5.1.4.PracticalSensors
5.1.5.TransparentElectrodes5.2.TotalOrganicSynthesis
5.3.EpitaxialGrapheneandChemicalVapor
Deposition
6.GrapheneNanoribbons7.FutureWork8.Conclusions
9.Acknowledgments10.References
132133134134136136136136137138138139139139139140141141142143143144144144
1.Introduction
Grapheneisthenamegiventoatwo-dimensionalsheetofsp2-hybridizedcarbon.Itsextendedhoneycombnetworkisthebasicbuildingblockofotherimportantallotropes;itcanbestackedtoform3Dgraphite,rolledtoform1Dnanotubes,andwrappedtoform0Dfullerenes.Long-rangeπ-conjugationingrapheneyieldsextraordinarythermal,mechanical,andelectricalproperties,whichhavelongbeentheinterestofmanytheoreticalstudiesandmorerecentlybecameanexcitingareaforexperimentalists.
Whilestudiesofgraphitehaveincludedthoseutilizingfewerandfewerlayersforsometime,1the eldwasdeliveredajoltin2004,whenGeimandco-workersatManchesterUniversity rstisolatedsingle-layersamplesfromgraphite(seeFigure1).2Thisledtoanexplosionofinterest,inpart
DepartmentofChemistryandBiochemistryandCaliforniaNanoSystemsInstitute.
DepartmentofMaterialsScienceandEngineeringandCaliforniaNano-SystemsInstitute.
becausetwo-dimensionalcrystalswerethoughttobether-modynamicallyunstableat nitetemperatures.3,4Quasi-two-dimensional lmsgrownbymolecularbeamepitaxy(MBE)arestabilizedbyasupportingsubstrate,whichoftenplaysasigni cantroleingrowthandhasanappreciablein uenceonelectricalproperties.5Incontrast,themechanicalexfo-liationtechniqueusedbytheManchestergroupisolatedthetwo-dimensionalcrystalsfromthree-dimensionalgraphite.Resultingsingle-andfew-layer akeswerepinnedtothesubstratebyonlyvanderWaalsforcesandcouldbemadefree-standingbyetchingawaythesubstrate.6-9Thismini-mizedanyinducedeffectsandallowedscientiststoprobegraphene’sintrinsicproperties.
Theexperimentalisolationofsingle-layergraphene rstandforemostyieldedaccesstoalargeamountofinterestingphysics.10,11Initialstudiesincludedobservationsofgraphene’sambipolar eldeffect,2thequantumHalleffectatroomtemperature,12-17measurementsofextremelyhighcarriermobility,7,18-20andeventhe rsteverdetectionofsinglemoleculeadsorptionevents.21,22Thesepropertiesgeneratedhugeinterestinthepossibleimplementationofgrapheneinamyriadofdevices.Theseincludefuturegenerationsofhigh-speedandradiofrequencylogicdevices,thermallyandelectricallyconductivereinforcedcomposites,sensors,andtransparentelectrodesfordisplaysandsolarcells.
Despiteintenseinterestandcontinuingexperimentalsuccessbydevicephysicists,widespreadimplementationofgraphenehasyettooccur.Thisisprimarilyduetothedif cultyofreliablyproducinghighqualitysamples,espe-ciallyinanyscalablefashion.23Thechallengeisreally2-foldbecauseperformancedependsonboththenumberoflayerspresentandtheoverallqualityofthecrystallattice.19,24-26Sofar,theoriginaltop-downapproachofmechanicalexfoliationhasproducedthehighestqualitysamples,butthemethodisneitherhighthroughputnorhigh-yield.Inordertoexfoliateasinglesheet,vanderWaalsattractionbetweenexactlythe rstandsecondlayersmustbeovercomewithoutdisturbinganysubsequentsheets.Therefore,anumberofalternativeapproachestoobtainingsinglelayershavebeenexplored,afewofwhichhaveledtopromisingproof-of-conceptdevices.
Alternativestomechanicalexfoliationincludeprimarilythreegeneralapproaches:chemicaleffortstoexfoliateandstabilizeindividualsheetsinsolution,27-32bottom-upmeth-odstogrowgraphenedirectlyfromorganicprecursors,33-36andattemptstocatalyzegrowthinsituonasubstrate.37-43Eachoftheseapproacheshasitsdrawbacks.Forchemicallyderivedgraphene,completeexfoliationinsolutionsofarrequiresextensivemodi cationofthe2Dcrystallattice,whichdegradesdeviceperformance.31,44Alternatively,bot-tom-uptechniqueshaveyettoproducelargeanduniform
10.1021/cr900070d 2010AmericanChemicalSociety
PublishedonWeb07/17/2009
纳米材料在生物医学中的应用
HoneycombCarbon:AReviewofGrapheneMatthewJ.AllenisagraduatestudentintheKanerlaboratoryattheUniversityofCalifornia,LosAngeles(UCLA).HereceivedhisB.S.inphysicsatRiceUniversity,whereheresearchedcarbonnanostructuresinthelaboratoriesofRichardSmalleyandRobertCurl.
VincentC.TungisagraduatestudentintheYanglaboratorycoadvisedbyProf.KanerattheUniversityofCalifornia,LosAngeles(UCLA).HereceivedhisM.S.inchemistryfromtheNationalTsing-HuaUniversityinHsinchu,Taiwan.Hispreviousworkwasonthephotochemistryoforganiclightemittingdiodes(OLEDs).
singlelayers.Totalorganicsyntheseshavebeensizelimitedbecausemacromoleculesbecomeinsolubleandtheoccur-renceofsidereactionsincreaseswithmolecularweight.36Substrate-basedgrowthofsinglelayersbychemicalvapordeposition(CVD)orthereductionofsiliconcarbidereliesontheabilitytowalkanarrowthermodynamictightrope.40Afternucleatingasheet,conditionsmustbecarefullycontrolledtopromotecrystalgrowthwithoutseedingad-ditionalsecondlayersorforminggrainboundaries.
Despitetremendousprogresswithalternatives,mechanicalexfoliationwithcellophanetapestillproducesthehighestqualitygraphene akesavailable.Thisfactshouldnot,however,dampenanyinterestfromchemists.Onthecontrary,therecenttransitionfromtheconsiderationofgrapheneasa“physicstoy”toitstreatmentasalargecarbonmacromoleculeoffersnewpromise.Yearsofcarbonnano-tube,fullerene,andgraphiteresearchhaveproducedamyriadofchemicalpathwaysformodifyingsp2carbonstructures,45-50whichwillundoubtedlybeadaptedtofunctionalizeboththebasalplaneofgrapheneanditsreactiveedges.Thisnotonlypromisestodeliverhandlesforexploitinggraphene’sintrinsicpropertiesbutalsoshouldtoleadtonewpropertiesaltogether.Thisreviewwilldiscussthe eldofgraphenefromamaterialschemistrystandpoint.Afterabriefhistoryofthetopic,theexcitingprogressmadesince2004,inboththeproductionofgrapheneanditsimplementationindevices,
ChemicalReviews,2010,Vol.110,No.1
133
RichardB.KanerreceivedaPh.D.ininorganicchemistryfromtheUniversityofPennsylvaniain1984.AftercarryingoutpostdoctoralresearchattheUniversityofCalifornia,Berkeley,hejoinedtheUniversityofCalifornia,LosAngeles(UCLA),in1987asanAssistantProfessor.HewaspromotedtoAssociateProfessorwithtenurein1991andbecameaFullProfessorin1993.ProfessorKanerhasreceivedawardsfromtheDreyfus,Fulbright,Guggenheim,andSloanFoundations,aswellastheExxonFellowshipinSolidStateChemistryandtheBuck-WhitneyResearchAwardfromtheAmericanChemicalSocietyforhisworkonrefractorymaterials,includingnewsyntheticroutestoceramics,intercala-tioncompounds,superhardmaterials,graphene,andconductingpolymers.
willbediscussed.Forathoroughdiscussionfocusedonthephysicsofgraphene,seerefs10,11,51,and52.
2.BriefHistoryofGraphene
Tounderstandthetrajectoryofgrapheneresearch,itisusefultoconsidergrapheneassimplythefewestlayerlimitofgraphite.Inthislight,theextraordinarypropertiesofhoneycombcarbonarenotreallynew.Abundantandnaturallyoccurring,graphitehasbeenknownasamineralfornearly500years.Eveninthemiddleages,thelayeredmorphologyandweakdispersionforcesbetweenadjacentsheetswereutilizedtomakemarkinginstruments,muchinthesamewaythatweusegraphiteinpencilstoday.Morerecently,thesesamepropertieshavemadegraphiteanidealmaterialforuseasadrylubricant,alongwiththesimilarlystructuredbutmoreexpensivecompoundshexagonalboron
Figure1.Singlelayergraphenewas rstobservedbyGeimandothersatManchesterUniversity.Hereafewlayer akeisshown,withopticalcontrastenhancedbyaninterferenceeffectatacarefullychosenthicknessofoxide.(ReprintedwithpermissionfromScience(),ref2.Copyright2006AmericanAssociationfortheAdvancementofScience.)
纳米材料在生物医学中的应用
134ChemicalReviews,2010,Vol.110,No.1nitride4andmolybdenumdisul de.High,in-planeelectrical(~10 -1cm-1)andthermalconductivity(~3000W/mK)enablegraphitetobeusedinelectrodesandasheatingelementsforindustrialblastfurnaces.53,54Highmechanicalstiffnessofthehexagonalnetwork(1060GPa)isalsoutilizedincarbon berreinforcedcomposites.Theseusesandothersgenerateanannualdemandofmorethan1milliontonsofgraphiteworldwide.55
Theanisotropyofgraphite’smaterialpropertiescontinuestofascinatebothscientistsandtechnologists.Thes,patomicorbitalsoneachcarbonhybridizetoformstrongx,andpcovalentysp2bonds,givingriseto120°C-C-Cbondanglesandthefamiliarchicken-wire-likelayers.Theremainingporbitaloneachcarbonoverlapswithitsthreeneighboringzcarbonstoformabandof lledπorbitals,knownasthevalenceband,andabandofemptyπ*orbitals,calledtheconductionband.Whilethreeofthefourvalenceelectronsoneachcarbonformtheσ(single)bonds,thefourthelectronformsone-thirdofaπbondwitheachofitsneighborsproducingacarbon-carbonbondorderingraphiteofoneandone-third.Withnochemicalbondinginthec-direction,out-of-planeinteractionsareextremelyweak.Thisincludesthepropagationofchargeandthermalcarriers,whichleadstoout-of-planeelectricalandthermalconductivitiesthatarebothmorethan103timeslowerthanthoseoftheirin-planeanalogues.56
2.1.ChemistryofGraphite
Graphitehasarichchemistryinwhichitcanparticipateinreactionsaseitherareducingagent(electrondonor)oranoxidizer(electronacceptor).Thisisadirectconsequenceofitselectronicstructure,whichresultsinboth53
anelectronaf nityandanionizationpotentialof4.6eV.Alargenumberofexperimentsforgraphitefocusontheinsertionofadditionalchemicalspeciesbetweenthebasalplanes,orintercalation.Shaffaultiscreditedwiththe rstintercalationcompoundusingpotassium,datingbackto1841.57Graphiteintercalationcompounds(GICs)appeartobetheonlylayeredcompoundssuf cientlyorderedtoexhibit“staging”inwhichthenumberofgraphiticlayersinbetweenadjacentintercalantscanbevariedinacontrolledfashion.Thestageofacompoundreferstothenumberofgraphiticlayersinbetweenadjacentplanesofintercalant.Theinter-layerspacingcanincreasefrom0.34nm(3.4Å)innativegraphitetomorethan1nminsomeGICs,whichfurtherexaggeratestheanisotropyofmanyproperties.56,58
TheincreasedinterlayerspacinginGICsalsomeansasigni cantreductioninthevanderWaalsforcesbetweenadjacentsheets,whichleadsonetoconsidertheirexfoliationasapossibleroutetosinglelayersofgraphene.Ourgrouptriedjustthatin2003byviolentlyreactingastage-1potassiumintercalationcompound(KC8)withvarioussol-ventssuchasalcohols,butexfoliationproducedonlymetastableslabsaround30layersthickthathadatendencytoscrollunderhigh-poweredsonication(seeFigure2).53,59,60TheinterlayerspacinginGICscanbefurtherincreasedbythermalshocktoproduce“expanded”graphite,whichhasnowservedasastartingmaterialforrecenttechniques,including53,61
ananoribbonsynthesisdevelopedbyDai(seeFigure3).Asecondfocusofexperimentsongraphitehasbeensubstitutionaldopingbythereplacementofcarbonwithotherelements.ThisincludesworkbyBartlettandco-workersatBerkeleyinwhichsubstitutionofcarbonwithboronand
Allenet
al.
Figure2.Schematicdiagramshowingtheintercalationandexfoliationprocesstoproducethinslabsofgraphite.Potassiumisinsertedbetweenthelayersandreactedviolentlywithalcohols.Theexfoliatedslabsare~30layersthick.(Reprintedwithpermis-sionbyTheRoyalSocietyofChemistryfromref60.)
nitrogenresultedinp-andn-typegraphite,respectively.62,63InlightofrecentprogresswithCVDofsinglelayergraphene,suchworkwillalmostcertainlyberevisitedasanalternativetoexternalgatingforcontrollingelectronicbehavioringraphene-baseddevices,orperhapstoformgraphene-onlyp-njunctions.
Itisalsoimportanttomentionafewpointsaboutprogressinthechemistryofcarbonnanotubes.Amongthemostimportantobservationshavebeenofthedifferencesinreactivitybetweenthe-different66crystallographicdirections(zigzagorarmchair).64Thisknowledgeshouldtransferdirectlytothe“unrolled”or“ attened”caseofplanargraphene.Amyriadoftechniqueshavealsobeendevelopedtoselectivelymodifyeitherthesidewallsofcarbonnanotubesortheirend-caps.Suchreactionsareimportantlookingforwardbecausetheycorrespondtomodi cationofthebasalplaneofgrapheneanditsedges.Infact,insituTEMwasrecentlyusedtostudyreactionsongraphene’szigzagedgebyZettlandothersatBerkeley.67
3.DowntoSingleLayers
Researchershaveusedmechanicalexfoliationoflayeredcompoundstoproducethinsamplesforsometime.In1999,Ruoff’sgrouppresentedonesuchapproachforgraphitebyusinganatomicforcemicroscope(AFM)tiptomanipulatesmallpillarspatternedintohighlyorientedpyrolyticgraphite(HOPG)byplasmaetching(seeFigure4).1Thethinnestslabsobservedatthattimeweremorethan200nmthickortheequivalentof~600layers.Kim’sgroupatColumbialaterimprovedthemethodbytransferringthepillarstoatiplesscantilever,whichsuccessivelystampeddownslabsasthinas10nm,or~30layers,onSiOonthethincrystallitesforeshadowed2.68Electricalmeasurementsmadeawealthofworktocome.OtherearlygroupsworkingtowardgrapheneincludedEnoki’sinTokyo,whousedtemperaturesaround1600°Ctoconvertnanodiamondsintonanometer-sizedregionsofgrapheneatopHOPGin2001.69
Whiletheseelegantmethodsproducedthinsamples,itwasultimatelyamuchsimplerapproachthatledtothe rstisolationofsinglelayergraphenein2004byaManchestergroupledbyGeim(seeFigures5).2Initsmostbasicform,the“peeling”methodutilizescommoncelluphenetapetosuccessivelyremovelayersfromagraphite ake.Thetapeisultimatelypresseddownagainstasubstratetodeposita
纳米材料在生物医学中的应用
HoneycombCarbon:AReviewofGrapheneChemicalReviews,2010,Vol.110,No.1
135
Figure3.Scanningelectronmicrographsofnaturalgraphitebefore(a)andafter(b)expansionbyacidintercalationandthermalshock.(ReprintedwithpermissionbyTheRoyalSocietyofChemistryfromref60.)
Figure4.Scanningelectronmicroscopeimagesofearlyattemptsatmechanicalexfoliationusinggraphitepillars.(aandb)Ruoff’sgrouppeeledawaylayerswithanAFMtip.(Reprintedwithpermissionfromref1.Copyright1999InstituteofPhysics.)(candd)Kim’sgrouptransferredthepillarstoatiplesscantileveranddepositedthinslabsontoothersubstratesintappingmode.AseriesofscanningelectronmicroscopeimagesshowthinsamplescleavedontotheSi/SiO2substrateandatypicalmesoscopicdevice.(Reprintedwithpermissionfromref68.Copyright2005AmericanInstituteofPhysics.)
sample(seeFigure1).Althoughthe akespresentonthetapearemuchthickerthanonelayer,vanderWaalsattractiontothesubstratecandelaminateasinglesheetwhenthetapeisthenliftedaway.Themethodrequiresagreatdealofpatience,asdepositionsputdownbyinexperiencedscientistsareoftenamessofthickslabsinwhichlocatingasinglelayercanbeextremelydif cult.Withpractice,thetechniqueresultsinhigh-qualitycrystallites,whichcanbemorethan100µm2insize.
Perhapsthemostimportantpartofisolatingsinglelayergrapheneforthe rsttimewastheabilitytospotanatomicallythinspecimeninsomereadilyidenti ablefashion.Opticalabsorbanceofgraphenehassincebeenmeasuredatjust2.3%,rulingoutdirectvisualobservation(seeFigure6).70,71Inordertovisualizesingle akes,theManchestergrouptookadvantageofaninterferenceeffectataspeciallychosenthickness(300nm)ofSiO2onSitoenhancetheopticalcontrastunderwhite-lightillumination.72Althoughseeminglyasimpleidea,thiswasamajorstepforwardandhascontributedagreatdealtowardprogressinthis eld.
Figure5.Mechanicalexfoliationproducedthevery rstsinglelayergraphene akes.(a)Anatomicforcemicroscopyimageshowsthesubstrate-graphenestepheightof<1nmandafoldedstepheightof0.4nm.(Reprintedwithpermissionfromref9.Copyright2005PNAS.)(b)TEMimageofafree-standinggraphene lmafteretchingoftheunderlyingsubstrate.[ReprintedwithpermissionfromNature(),ref6.Copyright2007NaturePublishingGroup.]
纳米材料在生物医学中的应用
136ChemicalReviews,2010,Vol.110,No.1Figure6.Asingleandbilayersamplesuspendedonaporousmembrane.Opticalabsorbanceismeasuredat2.3%perlayer.Theinsetshowsthesampledesignwithseveralapertures.[ReprintedwithpermissionfromScience),ref70.Copy-right2008AmericanAssociationfortheAdvancementofScience.]
Groupshavesinceadaptedthesameeffecttoimagegrapheneonavariety72-75
ofsubstratesandundernonwhite-lightcondi-tions.3.1.CharacterizingGrapheneFlakes
Withnewaccessto2Dcrystallites,experimentalistsscrambledtocon rmresultslongpredictedbytheory.Beforetheycoulddoso,techniquesneededtobedevelopedforthecharacterizationofdeposited akes.Whileopticalmicros-copyusingtheinterferenceeffectwasagoodmethodforidentifyingthincandidates,itcouldnotprovideconclusiveevidencethatagiven akewassingle,double,ormultilay-ered.Thisisanimportantissuebecausesomeofthemoreinterestingpropertiesofgraphenearedependentoncrystallitethickness.Themostobviousexampleiselectronicbandstructure.Single-layergrapheneisazerobandgapsemi-conductororsemimetalinwhichthehighestoccupiedmolecularorbital(HOMO)touchesthelowestunoccupiedmolecularorbital(LUMO)atasingleDiracpoint.Forthicker akes,stackingofmultiplelayersleadstosomeoverlapoftheircarrierwavefunctionsandtheoverallbehaviorbecomesmetallic.Tomatchobservationswiththeory,reliableiden-ti cationofthenumberoflayerspresentinagivensamplebecameimperative.
3.1.1.ScanningProbeMicroscopy
Scanningprobemicroscopywasperhapsthemostobviouschoiceforveri cationofcrystallitethickness.Themethodisrelativelyslow,butthe0.34nm(3.4Å)stepheightforeachsuccessivelayeriswellwithinthedetectionlimitsformodernatomicforcemicroscopes(AFMs).Resolvingthesubstrate-grapheneheightpro leproveddif cult,however,duetothedifferencesintipattraction/repulsionbetweentheinsulatingsubstrateandsemimetallicgraphene.Thisissuewasexacerbatedunderambientconditionsbythepreferentialadsorptionofathinlayerofwaterongraphene.Withsuchcomplications,reportsofsubstrate-grapheneheightpro lesbyatomicforcemicroscopyhavetypicallyrangedfrom0.6to1.0nmforsinglelayers.2
Thefoldededgesofgraphenehaveoftenprovidedamorereliableandaccuratemeasurementofthicknessunderatomicforcemicroscopybecausethereisnochangeinmaterialassociatedwiththelocationofthestep.Itwassuchafold
Allenet
al.
thatallowedtheManchestergrouptocon rmthesingle-layerstepheightof~0.4nmintheiroriginalreport(seeFigure5).Althoughseeminglyunlikely,foldscommonlyoccurduringmechanicalexfoliationbecausevanderWaalsattractionbetweenasheetanditselfissizableanddoublingoversometimesprovidesanenergeticminimum.
Scanningtunnelingmicroscopy(STM)haslongbeenusedtoobservetheelectronictopographyofgraphite.76-78Intheseexperiments,onlythreecarbonsofthesix-memberringsarevisibleduetotheABstackingofgraphite(seeFigure7).79Inthisarrangement,electrondensityisconsiderablyhigherforthethreeR-carbons(thosethateclipsecarbonsinthesheetjustbelow),andhence,theyaretheonlyonesvisiblebySTM.Thisisasopposedtowhatwasexpectedforsinglelayergraphene,inwhichthesixcarbonsarecompletelyequivalentandthusshouldallappearwithequalintensity.Thiswasindeedcon rmedbyultrahighvacuumSTMimagestakenatColumbiabyFlynnandothers.79Theirmeasurementsalsogaveevidenceofthehighcrystalqualityinmechanicallyexfoliatedsamples,whichshowedfew-to-nodefectsovertensofnanometers.
3.1.2.RamanSpectroscopy
Whilegraphene’slayeredstructuremakesitideallysuitedforfurtherstudybyscanningprobemicroscopy,samplepreparationtimeandsubstraterequirementsmeanthatadditionalmethodsarenecessarytoreliablycon rmspeci-menthicknessinahigh-throughputfashion.UltimatelyitwasnotadirectlytopographicaltechniquebutinsteadRamanspectroscopythatemergedasthemostusefulwaytoprobethethicknessofmechanicallyexfoliated akes.Althoughlessthanobvious,thismakesgoodsensebecausethefeaturesofgraphiteandgraphenedirectlyre ectchangesin80-electronicstructurefromthestackingofsuccessivelayers.86Obser-vationsofgradualchangesintheRamanspectrumallowonetoinferthenumberoflayers(uptothescreeninglength)ina“ ngerprint”fashion(seeFigure8).
ThemajorfeaturesoftheRamanspectraofgraphiteandgraphene~2700cmare-1theGbandat~1584cm-1andtheG′bandat.TheGbandisduetotheE2gvibrationalmode,andtheG′bandisasecond-ordertwo-phononmode.Athirdfeature,theDbandat~1350cm-1,isnotRamanactiveforpristinegraphenebutcanbeobservedwheresymmetryisbrokenbyedgesorinsampleswithahighdensityofdefects.ItischangesinthepositionsandrelativepeakheightsoftheGandG′bandsthatservetoindicatethenumberoflayerspresentforagiven ake.ThelocationoftheGpeakforsinglelayergrapheneis3-5cm-1higherthanthatforbulkgraphite,whileitsintensityisroughlythesame.TheG′peakshowsasigni cantchangeinbothshapeandintensityasthenumberoflayersisdecreased.Inbulkgraphite,theG′bandiscomprisedoftwocomponents,theintensitiesofwhichareroughly1/4and1/2thatoftheGpeakforthelowandhighshifts,respectively.Forsinglelayergraphene,theG′bandisasinglesharppeakatthelowershift,withintensityroughly4timesthatoftheGpeak.Itwas ttingtothesetrendsthat nallyenabledscientiststoreliablycon rmtheidentityofmechanicallyexfoliated akes.
4.ExtraordinaryDeviceswithPeeledGraphene
MechanicalexfoliationandtheRaman ngerprintingtechniqueallowedscientiststoforgeaheadwithafullsuite
纳米材料在生物医学中的应用
HoneycombCarbon:AReviewofGrapheneChemicalReviews,2010,Vol.110,No.1
137
Figure7.(a)STMimageofgraphiteshowingonlythethreecarbonsthateclipseaneighborinthesheetdirectlybelow.(b)Incontrast,allsixcarbonsareequivalentandthusvisibleinmechanicallyexfoliatedsingle-layergraphene.(Reprintedwithpermissionfromref79.Copyright2007PNAS.)
Figure8.Ramanspectroscopyisapowerfuldiagnostictoolforthestudyofgraphene.BoththeG(near1584cm-1)andG′(near2700cm-1)bandsundergosigni cantchangesduetothethicknessofABstacked akes,asproducedbymechanicalexfoliation.(Reprintedwithpermissionfromref80.Copyright2006AmericanPhysicalSociety.)
ofexperimentsonsingle-layergraphene.Theseledtoanumberofextraordinaryproof-of-conceptdevices.
4.1.High-SpeedElectronics
Theoreticalpredictionslongsuggestedextremelyhighcarriermobilityandanambipolar eld-effectingraphene.87,88Thismotivatedthevery rstexperimentsthatwired-upmechanicallyexfoliated akesbye-beamlithography.2,18Beyondcon rminganumberofpredictions,thosemeasure-mentsgeneratedsigni cantinterestingrapheneasapossiblematerialforthenextgenerationofsemiconductordevices.Thatattentionmayormaynotbewarranted,butmanyagreethatourabilitytosustainMoore’slawwillultimatelybecomeaquestionofcarriermobility.
Extraordinaryelectronicpropertiesingraphenearereallyduetothehighqualityofits2Dcrystallattice.9,19,89-91Thathighqualityimpliesanunusuallylowdensityofdefects,whichtypicallyserveasthescatteringcentersthatinhibitchargetransport.In2008,Kim’sgroupatColumbiamea-suredacarriermobilityinexcessof200,000cm2/(Vs)forasinglelayerofmechanicallyexfoliatedgraphene(seeFigure9).7Intheirexperiments,substrate-inducedscatteringwasminimizedbycleverlyetchingunderthechanneltoproducegraphenecompletelysuspendedbetweengoldcontacts.Atsuchhighcarriermobility,chargetransportisessentiallyballisticonthemicrometer-scaleatroomtemperature.This
Figure9.Suspendedgrapheneshowsextremelyhighmobilityduetotheminimizationofsubstrate-inducedscattering.(a)SEMimageofasuspendedsheetafteretching.(b)Field-effectmeasurementsindicatemobilitygreaterthan200,000cm2/(Vs).(Reprintedwithpermissionfromref7.Copyright2008Elsevier.)
纳米材料在生物医学中的应用
138ChemicalReviews,2010,Vol.110,No.1Figure10.Schematicdiagramshowingthebandstructureandresultingambipolar eldeffectingraphene.ConductionandvalencebandsmeetattheDiracpointwithoutanexternal eld.Undergatebias,theFermilevelmovesaboveorbelowtheDiracpointtointroduceasigni cantnumberoffreecarriers.[ReprintedwithpermissionfromNature(),ref10.Copyright2007NaturePublishingGroup.]
hasmajorimplicationsforthesemiconductorindustrybecauseitenables,inprinciple,fabricationofall-ballisticdevicesevenattoday’sintegratedcircuit(IC)channellengths(currentlydownto45nm).
Thesecondimportantpointaboutchargetransportingrapheneisambipolarity.Inthe eld-effectcon guration,thisimpliesthatcarrierscanbetunedcontinuouslybetweenholesandelectronsbysupplyingtherequisitegatebias.Thiscanbeeasilyvisualizedgiventheuniquebandstructureofgraphene(seeFigure10).10Undernegativegatebias,theFermileveldropsbelowtheDiracpoint,introducingasigni cantpopulationofholesintothevalenceband.Underpositivegatebias,theFermilevelrisesabovetheDiracpoint,promotingasigni cantpopulationofelectronsintotheconductionband.
Besidesmotivatingacademicinterest,accesstoatrulyambipolarsemiconductorenablesanumberofnoveldevicestructures.Thesearefundamentallydifferentfromsilicon-basedlogicbecausedopinglevelscanbedynamicallycontrolledentirelybygating.Momentarilyprovidinglocalgatebiasestodifferentpartsofthesame akecanformjunctionsorevenmorecomplicatedlogic.Subsequentlyrearrangingthebiasescanthencompletelyrede nethedevicewithoutmakinganyphysicalchangestothechannelmaterial.
4.2.SingleMoleculeDetection
Thesecondexcitingproof-of-conceptimplementationofmechanicallyexfoliatedgraphenewasinchemicalsensors.Severalimportantfeaturesofgraphenemadeitanexcellentcandidateforthesensingactivearea.Firstandforemost,the2Dstructureofgrapheneconstitutesanabsolutemaximumofthesurfaceareatovolumeratioinalayeredmaterial,whichisessentialforhighsensitivity.Infact,thishasbeenthemajormotivationbehindimplementationofothernano-structuredmaterialsinsensors.Inthecaseoftraditionalmaterials,bulkpropertiessuchasresistivityarenotsubstan-tiallyin uencedbysingleadsorptioneventsontheirsurface.Ingraphene,however,thereisnosuchdistinctionbetweensurfacesitesandthebulkmaterial,soeveryadsorptioneventissigni cant.
Versatilityofgrapheneasthebasisofasensorresultsfromitsuniqueelectronicstructure.Theambipolaritymeansthat
Allenet
al.
Figure11.Thelackofsurfacestatesingraphenemakespossiblethedetectionofevensingleadsorbate.Thedirectionofchangeinthe gureindicatesthesignofinducedcarriers(holesforH2OandNO2;electronsforCOandNH(),3).[ReprintedwithpermissionfromNatureref21.Copyright2007NaturePublishingGroup.]
adsorptionofeitherelectronwithdrawingordonatinggroupscanleadto“chemicalgating”ofthematerial,whichcanbeeasilymonitoredinaresistive-typesensorsetup.
In2007,singlemoleculesensitivitytoNObytheManchester21,22groupforthe2andNH rstgraphene-3wasdemonstratedbasedsensor(seeFigure11).Inthecaseofeitheranalyte,adsorptioneventsinducedsomepopulationoffreecarriersandtheresistivityofasinglelayer akedecreaseduponexposure.AHall-typecon gurationcon rmedtheoppositesignofcarriersgeneratedbythetwogases,withanelectron-withdrawingspecies(e.g.,NO2)inducingconductionbyholes(p-type)andanelectron-donor(e.g.,NH3)inducingconduc-tionbyelectrons(n-type).
Withsuchexcitingearlyresults,experimentswithgraphene-basedsensorshavecertainlyjustbegun.Whiletherearefewquestionsaboutthelimitsofsensitivityforthesedevices,therealdrawbackthusfarisalackofselectivity.Asensorisratherimpracticalifitrespondsinasimilarwayuponexposuretoanyanalyte.Thisisanexcellentareaofopportunityforchemists.Modi cationofthebasalplaneoritsedgescouldcertainlyincorporateanalyte-speci clock-and-keytypebindingsites.Suchanapproachwouldnotonlyprovideselectivesensitivitytoalargevarietyofchemicalspeciesbutperhapsalsoenabledetectionofbiologicalagentsaswell.Similarschemeshavebeensuccessfullydemon-stratedwithcarbonnanotubesandquantumwires.92-95
5.AlternativestoMechanicalExfoliation
Excitingprogressinthe eldofgraphene,andespeciallysosoonafteritsinitialdiscovery,begantosuggestabrightfuture.Thelimitingstepformostexperimentswassimplyobtaininggoodsinglelayersbymechanicalexfoliation.Thiswouldhavegreaterimplicationsforreal-worlddevicesbecausetheprocessislowthroughputandunlikelytobeindustriallyscalable.Withthisinmind,thechallengeof ndinganalternateroutetosingle-layergraphenebecamethefocusofagreatdealofresearch.
Oneshouldkeepinmindthreeimportantfactorsbeyondscalabilitywhenconsideringthepro ciencyofanysyntheticroutetographene.Firstandforemost,aprocessmustproducehighqualityinthe2Dcrystallatticetoensurehighmobility.Second,themethodmustprovide necontrolovercrystallite
纳米材料在生物医学中的应用
HoneycombCarbon:AReviewofGrapheneFigure12.Molecularmodelsshowtheconversionprocessfromgraphitetochemicallyderivedgraphene.(Reprintedwithpermissionfromref101.Copyright2009NaturePublishingGroup.)
thicknesssoastodeliveruniformdeviceperformance.Finally,andforeaseofintegration,anyprocessshouldbecompatiblewithcurrentCMOS(complementarymetal-oxide-semiconductor)processing.
5.1.Oxide
ChemicallyDerivedGraphenefromGraphiteIn2006,Ruoff’sgroupwasthe rsttodemonstrateasolution-basedprocessforproducingsingle-layergraphene(seeFigure12).27,29,96,97Themethodhingedonchemicalmodi cationofgraphitetoproduceawaterdispersibleintermediary,graphiteoxide(GO).AfteroxidationbyHummers’method,GOisalayeredstackofpuckeredsheetswithABstacking,whichcompletelyexfoliatesupontheadditionofmechanicalenergy.98,99Thisisduetothestrengthofinteractionsbetweenwaterandtheoxygen-containing(epoxideandhydroxyl)functionalitiesintroducedintothebasalplaneduringoxidation.Thehydrophilicityleadswatertoreadilyintercalatebetweenthesheetsanddispersethemasindividuals.
AlthoughGOitselfisnonconducting,thegraphiticnetworkcanbesubstantiallyrestoredbythermalannealingorthroughtreatmentwithchemicalreducingagents,anumberofwhichhavebeenexplored.Ruoff’sgroupdetailedtheuseofhydrazinehydratetoeliminateoxidationthroughtheforma-tionandremovalofepoxidecomplexes.29ThiswasdonebyaddinghydrazinedirectlytoaqueousdispersionsofGO.Intheiroriginalreport,thereducedsinglesheetswereusedasanadditiveforpolystyrene-basedcomposites.27,100The2Dgeometryledtoanextremelylowpercolationthresholdofjust0.1%,enhancingboththeconductivityandstrengthofthematrix.
OneproblemwiththeoriginalaqueousreductionofGOwasthattheremovalofoxygengroupscausedthereducedsheetstobecomelesshydrophilicandquicklyaggregateinsolution.GordonWallace,DanLi,andco-workersincollaborationwithourgrouplatershowedthatraisingthepHduringreductionleadstocharge-stabilizedcolloidaldispersions,evenofthedeoxygenatedsheets.30Recentlywe’veimprovedthereductionstepbymakingdispersionsdirectlyinanhydroushydrazine.101-103Notethatuseofhydrazinerequiresgreatcarebecauseitisbothhighlytoxicandpotentiallyexplosive.104
ThemostexcitingadvantagesoftheGOmethodareitslow-costandmassivescalability.Thestartingmaterialissimplegraphite,andthetechniquecaneasilybescaled-uptoproducegramquantitiesorlargerof“chemicallyderivedgraphene”dispersedinaliquid.GOisalsoaninterestingmaterialinitsownrightforcompositesapplications.Ruoff’sgrouphasdemonstratedfree-standing lmswithextremelyhightensilestrengthupto~42GPa(seeFigure13).105,106
ChemicalReviews,2010,Vol.110,No.1
139
5.1.1.Depositions
Obtaininguniformandreproducibledepositionsisoneforthemostimportantrequirementsforincorporatingasolution-basedtechniqueintodevicefabrication.Furthermore,thetypeofdepositionrequiredcanrangewidelydependingonthedesignspeci csofagivendevice.Well-suitedtothistask,chemicallyconvertedgraphenesuspensionsareversatileandhavepermitteda-large109numberofdepositiontechniques(seeFigure14).101,107Thesehavebeenusedtoproduce lmswithcoverageranginganywherefromevenlyspacedsinglesheetstodenselypackedoverlapping lms.
Theoriginaltechniqueusedbyourgroupfordepositing lmswasspraycoatingfromwaterontoaheatedsubstrate.31Althoughwewereabletoisolateandcharacterizesomesinglesheets,highsurfacetensioncausedsigni cantag-gregationevenifthesubstratewasheatedto ash-drythesuspensionuponcontact.Wehavebeenmoresuccessfulspin-coatingdispersionsmadedirectlyinhydrazine.Themethodallowsforafullrangeofcoveragedensitiesby ne-tuningofspin-speedandapretreatmentappliedtothesurfaceofthesubstrate.
Huang’sgroupatNorthwesternrecentlydemonstratedwonderfulcontroloverdepositionsusingLangmuir-BlodgettassemblyofGO.107Theyshowedthatelectrostaticrepulsionpreventsthesinglelayersfromoverlappingwhencompressedatanair/surfaceinterface.ThisledtodepositionsonSiOthatincludeddilute,close-packed,andoverpacked lms.2Dai’sgroupatStanfordhasdonesimilarworkwithLangmuir-Blodgetttechniquesandalsolayer-by-layeras-semblyusingelectrostaticattractiontobiasedsubstrates.109
5.1.2.DefectDensityinChemicallyDerivedGraphene
Aswithmechanicallyexfoliatedgraphene,itisimportanttocharacterizechemicallyderived akesbeforefabricatingdevices.Thisisespeciallytrueinthechemicalcasebecausethebasalplaneofgrapheneundergoesseriousalterationduringtheprocessofoxidationandreduction.ResidualoxidationwasmadeobviousbyanappreciableDbandnear1350cm-1intheRamanspectrumofchemicallyderivedgraphene.29ThisbandismadeRamanactivebythesigni cantnumberofdefectsandresultingbrokensymmetryofthebasalplane.X-rayphotoelectronspectroscopy(XPS)ofreducedGOindicatesnearlycompleteremovalofoxygen,whichhasledRuoff’sgroupandourowntosurmisethatnonconjugatedsp3carbonconstitutesmostofthedefects.Thesealsolimittheobservationofinterestingphysicsphenomenainchemicallyderivedgrapheneandinhibitmobility.
ThepresenceofalargeDbandalsoprecludesthe ngerprintingtechniquethatisusedtodeterminecrystallitethicknessformechanicallyexfoliatedgraphene.Thepromi-nenceofthebandmakesassigninganyexactpositiontotheGbandnexttoimpossible.Instead,mostgroupshaveturnedtoatomicforcemicroscopyinordertocon rmthethicknessofdeposited akes.Asinothercases,thegraphene-substratestepheightisdif culttoresolveandreportsrangebetween0.4and1.0nmforsinglelayers.30,101,107
5.1.3.Field-EffectDevices
Evenataloweroverallcrystalquality,theavailabilityofchemicallyderivedgraphenehasremovedaseriouslogjamintheengineeringofgraphene-baseddevicesandscientistshavebeeneagertomakeelectricalmeasurements.The rst
纳米材料在生物医学中的应用
140ChemicalReviews,2010,Vol.110,No.1Allenet
al.
Figure13.Free-standinggraphene lmsshowextremelyhightensilestrength.(a)Cross-sectionalSEMimageofgraphiteoxidestackingina lmproducedby ltration.[ReprintedwithpermissionfromNature(),ref105.Copyright2007NaturePublishingGroup.](b)Chemicalreductionproducesa lmwithshinyluster[ReprintedwithpermissionfromScience(),ref125.Copyright2008AmericanAssociationfortheAdvancementofScience.]
Figure14.Solutionprocessingallowsdepositionofsynthesized/modi edgrapheneinavarietyofdensities.(a)SEMimagesofdifferent lmsspin-coatedfromhydrazine.(b)SEMandatomicforcemicroscopyimagesofagraphiteoxide lmdepositedbyLangmuir-Blodgettassembly.(Reprintedwithpermissionfromref107.Copyright2009AmericanChemicalSociety.)(c)Multilayercoatingsarestillquitetransparent.[ReprintedwithpermissionfromNature(),ref109.Copyright2008NaturePublishingGroup.]
deviceswerefabricatedbye-beamlithographyon akesaround1µm2insize.31Morerecently,Ruoff’sgroupandourownhaveproducedmuchlarger akes,whichenabledustodemonstratescalablearraysof eld-effectdevicesusingconventionalphotolithography(seeFigure15).96,101
Thequalityofthe2Dlatticeinchemicallyderivedgrapheneissacri cedduringoxidationasthehybridizationofmanycarbonschangesfromplanarsp2totetrahedralsp3andthesheetpuckers.Thishasseveralconsequencesindeviceperformance.Unlikethosemadefrommechanicallyderivedgraphene,weobservedp-typecurrentmodulationfortop-contactandback-gated eld-effectdevices.Weattributethistoresidualoxidation,whichprovidesdeeptrapstatesforelectronsandlimitsanygatemodulationtothatofholes.Anotherconsequenceisinhibitedmobility,whichweestimateatlessthan1000cm2/(Vs).
Whilethesepropertieshaveledsometoquestiontheappropriatenessofchemicallyderivedgraphene-basedde-
vices,thematerialhasprovidedanexcellentplatformfortestingnoveldevicestructures.Furthermore,researchershavegainedvaluableexperienceintegratingasolution-basedtechniqueintodevicefabrication.Thosemethodswillcarryovershouldaless-severeroutetocompleteexfoliationbedeveloped.
5.1.4.PracticalSensors
Whilesingle-moleculedetectionfrommechanicallyex-foliatedgraphenewasanexcitingproof-of-principle,thedif cultyofproducingthinspecimensandtherequirementofultrahighvacuumlimitsthepracticalityofthesedevices.Recently,anumberofgroups,includingRobinson’sattheNavalResearchLaboratoryandourown,havedemonstratedgoodsensitivityforNO2,NH3,anddinitrotolueneunderambientconditionsusingchemicallyderivedgraphene(seeFigure16).103,110
纳米材料在生物医学中的应用
HoneycombCarbon:AReviewofGrapheneChemicalReviews,2010,Vol.110,No.1
141
Figure15.(a)SEMimageofalargesinglesheetdepositedonSiO2.(b)Schematicviewofatop-contact,back-gateddevice.(c)Photograph(left),opticalimage(middle),andSEMimage(right)ofaworkingdevicewithachannellengthof7µm.(Reprintedwithpermissionfromref101.Copyright2009NaturePublishingGroup.)
Figure16.Chemicallyderivedgrapheneprovidesapracticalroutetographene-basedresistivesensors.Theresistanceofthep-typematerialdecreasesuponexposuretoelectronwithdrawers(e.g.,NO2)andincreasesuponexposuretoelectrondonors(e.g.,NH3).(Reprintedwithpermissionfromref103.Copyright2009AmericanChemicalSociety.)
Itisinterestingtonotethedifferencesinresponseofchemicallyderivedgraphenesensorsandmechanicallyexfoliatedones.Asdiscussedearlier,electrondonatingorwithdrawinggroupsincreaseelectronorholepopulationsinpristinegrapheneandthusbothleadtoincreasedconductiv-ity.Chemicallyderivedgrapheneisnominallyp-type.Therefore,electronwithdrawinggroupscontributeadditionalcarriers,butelectrondonatorsactuallyservetodepleteholesfromthevalenceband.Hence,NO2andNH3ledtooppositedirectionsofresponseinoursensors.
solarcell,whichhadapowerconversionef ciency(PCE)of0.26%.Chhowalla’sgrouplaterfabricatedapolymersolarcellwithaPCEof0.1%usingasimilar lm.112,113TheperformanceofthesecellswaslessthanthatofthecorrespondingcontroldevicesonITO,buttheyprovideaproof-of-conceptforlow-costtransparentcoatingsbasedongraphene.
5.2.TotalOrganicSynthesis
Althoughgraphiteoxidehasproducedthe rstchemicallyderivedmicrometer-scalegraphene,synthetictechniquesforsmallerplanar,benzene-basedmacromoleculeshavebeenknownforsometime.33,34,114-117Thesegraphene-likepolya-cyclichydrocarbons(PAHs)occupyaninterestingplaceinbetween“molecular”and“macromolecular”structuresandarenowattractingnewinterestasapossiblealternativeroutetographene.
PAHsareattractivebecausetheyarehighlyversatileandcanbesubstitutedwitharangeofaliphaticchainstomodifysolubility.36Thusfar,themajordrawbackofPAHshasbeentheirlimitedsizerange.Thisisduetothefactthatincreasingmolecularweightgenerallydecreasessolubilityandincreasestheoccurrenceofsidereactions.Undertheseconditions,preservationofdispersibilityandaplanarmorphologyforlargePAHshasbeenverychallenging.
Amajoradvancecamein2008,whenMullenandco-workersreportedthesynthesisofnanoribbon-likePAHsupto12nminlength(seeFigure17).35Althoughtheelectronicpropertiesofthesenanoribbonshaveyettobecharacterized,
5.1.5.TransparentElectrodes
Solutionprocessingofchemicallyderivedgrapheneandthedepositionsachievedsoonledresearcherstoconsiderusingthematerialintransparentconductors.Thedemandforsuchcoatingshasgrownrapidlyduetooptoelectronicdevicesincludingdisplays,LEDs,andsolarcells.Whilethecurrentindustrystandardisindiumtinoxide(ITO),carbonnanotubeshavelongbeentoutedasapossiblealternativeduetotheirlowdimensionalityandabilitytoformapercolatingconductivenetworkatextremelylowdensities.Thesamemeritsmakegrapheneanobviouschoice.
Mullenandco-workersdemonstratedthe rstgraphene-basedtransparentconductor.111Filmsweredepositedbydip-coatingwithGOandreducingbythermalannealing.Sheetresistancesaslowas0.9k /)wereobtainedat70%transmittance.WhiletheperformancewasconsiderablylessthanthatofITO(70 /)at90%transmittance),the lmswerelow-costanddidnotrequirevacuumsputtering.Thegroupalsousedthe lmastheanodeinadye-sensitized
纳米材料在生物医学中的应用
142ChemicalReviews,2010,Vol.110,No.1Allenet
al.
Figure17.Polyacyclicaromatichydrocarbons(PAHs)mayofferaground-upsynthesisofgraphene.(a)ChemicalstructureofPAHsand(b)TEMofananoribbonsynthesizedbyMullen.(Reprintedwithpermissionfromref35.Copyright2008AmericanChemicalSociety.)
theymayindeedexhibitgraphene-likebehavior.Ifresearch-ersinthisareaareabletofurtherextendthesizerangeofPAHsinthecomingyears,thiscouldprovideacleansyntheticroutetographeneforsomeapplications.Inanyevent,theorganictechniquesdevelopedwillhaveimportantimplicationsformodi cationoforadditiontoconjugatedcarbonmacromolecules.
5.3.EpitaxialGrapheneandChemicalVaporDeposition
Whilesolution-basedsyntheticschemesaimtocircumventtheneedforsupportsubstrates,twotechniquestakeadvan-tageofspeciallychosenplatformstoencouragegrowthofhighqualitygraphene.
DeHeerandothersattheGeorgiaInstituteofTechnologypioneeredanepitaxialmethodinwhichgrapheneresultsfromthehightemperaturereductionofsiliconcarbide(seeFigure18).38-40,118-120Theprocessisrelativelystraightforward,assilicondesorbsaround1000°Cinultrahighvacuum.Thisleavesbehindsmallislandsofgraphitizedcarbon,whichwere rstlocatedbySTMandelectrondiffractionexperiments.Morerecently,groupshaveusedphotolithographytopatternepitaxialgrowthinpredeterminedlocationsandtomakedevices.119
Anumberofphysicalpropertiesdifferbetweenepitaxiallygrownandmechanicallyexfoliatedgraphene.37,39Thisisduetothein uenceofinterfacialeffectsinepitaxialgraphene,whichareheavilydependentonboththesiliconcarbidesubstrateandseveralgrowthparameters.Forepitaxialgraphene,differencesintheperiodicityobservedbySTMandLEEDSarenotwellunderstood.121Thesameistruefor
Figure19.Chemicalvapordepositionofgrapheneontransitionmetalsubstrates.Opticalmicroscopeimageof(a)thenickelcatalystand(b)theresultinggraphene lm.TEMimagesshowthenucleationof(c)one,(d)three,or(e)fourlayersduringthegrowthprocess.(Reprintedwithpermissionfromref41.Copyright2009AmericanChemicalSociety.)
theenergygapobservedbyangle-resolvedphotoemissionspectroscopy(ARPES).122
Thesecondsubstrate-basedmethodischemicalvapordeposition(CVD)ofgrapheneontransitionmetal lms(seeFigure19).GroupsatMITandinKoreapioneeredtheprocess,whichreliesonthecarbon-saturationofatransitionmetaluponexposuretoahydrocarbongasathightemperature.41-43Mostoften,nickel lmsareusedwithmethanegas.Uponcoolingthesubstrate,thesolubilityofcarboninthetransitionmetaldecreasesandathin lmofcarbonisthoughttoprecipitatefromthesurface.
Oneofthemajoradvantagesofsubstrate-basedmethodsforgraphenesynthesisistheirhighcompatibilitywithcurrentCMOStechnology.Intheory,bothepitaxialandCVDtechniqueshavetheprospectofproducingasinglesheetofgrapheneoveranentirewafer,whichmaybethesimplestwaytointegratethenewmaterialintocurrentsemiconductorprocessesanddevices.TheremainingchallengeforepitaxialandCVDmethodsisobtaining necontrolover lm
Figure18.Siliconcarbideisreducedtographeneassiliconsublimesathightemperature.(a)SEMimageshowssmallhexagonalcrystallites.(Reprintedwithpermissionfromref120.Copyright2006Elsevier.)(b)STMimageshowslong-rangeorderandalowdensityofdefects.[ReprintedwithpermissionfromScience(),ref38.Copyright2006AmericanAssociationfortheAdvancementofScience.]
纳米材料在生物医学中的应用
HoneycombCarbon:AReviewofGrapheneChemicalReviews,2010,Vol.110,No.1
143
Figure20.Nanoribbonsofferenhancedtransistorbehaviorduetoquantumcon nement.(a)SEMimageofnanoribbonsde nedbyphotolithographyandO2plasmaetching.(b)Kim’sgroupdemonstratedIon/Ioffratiosashighas104atwidthsof~50nm.(Reprintedwithpermissionfromref124.Copyright2007AmericanPhysicalSociety.)
thicknessandpreventingsecondarycrystalformation.Inanidealcase,bothmethodsrelyonthenucleationandgrowthofasinglecrystalwithouttheformationofaboundaryorseedingofasecondlayer.Currently,thebestspecimenshaveavariationinthicknessofperhaps1-3layersandarepolycrystalline.FieldeffectdevicesfabricatedwithepitaxialandCVDgraphenedisplaycarriermobilitiesinexcessof1000cm2/(Vs).42,118
InthecaseofCVDgraphene,etchingoftheunderlyingmetalallowsthecarbon lmstobetransferredtoothersubstrates.This,combinedwiththelargeareaofdepositions,hasgreatpromisefortransparentconductingapplications.Onesuch lmgrownbyCVDandtransferredviaaPDMSstampontoglassshowedasheetresistanceofjust280 /)at80%opticaltransmittance.42
exfoliatedgraphenetomakethe rstsub-50nmnanoribbons(seeFigure20).123,124AlthoughtheprocessyieldedIon/Ioffratiosofupto104,devicesshowedhighvariabilityduetothelackofcontroloveredgetermination.Stencil-likepatterningwasindiscriminateofcrystallographicdirection,andthusedgeeffectswereessentiallydifferenteverytime.Thechallengeofsynthesizingreproduciblegraphenenanoribbonsisaninterestingoneforchemists,whohavesoughttoexploitthedifferencesinreactivityalonggraphene’stwocrystallographicdirections.64In2008,Dai’sgroupatStanforddevelopedthe rsttechniqueforisolatingnano-ribbonsdirectlyfrombulkgraphite(SeeFigure21).61Itinvolvedsonicationofexpandedgraphiteinthepresenceofapolymerknowntoparticipateinπ-stackingwithconjugatedcarbons.Thepolymeractedtononcovalentlyfunctionalizeandconsequentlystabilizenanoribbonsformedbymechan-icalfracture.Atomicforcemicroscopyofthenanoribbonssuggeststhatfracturefollowsnicelyalongthecrystal-lographicdirectionsofgraphene.Inthepresenceofthepolymer,theribbonscanbesuspendedinorganicsolventsandthendepositedbyspin-coating.
ElectricaltestingofDai’snanoribbonsshowedmuchgreaterconsistencythanthosemadebylithography.Aspredictedbytheory,thebandgap(Eg)ofnanoribbonswasfoundtobeinverselyproportionaltotheirwidth,withanEgof~0.4eVforspecimensfewerthan10nmwide.ThisledtoIon/Ioffratiosofupto106forthethinneststrips.Thenextmajorchallengewillbe ndingawaytoreliablydepositthenanoribbonsinprede nedlocationsforscalabledevicefabrication.
6.GrapheneNanoribbons
Amajorissuewithgraphene-basedlogicdevicesistheirpoorIon/Ioffratios.Conductivityingrapheneisminimizedunderzerogatebias,butdevicesareessentiallyimpossibletoturnoffatanyreasonabletemperaturebecausethermalenergyand uctuationsaremorethansuf cienttoproducelargecarrierpopulations.Thishigh“leakage”currentresultsinIon/Ioffratiosthataretypicallyjust1or2ordersofmagnitude,whichisinsuf cientforimplementationinrealdevices.
Whileanumberofapproacheshavebeensuggested,themoststraightforwardwaytominimizetheoffcurrentingraphene-baseddevicesistointroduceanappreciablebandgap.Thishasmotivatedagreatdealofresearchintographenenanoribbons,whicharenolongersemimetallicduetoquantumcon nement.In2007,Kim’sgroupusede-beampatterningandoxygen(O2)plasmaetchingofmechanically
7.FutureWork
Graphenehasaninterestinghistory,butmanynowwonderaboutitsfuture.Thesubjectofconsiderablescholarlydebate,itdoesseemreasonabletoassertafewthingslookingahead.First,thequalityandavailabilityof“synthetic”graphenewillcontinuetoimprove.Whetherhighqualitymaterialcomesintheformofanalternativechemicalroutetothecompleteexfoliationofgraphiteorfromoptimizationofthethermalprocessesrequiredforsubstrate-basedmethods,thereisnosignthatsynthetictechniquesarenearingtheirupperlimit.Thismeansthatdeviceengineerswillhaveampleaccesstoimprovedmaterialsfordevelopingnovelstructuresand ndingwaystointegrategrapheneintopresent-dayelectronicdevices.
Second,chemicalmodi cationofgraphene’sbasalplaneoritsedgeswillsubstantiallyin uencegraphene-baseddevices.Forelectronicapplications,onecanimaginethe
Figure21.Solution-basedmethodforproducinggraphenenanoribbons.(a)Dai’sgroupusedπ-stackingpolymeragentstostabilizenanoribbonsinsolution.(b)Afterspin-coating,ribbonsranginginwidthdownto10nmwerelocatedbyatomicforcemicroscopy.(c)Ion/Ioffratiosupto106weredemonstrated.[ReprintedwithpermissionfromScience(),ref61.Copyright2008AmericanAssociationfortheAdvancementofScience.]
纳米材料在生物医学中的应用
144ChemicalReviews,2010,Vol.110,No.1attachmentoffunctionalgroupsaimedatself-assemblyofsimplecircuitsortheincorporationofchemicaldopantstolimitleakagecurrentunderzerogatebias.Forsensors,lock-and-keytypebindingsitescouldprovideselectivesensitivitytoawidevarietyofanalytes.Thesemightincludechemicalwarfareagentsorevenbiologicalspecies.
Third,industrialuseofgrapheneasatransparentconductorcouldhavehugeimplicationsforthesolarindustry.Assyntheticroutesimprove,theprospectofreplacingITOwithalow-costcarbon-basedcoatingseemsfeasible.Thiswouldnotonlyremovesigni cantuncertaintyabouttheavailabilityandcostofindiumbutalsoenablenonevaporativeroll-to-rollprocessingoftransparentconductors.
8.Conclusions
The eldofgraphene-relatedresearchhasgrownataspectacularpacesincesingle-layer akeswere anicandmaterialschemistsarebusilyworkingonnewsyntheticroutestohigh-qualitysinglelayers,whileengineersaredesigningnoveldevicestoexploitgraphene’sextraordinaryproperties.Inlightofsuchcollaborations,itisdif culttobelievethatthefutureforgrapheneisanythingbutbright.
9.Acknowledgments
TheauthorswouldliketothanktheNationalScienceFoundation’sNSF-IGERTprogram,theUCLA-basedFunc-tionalEngineeringNanoArchitechtonicsFocusedCenterResearchProgram(FENA-FCRP),theDARPACERAprogram,andNorthrop-Grumman/UCDiscoveryfor nancialsupport.
10.References
(1)Lu,X.K.;Yu,M.F.;Huang,H.;Ruoff,R.S.Nanotechnology1999,
10,269.
(2)Novoselov,K.S.;Geim,A.K.;Morozov,S.V.;Jiang,D.;Zhang,
Y.;Dubonos,S.V.;Grigorieva,I.V.;Firsov,A.A.Science2004,306,666.
(3)Landau,L.D.Phys.Z.Sowjetunion1937,11,26.(4)Peierls,R.E.Ann.Inst.HenriPoincare1935,5,177.
(5)Stangl,J.;Holy,V.;Bauer,G.ReV.Mod.Phys.2004,76,725.(6)Meyer,J.C.;Geim,A.K.;Katsnelson,M.I.;Novoselov,K.S.;
Booth,T.J.;Roth,S.Nature2007,446,60.
(7)Bolotin,K.I.;Sikes,K.J.;Jiang,Z.;Klima,M.;Fudenberg,G.;
Hone,J.;Kim,P.;Stormer,H.L.SolidStateCommun.2008,146,351.
(8)Bolotin,K.I.;Sikes,K.J.;Hone,J.;Stormer,H.L.;Kim,P.Phys.
ReV.Lett.2008,101,096802.
(9)Novoselov,K.S.;Jiang,D.;Schedin,F.;Booth,T.J.;Khotkevich,
V.V.;Morozov,S.V.;Geim,A.K.Proc.Natl.Acad.Sci.U.S.A.2005,102,10451.
(10)Geim,A.K.;Novoselov,K.S.Nat.Mater.2007,6,183.(11)Katsnelson,M.I.Mater.Today2006,10,20.
(12)Novoselov,K.S.;McCann,E.;Morozov,S.V.;Fal’ko,V.I.;
Katsnelson,M.I.;Zeitler,U.;Jiang,D.;Schedin,F.;Geim,A.K.Nat.Phys.2006,2,177.
(13)Jiang,Z.;Zhang,Y.;Tan,Y.W.;Stormer,H.L.;Kim,P.SolidState
Commun.2007,143,14.
(14)Jiang,Z.;Zhang,Y.;Stormer,H.L.;Kim,P.Phys.ReV.Lett.2007,
99,106802.
(15)Zhang,Y.B.;Tan,Y.W.;Stormer,H.L.;Kim,P.Nature2005,
438,201.
(16)Novoselov,K.S.;Jiang,Z.;Zhang,Y.;Morozov,S.V.;Stormer,
H.L.;Zeitler,U.;Maan,J.C.;Boebinger,G.S.;Kim,P.;Geim,A.K.Science2007,315,1379.
(17)Ozyilmaz,B.;Jarillo-Herrero,P.;Efetov,D.;Abanin,D.A.;Levitov,
L.S.;Kim,P.Phys.ReV.Lett.2007,99,186804.
Allenetal.
(18)Novoselov,K.S.;Geim,A.K.;Morozov,S.V.;Jiang,D.;Katsnelson,
M.I.;Grigorieva,I.V.;Dubonos,S.V.;Firsov,A.A.Nature2005,438,197.
(19)Morozov,S.V.;Novoselov,K.S.;Katsnelson,M.I.;Schedin,F.;
Elias,D.C.;Jaszczak,J.A.;Geim,A.K.Phys.ReV.Lett.2008,100,016602.
(20)Han,M.;Ozyilmaz,B.;Zhang,Y.;Jarillo-Herero,P.;Kim,P.Phys.
StatusSolidiB:BasicSolidStatePhys.2007,244,4134.
(21)Schedin,F.;Geim,A.K.;Morozov,S.V.;Hill,E.W.;Blake,P.;
Katsnelson,M.I.;Novoselov,K.S.Nat.Mater.2007,6,652.(22)Novoselov,K.;Geim,A.Mater.Technol.2007,22,178–179.(23)Ruoff,R.Nat.Nanotech.2008,3,10.
(24)Castro,E.V.;Novoselov,K.S.;Morozov,S.V.;Peres,N.M.R.;
DosSantos,J.M.B.L.;Nilsson,J.;Guinea,F.;Geim,A.K.;Neto,A.H.C.Phys.ReV.Lett.2007,99,216802.
(25)Meyer,J.C.;Geim,A.K.;Katsnelson,M.I.;Novoselov,K.S.;
Obergfell,D.;Roth,S.;Girit,C.;Zettl,A.SolidStateCommun.2007,143,101.
(26)Yan,J.;Henriksen,E.A.;Kim,P.;Pinczuk,A.Phys.ReV.Lett.2008,
101,136804.
(27)Stankovich,S.;Dikin,D.A.;Dommett,G.H.B.;Kohlhaas,K.M.;
Zimney,E.J.;Stach,E.A.;Piner,R.D.;Nguyen,S.T.;Ruoff,R.S.Nature2006,442,282.
(28)Stankovich,S.;Piner,R.D.;Chen,X.Q.;Wu,N.Q.;Nguyen,S.T.;
Ruoff,R.S.J.Mater.Chem.2006,16,155.
(29)Stankovich,S.;Dikin,D.A.;Piner,R.D.;Kohlhaas,K.A.;
Kleinhammes,A.;Jia,Y.;Wu,Y.;Nguyen,S.T.;Ruoff,R.S.Carbon2007,45,1558.
(30)Li,D.;Muller,M.B.;Gilje,S.;Kaner,R.B.;Wallace,G.G.Nat.
Nanotechnol.2008,3,101.
(31)Gilje,S.;Han,S.;Wang,M.;Wang,K.L.;Kaner,R.B.NanoLett.
2007,7,3394.
(32)Hernandez,Y.;Nicolosi,V.;Lotya,M.;Blighe,F.M.;Sun,Z.Y.;
De,S.;McGovern,I.T.;Holland,B.;Byrne,M.;Gun’ko,Y.K.;Boland,J.J.;Niraj,P.;Duesberg,G.;Krishnamurthy,S.;Goodhue,R.;Hutchison,J.;Scardaci,V.;Ferrari,A.C.;Coleman,J.N.Nat.Nanotechnol.2008,3,563.
(33)Muller,M.;Kubel,C.;Mullen,K.Chem.sEur.J.1998,4,2099.(34)Tyutyulkov,N.;Madjarova,G.;Dietz,F.;Mullen,K.J.Phys.Chem.
B1998,102,10183.
(35)Yang,X.Y.;Dou,X.;Rouhanipour,A.;Zhi,L.J.;Rader,H.J.;
Mullen,K.J.Am.Chem.Soc.2008,130,4216.
(36)Wu,J.S.;Pisula,W.;Mullen,K.Chem.ReV.2007,107,718.(37)Berger,C.;Song,Z.M.;Li,T.B.;Li,X.B.;Ogbazghi,A.Y.;Feng,
R.;Dai,Z.T.;Marchenkov,A.N.;Conrad,E.H.;First,P.N.;deHeer,W.A.J.Phys.Chem.B2004,108,19912.
(38)Berger,C.;Song,Z.M.;Li,X.B.;Wu,X.S.;Brown,N.;Naud,C.;
Mayou,D.;Li,T.B.;Hass,J.;Marchenkov,A.N.;Conrad,E.H.;First,P.N.;deHeer,W.A.Science2006,312,1191.
(39)deHeer,W.A.;Berger,C.;Wu,X.S.;First,P.N.;Conrad,E.H.;
Li,X.B.;Li,T.B.;Sprinkle,M.;Hass,J.;Sadowski,M.L.;Potemski,M.;Martinez,G.SolidStateCommun.2007,143,92.
(40)Hass,J.;deHeer,W.A.;Conrad,E.H.J.Phys.:Condens.Matter
2008,20,323202.
(41)Reina,A.;Jia,X.T.;Ho,J.;Nezich,D.;Son,H.B.;Bulovic,V.;
Dresselhaus,M.S.;Kong,J.NanoLett.2009,9,30.(42)Kim,K.S.Nature2009,457,706.
(43)Sutter,P.W.;Flege,J.I.;Sutter,E.A.Nat.Mater.2008,7,406.(44)Gomez-Navarro,C.;Weitz,R.T.;Bittner,A.M.;Scolari,M.;Mews,
A.;Burghard,M.;Kern,K.NanoLett.2007,7,3499.
(45)Kam,N.W.S.;Liu,Z.;Dai,H.J.J.Am.Chem.Soc.2005,127,
12492.
(46)Shim,M.;Kam,N.W.S.;Chen,R.J.;Li,Y.M.;Dai,H.J.Nano
Lett.2002,2,285.
(47)Strano,M.S.;Dyke,C.A.;Usrey,M.L.;Barone,P.W.;Allen,
M.J.;Shan,H.W.;Kittrell,C.;Hauge,R.H.;Tour,J.M.;Smalley,R.E.Science2003,301,1519.
(48)Boul,P.J.;Liu,J.;Mickelson,E.T.;Huffman,C.B.;Ericson,L.M.;
Chiang,I.W.;Smith,K.A.;Colbert,D.T.;Hauge,R.H.;Margrave,J.L.;Smalley,R.E.Chem.Phys.Lett.1999,310,367.
(49)Holzinger,M.;Vostrowsky,O.;Hirsch,A.;Hennrich,F.;Kappes,
M.;Weiss,R.;Jellen,F.Angew.Chem.,Int.Ed.2001,40,4002.(50)Georgakilas,V.;Kordatos,K.;Prato,M.;Guldi,D.M.;Holzinger,
M.;Hirsch,A.J.Am.Chem.Soc.2002,124,760.
(51)DasSarma,S.;Geim,A.K.;Kim,P.;MacDonald,A.H.SolidState
Commun.2007,143,1.
(52)Neto,A.H.C.;Guinea,F.;Peres,N.M.R.;Novoselov,K.S.;Geim,
A.K.ReV.Mod.Phys.2009,81,109.
(53)Graphiteintercalationcompoundsandapplications;Endo,M.,Ed.;
OxfordUniversityPress:2003.
(54)Delhaes,P.Graphiteandprecursors;CRCPress:2001.(55)Survey,U.S.G.,2007.
纳米材料在生物医学中的应用
HoneycombCarbon:AReviewofGraphene
(56)ToshiakiEnoki,M.S.;MorinobuEndo.Graphiteintercalation
compoundsandapplications;OxfordUniversityPress:2003.(57)Shaffault,P.J.J.Prakt.Chem.1841,21,155.
(58)Dresselhaus,M.S.;Dresselhaus,G.AdV.Phys.2002,51,186.(59)Viculis,L.M.;Mack,J.J.;Kaner,R.B.Science2003,299,1361.(60)Viculis,L.M.;Mack,J.J.;Mayer,O.M.;Hahn,H.T.;Kaner,R.B.
J.Mater.Chem.2005,15,974.
(61)Li,X.L.;Wang,X.R.;Zhang,L.;Lee,S.W.;Dai,H.J.Science
2008,319,1229.
(62)Kouvetakis,J.;Kaner,R.B.;Sattler,M.L.;Bartlett,N.J.Chem.
mun.1986,1758.
(63)Kaner,R.B.;Kouvetakis,J.;Warble,C.E.;Sattler,M.L.;Bartlett,
N.Mater.Res.Bull.1987,22,399.
(64)Jiang,D.E.;Sumpter,B.G.;Dai,S.J.Chem.Phys.2007,126,
134701–134701-6.
(65)Miyata,Y.;Kawai,T.;Miyamoto,Y.;Yanagi,K.;Maniwa,Y.;
Kataura,H.J.Phys.Chem.C2007,111,9671.
(66)Kawai,T.;Miyamoto,Y.Chem.Phys.Lett.2008,453,256.
(67)Girit,C.O.;Meyer,J.C.;Erni,R.;Rossell,M.D.;Kisielowski,C.;
Yang,L.;Park,C.-H.;Crommie,M.F.;Cohen,M.L.;Louie,S.G.;Zettl,A.Science2009,323,1705.
(68)Zhang,Y.B.;Small,J.P.;Pontius,W.V.;Kim,P.Appl.Phys.Lett.
2005,86,073104-1.
(69)Affoune,A.M.;Prasad,B.L.V.;Sato,H.;Enoki,T.;Kaburagi,Y.;
Hishiyama,Y.Chem.Phys.Lett.2001,348,17.
(70)Nair,R.R.;Blake,P.;Grigorenko,A.N.;Novoselov,K.S.;Booth,
T.J.;Stauber,T.;Peres,N.M.R.;Geim,A.K.Science2008,320,1308.
(71)Stauber,T.;Peres,N.M.R.;Geim,A.K.Phys.ReV.B2008,78,
085432.
(72)Blake,P.;Hill,E.W.;Neto,A.H.C.;Novoselov,K.S.;Jiang,D.;
Yang,R.;Booth,T.J.;Geim,A.K.Appl.Phys.Lett.2007,91,063124.
(73)Blake,P.;Brimicombe,P.D.;Nair,R.R.;Booth,T.J.;Jiang,D.;
Schedin,F.;Ponomarenko,L.A.;Morozov,S.V.;Gleeson,H.F.;Hill,E.W.;Geim,A.K.;Novoselov,K.S.NanoLett.2008,8,1704.(74)Jung,I.;Pelton,M.;Piner,R.;Dikin,D.A.;Stankovich,S.;
Watcharotone,S.;Hausner,M.;Ruoff,R.S.NanoLett.2007,7,3569.
(75)Ni,Z.H.;Chen,W.;Fan,X.F.;Kuo,J.L.;Yu,T.;Wee,A.T.S.;
Shen,Z.X.Phys.ReV.B2008,77,115416.
(76)Batra,I.P.;Garcia,N.;Rohrer,H.;Salemink,H.;Stoll,E.;Ciraci,
S.Surf.Sci.1987,181,126.
(77)Rabe,J.P.;Buchholz,S.Science1991,253,424.
(78)Soler,J.M.;Baro,A.M.;Garcia,N.;Rohrer,H.Phys.ReV.Lett.
1986,57,444.
(79)Stolyarova,E.;Rim,K.T.;Ryu,S.M.;Maultzsch,J.;Kim,P.;Brus,
L.E.;Heinz,T.F.;Hybertsen,M.S.;Flynn,G.W.Proc.Natl.Acad.Sci.U.S.A.2007,104,9209.
(80)Ferrari,A.C.;Meyer,J.C.;Scardaci,V.;Casiraghi,C.;Lazzeri,
M.;Mauri,F.;Piscanec,S.;Jiang,D.;Novoselov,K.S.;Roth,S.;Geim,A.K.Phys.ReV.Lett.2006,97,187401.
(81)Ferrari,A.C.;Robertson,J.Phys.ReV.B2000,61,14095.
(82)Casiraghi,C.;Pisana,S.;Novoselov,K.S.;Geim,A.K.;Ferrari,
A.C.Appl.Phys.Lett.2007,91,233108.
(83)Ferrari,A.C.SolidStateCommun.2007,143,47.
(84)Calizo,I.;Balandin,A.A.;Bao,W.;Miao,F.;Lau,C.N.Nano
Lett.2007,7,2645.
(85)Matthews,M.J.;Pimenta,M.A.;Dresselhaus,G.;Dresselhaus,M.S.;
Endo,M.Phys.ReV.B1999,59,R6585.
(86)Gupta,A.;Chen,G.;Joshi,P.;Tadigadapa,S.;Eklund,P.C.Nano
Lett.2006,6,2667.
(87)Wallace,P.R.Phys.ReV.1947,71,476.
(88)Slonczewski,J.C.;Weiss,P.R.Phys.ReV.1958,109,272.
(89)Hwang,E.H.;Adam,S.;DasSarma,S.Phys.ReV.Lett.2007,98,
186806.
(90)Novoselov,K.S.;Morozov,S.V.;Mohinddin,T.M.G.;Ponomar-enko,L.A.;Elias,D.C.;Yang,R.;Barbolina,I.I.;Blake,P.;Booth,T.J.;Jiang,D.;Giesbers,J.;Hill,E.W.;Geim,A.K.Phys.StatusSolidiB:BasicSolidStatePhys.2007,244,4106.
(91)Morozov,S.V.;Novoselov,K.S.;Geim,A.K.Phys.sUsp.2008,
51,744.
ChemicalReviews,2010,Vol.110,No.1145
(92)Alivisatos,P.Nat.Biotechnol.2004,22,47.
(93)Chen,R.J.;Bangsaruntip,S.;Drouvalakis,K.A.;Kam,N.W.;Shim,
M.;Li,Y.;Kim,W.;Utz,P.J.;Dai,H.Proc.Natl.Acad.Sci.U.S.A.2003,100,4984.
(94)Chen,R.J.;Zhang,Y.;Wang,D.;Dai,H.J.Am.Chem.Soc.2001,
123,3838.
(95)Wang,J.Electroanalysis2005,17,7.
(96)Jung,I.;Dikin,D.A.;Piner,R.D.;Ruoff,R.S.NanoLett.2008,8,
4283.
(97)Yang,D.;Velamakanni,A.;Bozoklu,G.;Park,S.;Stoller,M.;Piner,
R.D.;Stankovich,S.;Jung,I.;Field,D.A.;Ventrice,C.A.;Ruoff,R.S.Carbon2009,47,145.
(98)Jeong,H.-K.;Lee,Y.P.;Lahaye,R.J.W.E.;Park,M.-H.;An,K.H.;
Kim,I.J.;Yang,C.-W.;Park,C.Y.;Ruoff,R.S.;Lee,Y.H.J.Am.Chem.Soc.2008,130,1362.
(99)Hummers,W.S.;Offeman,R.E.J.Am.Chem.Soc.1958,80,1339.(100)Watcharotone,S.;Dikin,D.A.;Stankovich,S.;Piner,R.;Jung,I.;
Dommett,G.H.B.;Evmenenko,G.;Wu,S.E.;Chen,S.F.;Liu,C.P.;Nguyen,S.T.;Ruoff,R.S.NanoLett.2007,7,1888.
(101)Tung,V.C.;Allen,M.J.;Yang,Y.;Kaner,R.B.Nat.Nanotechnol.
2009,4,25.
(102)Allen,M.J.;Fowler,J.D.;Tung,V.C.;Yang,Y.;Weiller,B.H.;
Kaner,R.B.Appl.Phys.Lett.2008,93,193119.
(103)Fowler,J.D.;Allen,M.J.;Tung,V.C.;Yang,Y.;Kaner,R.B.;
Weiller,B.H.ACSNano2009,3,301.
(104)Schmidt,E.W.HydrazineanditsderiVatiVes;Wiley-Interscience:
NewYork,2001.
(105)Dikin,D.A.;Stankovich,S.;Zimney,E.J.;Piner,R.D.;Dommett,
G.H.B.;Evmenenko,G.;Nguyen,S.T.;Ruoff,R.S.Nature2007,448,457.
(106)Park,S.;Lee,K.S.;Bozoklu,G.;Cai,W.;Nguyen,S.T.;Ruoff,
R.S.ACSNano2008,2,572.
(107)Cote,L.J.;Kim,F.;Huang,J.J.Am.Chem.Soc.2009,131,1043.(108)Wu,J.H.;Tang,Q.W.;Sun,H.;Lin,J.M.;Ao,H.Y.;Huang,
M.L.;Huang,ngmuir2008,24,4800.
(109)Li,X.;Zhang,G.;Bai,X.;Sun,X.;Wang,X.;Wang,E.;Dai,H.
Nat.Nanotechnol.2008,3,538.
(110)Robinson,J.T.;Perkins,F.K.;Snow,E.S.;Wei,Z.Q.;Sheehan,
P.E.NanoLett.2008,8,3137.
(111)Wang,X.;Zhi,L.J.;Mullen,K.NanoLett.2008,8,323.
(112)Eda,G.;Fanchini,G.;Chhowalla,M.Nat.Nanotechnol.2008,3,
270.
(113)Eda,G.;Lin,Y.Y.;Miller,S.;Chen,C.W.;Su,W.F.;Chhowalla,
M.Appl.Phys.Lett.2008,92,233305.
(114)Berresheim,A.J.;Muller,M.;Mullen,K.Chem.ReV.1999,99,1747–
1785.
(115)Dotz,F.;Brand,J.D.;Ito,S.;Gherghel,L.;Mullen,K.J.Am.Chem.
Soc.2000,122,7707.
(116)Watson,M.D.;Fechtenkotter,A.;Mullen,K.Chem.ReV.2001,101,
1267–1300.
(117)Gutman,I.;Tomovic,Z.;Mullen,K.;Rabe,E.P.Chem.Phys.Lett.
2004,397,412.
(118)Kedzierski,J.;Hsu,P.L.;Healey,P.;Wyatt,P.W.;Keast,C.L.;
Sprinkle,M.;Berger,C.;deHeer,W.A.IEEETrans.ElectronDeVices2008,55,2078.
(119)Berger,C.;Song,Z.M.;Li,X.B.;Wu,X.S.;Brown,N.;Maud,
D.;Naud,C.;deHeer,W.A.Phys.StatusSolidiA:Appl.Mater.Sci.2007,204,1746.
(120)Sadowski,M.L.E.A.J.Phys.Chem.Solids2006,67,2172.
(121)Brar,V.W.;Zhang,Y.;Yayon,Y.;Ohta,T.;McChesney,J.L.;
Bostwick,A.;Rotenberg,E.;Horn,K.;Crommie,M.F.Appl.Phys.Lett.2007,91,122102.
(122)Rotenberg,E.;Bostwick,A.;Ohta,T.;McChesney,J.L.;Seyller,
T.;Horn,K.Nat.Mater.2008,7,258.
(123)Ozyilmaz,B.;Jarillo-Herrero,P.;Efetov,D.;Kim,P.Appl.Phys.
Lett.2007,91,192107.
(124)Han,M.Y.;Ozyilmaz,B.;Zhang,Y.B.;Kim,P.Phys.ReV.Lett.
2007,98,206805.
(125)Li,D.;Kaner,R.B.Science2008,320,1170.
CR900070D
正在阅读:
Honeycomb Carbon A Review of Graphene 石墨烯综述08-16
2018项目销售经理年度工作计划02-26
2013年证券从业资格考试证券市场基础知识教材word版—第六章第三节证券价格指数08-16
毕业论文106-09
基层办公室工作人员个人总结报告03-26
2015时事政治,创新是你的主题词05-17
2017年春季学期新版苏科版八年级数学下册第9章中心对称图形—平05-21
瑞星个人防火墙怎么卸载02-09
- 公务员上岸同学告诉你,怎样走出面试中常见的十大误区
- 作表率,我们怎么办(办公室主任)
- 乘务员安全责任书
- 增员面试流程
- 河南省焦作市规模以上租赁和商务服务业企业应付职工薪酬数据洞察报告2019版
- 最新4社区工作者面试题
- 个人简历表
- 男教工体检必检项目
- 河南省兰考县规模以上租赁和商务服务业企业应付职工薪酬数据洞察报告2019版
- 兼职译员测试稿
- 河南省开封市规模以上租赁和商务服务业企业应付职工薪酬数据洞察报告2019版
- 永州职业技术学院校园总体规划-永州职业学院
- 最新5、培训科长笔试题(答案)
- 2019雅商酒店境外人员登记培训稀有资料,不可错过
- 小学教师求职简历范文
- 红酒知识与礼仪
- 春节给领导拜年的短信拜年词
- 2019年上半年中小学教师资格证结构化面试真题1
- 20XX年县干部培训工作目标
- 硬笔试听课
- 石墨
- 综述
- Honeycomb
- Graphene
- Carbon
- Review
- 食品经营过程与控制制度
- 青岛科技大学vb答案实验四
- 10KV变电站送电应急预案
- 光伏逆变器简介(完整版)
- 消费者的权利
- 家长学校讲座讲稿
- 经营计划管理程序
- 西安交通大学发电厂热力设备(高起专)期末考试高分题库全集含答案
- 3S 在森林病虫害预警中的应用与展望
- 十三五重点项目-蔓越橘汁项目资金申请报告
- 防静电工作区技术要求GJB30
- 【语文】2010高考试题分类汇编----高考作文
- 结晶性塑料和非结晶性塑料的区别
- 第十章_熔盐电解
- 班级量化扣分细则(修订版本)
- 力学竞赛试题
- 2021-2022年高考英语 语法专题复习 Unit 9 Wheels教案3 牛津译林版
- 竹笛吹法与指法
- 2008新课标高中生物专题复习必修II第4、基因的表达-基因工程及其应用
- 核电厂系统及设备思考题