Honeycomb Carbon A Review of Graphene 石墨烯综述

更新时间:2023-08-16 04:46:01 阅读量: 教学研究 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

纳米材料在生物医学中的应用

132Chem.Rev.2010,110,132–145

HoneycombCarbon:AReviewofGraphene

MatthewJ.Allen, VincentC.Tung, andRichardB.Kaner*, ,

DepartmentofChemistryandBiochemistryandCaliforniaNanoSystemsInstitute,andDepartmentofMaterialsScienceandEngineering,University

ofCalifornia,LosAngeles,LosAngeles,California90095

ReceivedFebruary20,2009

Contents

1.Introduction

2.BriefHistoryofGraphene2.1.ChemistryofGraphite3.DowntoSingleLayers

3.1.CharacterizingGrapheneFlakes3.1.1.ScanningProbeMicroscopy3.1.2.RamanSpectroscopy

4.ExtraordinaryDeviceswithPeeledGraphene4.1.High-SpeedElectronics4.2.SingleMoleculeDetection

5.AlternativestoMechanicalExfoliation

5.1.ChemicallyDerivedGraphenefromGraphite

Oxide

5.1.1.Depositions

5.1.2.DefectDensityinChemicallyDerived

Graphene

5.1.3.Field-EffectDevices5.1.4.PracticalSensors

5.1.5.TransparentElectrodes5.2.TotalOrganicSynthesis

5.3.EpitaxialGrapheneandChemicalVapor

Deposition

6.GrapheneNanoribbons7.FutureWork8.Conclusions

9.Acknowledgments10.References

132133134134136136136136137138138139139139139140141141142143143144144144

1.Introduction

Grapheneisthenamegiventoatwo-dimensionalsheetofsp2-hybridizedcarbon.Itsextendedhoneycombnetworkisthebasicbuildingblockofotherimportantallotropes;itcanbestackedtoform3Dgraphite,rolledtoform1Dnanotubes,andwrappedtoform0Dfullerenes.Long-rangeπ-conjugationingrapheneyieldsextraordinarythermal,mechanical,andelectricalproperties,whichhavelongbeentheinterestofmanytheoreticalstudiesandmorerecentlybecameanexcitingareaforexperimentalists.

Whilestudiesofgraphitehaveincludedthoseutilizingfewerandfewerlayersforsometime,1the eldwasdeliveredajoltin2004,whenGeimandco-workersatManchesterUniversity rstisolatedsingle-layersamplesfromgraphite(seeFigure1).2Thisledtoanexplosionofinterest,inpart

DepartmentofChemistryandBiochemistryandCaliforniaNanoSystemsInstitute.

DepartmentofMaterialsScienceandEngineeringandCaliforniaNano-SystemsInstitute.

becausetwo-dimensionalcrystalswerethoughttobether-modynamicallyunstableat nitetemperatures.3,4Quasi-two-dimensional lmsgrownbymolecularbeamepitaxy(MBE)arestabilizedbyasupportingsubstrate,whichoftenplaysasigni cantroleingrowthandhasanappreciablein uenceonelectricalproperties.5Incontrast,themechanicalexfo-liationtechniqueusedbytheManchestergroupisolatedthetwo-dimensionalcrystalsfromthree-dimensionalgraphite.Resultingsingle-andfew-layer akeswerepinnedtothesubstratebyonlyvanderWaalsforcesandcouldbemadefree-standingbyetchingawaythesubstrate.6-9Thismini-mizedanyinducedeffectsandallowedscientiststoprobegraphene’sintrinsicproperties.

Theexperimentalisolationofsingle-layergraphene rstandforemostyieldedaccesstoalargeamountofinterestingphysics.10,11Initialstudiesincludedobservationsofgraphene’sambipolar eldeffect,2thequantumHalleffectatroomtemperature,12-17measurementsofextremelyhighcarriermobility,7,18-20andeventhe rsteverdetectionofsinglemoleculeadsorptionevents.21,22Thesepropertiesgeneratedhugeinterestinthepossibleimplementationofgrapheneinamyriadofdevices.Theseincludefuturegenerationsofhigh-speedandradiofrequencylogicdevices,thermallyandelectricallyconductivereinforcedcomposites,sensors,andtransparentelectrodesfordisplaysandsolarcells.

Despiteintenseinterestandcontinuingexperimentalsuccessbydevicephysicists,widespreadimplementationofgraphenehasyettooccur.Thisisprimarilyduetothedif cultyofreliablyproducinghighqualitysamples,espe-ciallyinanyscalablefashion.23Thechallengeisreally2-foldbecauseperformancedependsonboththenumberoflayerspresentandtheoverallqualityofthecrystallattice.19,24-26Sofar,theoriginaltop-downapproachofmechanicalexfoliationhasproducedthehighestqualitysamples,butthemethodisneitherhighthroughputnorhigh-yield.Inordertoexfoliateasinglesheet,vanderWaalsattractionbetweenexactlythe rstandsecondlayersmustbeovercomewithoutdisturbinganysubsequentsheets.Therefore,anumberofalternativeapproachestoobtainingsinglelayershavebeenexplored,afewofwhichhaveledtopromisingproof-of-conceptdevices.

Alternativestomechanicalexfoliationincludeprimarilythreegeneralapproaches:chemicaleffortstoexfoliateandstabilizeindividualsheetsinsolution,27-32bottom-upmeth-odstogrowgraphenedirectlyfromorganicprecursors,33-36andattemptstocatalyzegrowthinsituonasubstrate.37-43Eachoftheseapproacheshasitsdrawbacks.Forchemicallyderivedgraphene,completeexfoliationinsolutionsofarrequiresextensivemodi cationofthe2Dcrystallattice,whichdegradesdeviceperformance.31,44Alternatively,bot-tom-uptechniqueshaveyettoproducelargeanduniform

10.1021/cr900070d 2010AmericanChemicalSociety

PublishedonWeb07/17/2009

纳米材料在生物医学中的应用

HoneycombCarbon:AReviewofGrapheneMatthewJ.AllenisagraduatestudentintheKanerlaboratoryattheUniversityofCalifornia,LosAngeles(UCLA).HereceivedhisB.S.inphysicsatRiceUniversity,whereheresearchedcarbonnanostructuresinthelaboratoriesofRichardSmalleyandRobertCurl.

VincentC.TungisagraduatestudentintheYanglaboratorycoadvisedbyProf.KanerattheUniversityofCalifornia,LosAngeles(UCLA).HereceivedhisM.S.inchemistryfromtheNationalTsing-HuaUniversityinHsinchu,Taiwan.Hispreviousworkwasonthephotochemistryoforganiclightemittingdiodes(OLEDs).

singlelayers.Totalorganicsyntheseshavebeensizelimitedbecausemacromoleculesbecomeinsolubleandtheoccur-renceofsidereactionsincreaseswithmolecularweight.36Substrate-basedgrowthofsinglelayersbychemicalvapordeposition(CVD)orthereductionofsiliconcarbidereliesontheabilitytowalkanarrowthermodynamictightrope.40Afternucleatingasheet,conditionsmustbecarefullycontrolledtopromotecrystalgrowthwithoutseedingad-ditionalsecondlayersorforminggrainboundaries.

Despitetremendousprogresswithalternatives,mechanicalexfoliationwithcellophanetapestillproducesthehighestqualitygraphene akesavailable.Thisfactshouldnot,however,dampenanyinterestfromchemists.Onthecontrary,therecenttransitionfromtheconsiderationofgrapheneasa“physicstoy”toitstreatmentasalargecarbonmacromoleculeoffersnewpromise.Yearsofcarbonnano-tube,fullerene,andgraphiteresearchhaveproducedamyriadofchemicalpathwaysformodifyingsp2carbonstructures,45-50whichwillundoubtedlybeadaptedtofunctionalizeboththebasalplaneofgrapheneanditsreactiveedges.Thisnotonlypromisestodeliverhandlesforexploitinggraphene’sintrinsicpropertiesbutalsoshouldtoleadtonewpropertiesaltogether.Thisreviewwilldiscussthe eldofgraphenefromamaterialschemistrystandpoint.Afterabriefhistoryofthetopic,theexcitingprogressmadesince2004,inboththeproductionofgrapheneanditsimplementationindevices,

ChemicalReviews,2010,Vol.110,No.1

133

RichardB.KanerreceivedaPh.D.ininorganicchemistryfromtheUniversityofPennsylvaniain1984.AftercarryingoutpostdoctoralresearchattheUniversityofCalifornia,Berkeley,hejoinedtheUniversityofCalifornia,LosAngeles(UCLA),in1987asanAssistantProfessor.HewaspromotedtoAssociateProfessorwithtenurein1991andbecameaFullProfessorin1993.ProfessorKanerhasreceivedawardsfromtheDreyfus,Fulbright,Guggenheim,andSloanFoundations,aswellastheExxonFellowshipinSolidStateChemistryandtheBuck-WhitneyResearchAwardfromtheAmericanChemicalSocietyforhisworkonrefractorymaterials,includingnewsyntheticroutestoceramics,intercala-tioncompounds,superhardmaterials,graphene,andconductingpolymers.

willbediscussed.Forathoroughdiscussionfocusedonthephysicsofgraphene,seerefs10,11,51,and52.

2.BriefHistoryofGraphene

Tounderstandthetrajectoryofgrapheneresearch,itisusefultoconsidergrapheneassimplythefewestlayerlimitofgraphite.Inthislight,theextraordinarypropertiesofhoneycombcarbonarenotreallynew.Abundantandnaturallyoccurring,graphitehasbeenknownasamineralfornearly500years.Eveninthemiddleages,thelayeredmorphologyandweakdispersionforcesbetweenadjacentsheetswereutilizedtomakemarkinginstruments,muchinthesamewaythatweusegraphiteinpencilstoday.Morerecently,thesesamepropertieshavemadegraphiteanidealmaterialforuseasadrylubricant,alongwiththesimilarlystructuredbutmoreexpensivecompoundshexagonalboron

Figure1.Singlelayergraphenewas rstobservedbyGeimandothersatManchesterUniversity.Hereafewlayer akeisshown,withopticalcontrastenhancedbyaninterferenceeffectatacarefullychosenthicknessofoxide.(ReprintedwithpermissionfromScience(),ref2.Copyright2006AmericanAssociationfortheAdvancementofScience.)

纳米材料在生物医学中的应用

134ChemicalReviews,2010,Vol.110,No.1nitride4andmolybdenumdisul de.High,in-planeelectrical(~10 -1cm-1)andthermalconductivity(~3000W/mK)enablegraphitetobeusedinelectrodesandasheatingelementsforindustrialblastfurnaces.53,54Highmechanicalstiffnessofthehexagonalnetwork(1060GPa)isalsoutilizedincarbon berreinforcedcomposites.Theseusesandothersgenerateanannualdemandofmorethan1milliontonsofgraphiteworldwide.55

Theanisotropyofgraphite’smaterialpropertiescontinuestofascinatebothscientistsandtechnologists.Thes,patomicorbitalsoneachcarbonhybridizetoformstrongx,andpcovalentysp2bonds,givingriseto120°C-C-Cbondanglesandthefamiliarchicken-wire-likelayers.Theremainingporbitaloneachcarbonoverlapswithitsthreeneighboringzcarbonstoformabandof lledπorbitals,knownasthevalenceband,andabandofemptyπ*orbitals,calledtheconductionband.Whilethreeofthefourvalenceelectronsoneachcarbonformtheσ(single)bonds,thefourthelectronformsone-thirdofaπbondwitheachofitsneighborsproducingacarbon-carbonbondorderingraphiteofoneandone-third.Withnochemicalbondinginthec-direction,out-of-planeinteractionsareextremelyweak.Thisincludesthepropagationofchargeandthermalcarriers,whichleadstoout-of-planeelectricalandthermalconductivitiesthatarebothmorethan103timeslowerthanthoseoftheirin-planeanalogues.56

2.1.ChemistryofGraphite

Graphitehasarichchemistryinwhichitcanparticipateinreactionsaseitherareducingagent(electrondonor)oranoxidizer(electronacceptor).Thisisadirectconsequenceofitselectronicstructure,whichresultsinboth53

anelectronaf nityandanionizationpotentialof4.6eV.Alargenumberofexperimentsforgraphitefocusontheinsertionofadditionalchemicalspeciesbetweenthebasalplanes,orintercalation.Shaffaultiscreditedwiththe rstintercalationcompoundusingpotassium,datingbackto1841.57Graphiteintercalationcompounds(GICs)appeartobetheonlylayeredcompoundssuf cientlyorderedtoexhibit“staging”inwhichthenumberofgraphiticlayersinbetweenadjacentintercalantscanbevariedinacontrolledfashion.Thestageofacompoundreferstothenumberofgraphiticlayersinbetweenadjacentplanesofintercalant.Theinter-layerspacingcanincreasefrom0.34nm(3.4Å)innativegraphitetomorethan1nminsomeGICs,whichfurtherexaggeratestheanisotropyofmanyproperties.56,58

TheincreasedinterlayerspacinginGICsalsomeansasigni cantreductioninthevanderWaalsforcesbetweenadjacentsheets,whichleadsonetoconsidertheirexfoliationasapossibleroutetosinglelayersofgraphene.Ourgrouptriedjustthatin2003byviolentlyreactingastage-1potassiumintercalationcompound(KC8)withvarioussol-ventssuchasalcohols,butexfoliationproducedonlymetastableslabsaround30layersthickthathadatendencytoscrollunderhigh-poweredsonication(seeFigure2).53,59,60TheinterlayerspacinginGICscanbefurtherincreasedbythermalshocktoproduce“expanded”graphite,whichhasnowservedasastartingmaterialforrecenttechniques,including53,61

ananoribbonsynthesisdevelopedbyDai(seeFigure3).Asecondfocusofexperimentsongraphitehasbeensubstitutionaldopingbythereplacementofcarbonwithotherelements.ThisincludesworkbyBartlettandco-workersatBerkeleyinwhichsubstitutionofcarbonwithboronand

Allenet

al.

Figure2.Schematicdiagramshowingtheintercalationandexfoliationprocesstoproducethinslabsofgraphite.Potassiumisinsertedbetweenthelayersandreactedviolentlywithalcohols.Theexfoliatedslabsare~30layersthick.(Reprintedwithpermis-sionbyTheRoyalSocietyofChemistryfromref60.)

nitrogenresultedinp-andn-typegraphite,respectively.62,63InlightofrecentprogresswithCVDofsinglelayergraphene,suchworkwillalmostcertainlyberevisitedasanalternativetoexternalgatingforcontrollingelectronicbehavioringraphene-baseddevices,orperhapstoformgraphene-onlyp-njunctions.

Itisalsoimportanttomentionafewpointsaboutprogressinthechemistryofcarbonnanotubes.Amongthemostimportantobservationshavebeenofthedifferencesinreactivitybetweenthe-different66crystallographicdirections(zigzagorarmchair).64Thisknowledgeshouldtransferdirectlytothe“unrolled”or“ attened”caseofplanargraphene.Amyriadoftechniqueshavealsobeendevelopedtoselectivelymodifyeitherthesidewallsofcarbonnanotubesortheirend-caps.Suchreactionsareimportantlookingforwardbecausetheycorrespondtomodi cationofthebasalplaneofgrapheneanditsedges.Infact,insituTEMwasrecentlyusedtostudyreactionsongraphene’szigzagedgebyZettlandothersatBerkeley.67

3.DowntoSingleLayers

Researchershaveusedmechanicalexfoliationoflayeredcompoundstoproducethinsamplesforsometime.In1999,Ruoff’sgrouppresentedonesuchapproachforgraphitebyusinganatomicforcemicroscope(AFM)tiptomanipulatesmallpillarspatternedintohighlyorientedpyrolyticgraphite(HOPG)byplasmaetching(seeFigure4).1Thethinnestslabsobservedatthattimeweremorethan200nmthickortheequivalentof~600layers.Kim’sgroupatColumbialaterimprovedthemethodbytransferringthepillarstoatiplesscantilever,whichsuccessivelystampeddownslabsasthinas10nm,or~30layers,onSiOonthethincrystallitesforeshadowed2.68Electricalmeasurementsmadeawealthofworktocome.OtherearlygroupsworkingtowardgrapheneincludedEnoki’sinTokyo,whousedtemperaturesaround1600°Ctoconvertnanodiamondsintonanometer-sizedregionsofgrapheneatopHOPGin2001.69

Whiletheseelegantmethodsproducedthinsamples,itwasultimatelyamuchsimplerapproachthatledtothe rstisolationofsinglelayergraphenein2004byaManchestergroupledbyGeim(seeFigures5).2Initsmostbasicform,the“peeling”methodutilizescommoncelluphenetapetosuccessivelyremovelayersfromagraphite ake.Thetapeisultimatelypresseddownagainstasubstratetodeposita

纳米材料在生物医学中的应用

HoneycombCarbon:AReviewofGrapheneChemicalReviews,2010,Vol.110,No.1

135

Figure3.Scanningelectronmicrographsofnaturalgraphitebefore(a)andafter(b)expansionbyacidintercalationandthermalshock.(ReprintedwithpermissionbyTheRoyalSocietyofChemistryfromref60.)

Figure4.Scanningelectronmicroscopeimagesofearlyattemptsatmechanicalexfoliationusinggraphitepillars.(aandb)Ruoff’sgrouppeeledawaylayerswithanAFMtip.(Reprintedwithpermissionfromref1.Copyright1999InstituteofPhysics.)(candd)Kim’sgrouptransferredthepillarstoatiplesscantileveranddepositedthinslabsontoothersubstratesintappingmode.AseriesofscanningelectronmicroscopeimagesshowthinsamplescleavedontotheSi/SiO2substrateandatypicalmesoscopicdevice.(Reprintedwithpermissionfromref68.Copyright2005AmericanInstituteofPhysics.)

sample(seeFigure1).Althoughthe akespresentonthetapearemuchthickerthanonelayer,vanderWaalsattractiontothesubstratecandelaminateasinglesheetwhenthetapeisthenliftedaway.Themethodrequiresagreatdealofpatience,asdepositionsputdownbyinexperiencedscientistsareoftenamessofthickslabsinwhichlocatingasinglelayercanbeextremelydif cult.Withpractice,thetechniqueresultsinhigh-qualitycrystallites,whichcanbemorethan100µm2insize.

Perhapsthemostimportantpartofisolatingsinglelayergrapheneforthe rsttimewastheabilitytospotanatomicallythinspecimeninsomereadilyidenti ablefashion.Opticalabsorbanceofgraphenehassincebeenmeasuredatjust2.3%,rulingoutdirectvisualobservation(seeFigure6).70,71Inordertovisualizesingle akes,theManchestergrouptookadvantageofaninterferenceeffectataspeciallychosenthickness(300nm)ofSiO2onSitoenhancetheopticalcontrastunderwhite-lightillumination.72Althoughseeminglyasimpleidea,thiswasamajorstepforwardandhascontributedagreatdealtowardprogressinthis eld.

Figure5.Mechanicalexfoliationproducedthevery rstsinglelayergraphene akes.(a)Anatomicforcemicroscopyimageshowsthesubstrate-graphenestepheightof<1nmandafoldedstepheightof0.4nm.(Reprintedwithpermissionfromref9.Copyright2005PNAS.)(b)TEMimageofafree-standinggraphene lmafteretchingoftheunderlyingsubstrate.[ReprintedwithpermissionfromNature(),ref6.Copyright2007NaturePublishingGroup.]

纳米材料在生物医学中的应用

136ChemicalReviews,2010,Vol.110,No.1Figure6.Asingleandbilayersamplesuspendedonaporousmembrane.Opticalabsorbanceismeasuredat2.3%perlayer.Theinsetshowsthesampledesignwithseveralapertures.[ReprintedwithpermissionfromScience),ref70.Copy-right2008AmericanAssociationfortheAdvancementofScience.]

Groupshavesinceadaptedthesameeffecttoimagegrapheneonavariety72-75

ofsubstratesandundernonwhite-lightcondi-tions.3.1.CharacterizingGrapheneFlakes

Withnewaccessto2Dcrystallites,experimentalistsscrambledtocon rmresultslongpredictedbytheory.Beforetheycoulddoso,techniquesneededtobedevelopedforthecharacterizationofdeposited akes.Whileopticalmicros-copyusingtheinterferenceeffectwasagoodmethodforidentifyingthincandidates,itcouldnotprovideconclusiveevidencethatagiven akewassingle,double,ormultilay-ered.Thisisanimportantissuebecausesomeofthemoreinterestingpropertiesofgraphenearedependentoncrystallitethickness.Themostobviousexampleiselectronicbandstructure.Single-layergrapheneisazerobandgapsemi-conductororsemimetalinwhichthehighestoccupiedmolecularorbital(HOMO)touchesthelowestunoccupiedmolecularorbital(LUMO)atasingleDiracpoint.Forthicker akes,stackingofmultiplelayersleadstosomeoverlapoftheircarrierwavefunctionsandtheoverallbehaviorbecomesmetallic.Tomatchobservationswiththeory,reliableiden-ti cationofthenumberoflayerspresentinagivensamplebecameimperative.

3.1.1.ScanningProbeMicroscopy

Scanningprobemicroscopywasperhapsthemostobviouschoiceforveri cationofcrystallitethickness.Themethodisrelativelyslow,butthe0.34nm(3.4Å)stepheightforeachsuccessivelayeriswellwithinthedetectionlimitsformodernatomicforcemicroscopes(AFMs).Resolvingthesubstrate-grapheneheightpro leproveddif cult,however,duetothedifferencesintipattraction/repulsionbetweentheinsulatingsubstrateandsemimetallicgraphene.Thisissuewasexacerbatedunderambientconditionsbythepreferentialadsorptionofathinlayerofwaterongraphene.Withsuchcomplications,reportsofsubstrate-grapheneheightpro lesbyatomicforcemicroscopyhavetypicallyrangedfrom0.6to1.0nmforsinglelayers.2

Thefoldededgesofgraphenehaveoftenprovidedamorereliableandaccuratemeasurementofthicknessunderatomicforcemicroscopybecausethereisnochangeinmaterialassociatedwiththelocationofthestep.Itwassuchafold

Allenet

al.

thatallowedtheManchestergrouptocon rmthesingle-layerstepheightof~0.4nmintheiroriginalreport(seeFigure5).Althoughseeminglyunlikely,foldscommonlyoccurduringmechanicalexfoliationbecausevanderWaalsattractionbetweenasheetanditselfissizableanddoublingoversometimesprovidesanenergeticminimum.

Scanningtunnelingmicroscopy(STM)haslongbeenusedtoobservetheelectronictopographyofgraphite.76-78Intheseexperiments,onlythreecarbonsofthesix-memberringsarevisibleduetotheABstackingofgraphite(seeFigure7).79Inthisarrangement,electrondensityisconsiderablyhigherforthethreeR-carbons(thosethateclipsecarbonsinthesheetjustbelow),andhence,theyaretheonlyonesvisiblebySTM.Thisisasopposedtowhatwasexpectedforsinglelayergraphene,inwhichthesixcarbonsarecompletelyequivalentandthusshouldallappearwithequalintensity.Thiswasindeedcon rmedbyultrahighvacuumSTMimagestakenatColumbiabyFlynnandothers.79Theirmeasurementsalsogaveevidenceofthehighcrystalqualityinmechanicallyexfoliatedsamples,whichshowedfew-to-nodefectsovertensofnanometers.

3.1.2.RamanSpectroscopy

Whilegraphene’slayeredstructuremakesitideallysuitedforfurtherstudybyscanningprobemicroscopy,samplepreparationtimeandsubstraterequirementsmeanthatadditionalmethodsarenecessarytoreliablycon rmspeci-menthicknessinahigh-throughputfashion.UltimatelyitwasnotadirectlytopographicaltechniquebutinsteadRamanspectroscopythatemergedasthemostusefulwaytoprobethethicknessofmechanicallyexfoliated akes.Althoughlessthanobvious,thismakesgoodsensebecausethefeaturesofgraphiteandgraphenedirectlyre ectchangesin80-electronicstructurefromthestackingofsuccessivelayers.86Obser-vationsofgradualchangesintheRamanspectrumallowonetoinferthenumberoflayers(uptothescreeninglength)ina“ ngerprint”fashion(seeFigure8).

ThemajorfeaturesoftheRamanspectraofgraphiteandgraphene~2700cmare-1theGbandat~1584cm-1andtheG′bandat.TheGbandisduetotheE2gvibrationalmode,andtheG′bandisasecond-ordertwo-phononmode.Athirdfeature,theDbandat~1350cm-1,isnotRamanactiveforpristinegraphenebutcanbeobservedwheresymmetryisbrokenbyedgesorinsampleswithahighdensityofdefects.ItischangesinthepositionsandrelativepeakheightsoftheGandG′bandsthatservetoindicatethenumberoflayerspresentforagiven ake.ThelocationoftheGpeakforsinglelayergrapheneis3-5cm-1higherthanthatforbulkgraphite,whileitsintensityisroughlythesame.TheG′peakshowsasigni cantchangeinbothshapeandintensityasthenumberoflayersisdecreased.Inbulkgraphite,theG′bandiscomprisedoftwocomponents,theintensitiesofwhichareroughly1/4and1/2thatoftheGpeakforthelowandhighshifts,respectively.Forsinglelayergraphene,theG′bandisasinglesharppeakatthelowershift,withintensityroughly4timesthatoftheGpeak.Itwas ttingtothesetrendsthat nallyenabledscientiststoreliablycon rmtheidentityofmechanicallyexfoliated akes.

4.ExtraordinaryDeviceswithPeeledGraphene

MechanicalexfoliationandtheRaman ngerprintingtechniqueallowedscientiststoforgeaheadwithafullsuite

纳米材料在生物医学中的应用

HoneycombCarbon:AReviewofGrapheneChemicalReviews,2010,Vol.110,No.1

137

Figure7.(a)STMimageofgraphiteshowingonlythethreecarbonsthateclipseaneighborinthesheetdirectlybelow.(b)Incontrast,allsixcarbonsareequivalentandthusvisibleinmechanicallyexfoliatedsingle-layergraphene.(Reprintedwithpermissionfromref79.Copyright2007PNAS.)

Figure8.Ramanspectroscopyisapowerfuldiagnostictoolforthestudyofgraphene.BoththeG(near1584cm-1)andG′(near2700cm-1)bandsundergosigni cantchangesduetothethicknessofABstacked akes,asproducedbymechanicalexfoliation.(Reprintedwithpermissionfromref80.Copyright2006AmericanPhysicalSociety.)

ofexperimentsonsingle-layergraphene.Theseledtoanumberofextraordinaryproof-of-conceptdevices.

4.1.High-SpeedElectronics

Theoreticalpredictionslongsuggestedextremelyhighcarriermobilityandanambipolar eld-effectingraphene.87,88Thismotivatedthevery rstexperimentsthatwired-upmechanicallyexfoliated akesbye-beamlithography.2,18Beyondcon rminganumberofpredictions,thosemeasure-mentsgeneratedsigni cantinterestingrapheneasapossiblematerialforthenextgenerationofsemiconductordevices.Thatattentionmayormaynotbewarranted,butmanyagreethatourabilitytosustainMoore’slawwillultimatelybecomeaquestionofcarriermobility.

Extraordinaryelectronicpropertiesingraphenearereallyduetothehighqualityofits2Dcrystallattice.9,19,89-91Thathighqualityimpliesanunusuallylowdensityofdefects,whichtypicallyserveasthescatteringcentersthatinhibitchargetransport.In2008,Kim’sgroupatColumbiamea-suredacarriermobilityinexcessof200,000cm2/(Vs)forasinglelayerofmechanicallyexfoliatedgraphene(seeFigure9).7Intheirexperiments,substrate-inducedscatteringwasminimizedbycleverlyetchingunderthechanneltoproducegraphenecompletelysuspendedbetweengoldcontacts.Atsuchhighcarriermobility,chargetransportisessentiallyballisticonthemicrometer-scaleatroomtemperature.This

Figure9.Suspendedgrapheneshowsextremelyhighmobilityduetotheminimizationofsubstrate-inducedscattering.(a)SEMimageofasuspendedsheetafteretching.(b)Field-effectmeasurementsindicatemobilitygreaterthan200,000cm2/(Vs).(Reprintedwithpermissionfromref7.Copyright2008Elsevier.)

纳米材料在生物医学中的应用

138ChemicalReviews,2010,Vol.110,No.1Figure10.Schematicdiagramshowingthebandstructureandresultingambipolar eldeffectingraphene.ConductionandvalencebandsmeetattheDiracpointwithoutanexternal eld.Undergatebias,theFermilevelmovesaboveorbelowtheDiracpointtointroduceasigni cantnumberoffreecarriers.[ReprintedwithpermissionfromNature(),ref10.Copyright2007NaturePublishingGroup.]

hasmajorimplicationsforthesemiconductorindustrybecauseitenables,inprinciple,fabricationofall-ballisticdevicesevenattoday’sintegratedcircuit(IC)channellengths(currentlydownto45nm).

Thesecondimportantpointaboutchargetransportingrapheneisambipolarity.Inthe eld-effectcon guration,thisimpliesthatcarrierscanbetunedcontinuouslybetweenholesandelectronsbysupplyingtherequisitegatebias.Thiscanbeeasilyvisualizedgiventheuniquebandstructureofgraphene(seeFigure10).10Undernegativegatebias,theFermileveldropsbelowtheDiracpoint,introducingasigni cantpopulationofholesintothevalenceband.Underpositivegatebias,theFermilevelrisesabovetheDiracpoint,promotingasigni cantpopulationofelectronsintotheconductionband.

Besidesmotivatingacademicinterest,accesstoatrulyambipolarsemiconductorenablesanumberofnoveldevicestructures.Thesearefundamentallydifferentfromsilicon-basedlogicbecausedopinglevelscanbedynamicallycontrolledentirelybygating.Momentarilyprovidinglocalgatebiasestodifferentpartsofthesame akecanformjunctionsorevenmorecomplicatedlogic.Subsequentlyrearrangingthebiasescanthencompletelyrede nethedevicewithoutmakinganyphysicalchangestothechannelmaterial.

4.2.SingleMoleculeDetection

Thesecondexcitingproof-of-conceptimplementationofmechanicallyexfoliatedgraphenewasinchemicalsensors.Severalimportantfeaturesofgraphenemadeitanexcellentcandidateforthesensingactivearea.Firstandforemost,the2Dstructureofgrapheneconstitutesanabsolutemaximumofthesurfaceareatovolumeratioinalayeredmaterial,whichisessentialforhighsensitivity.Infact,thishasbeenthemajormotivationbehindimplementationofothernano-structuredmaterialsinsensors.Inthecaseoftraditionalmaterials,bulkpropertiessuchasresistivityarenotsubstan-tiallyin uencedbysingleadsorptioneventsontheirsurface.Ingraphene,however,thereisnosuchdistinctionbetweensurfacesitesandthebulkmaterial,soeveryadsorptioneventissigni cant.

Versatilityofgrapheneasthebasisofasensorresultsfromitsuniqueelectronicstructure.Theambipolaritymeansthat

Allenet

al.

Figure11.Thelackofsurfacestatesingraphenemakespossiblethedetectionofevensingleadsorbate.Thedirectionofchangeinthe gureindicatesthesignofinducedcarriers(holesforH2OandNO2;electronsforCOandNH(),3).[ReprintedwithpermissionfromNatureref21.Copyright2007NaturePublishingGroup.]

adsorptionofeitherelectronwithdrawingordonatinggroupscanleadto“chemicalgating”ofthematerial,whichcanbeeasilymonitoredinaresistive-typesensorsetup.

In2007,singlemoleculesensitivitytoNObytheManchester21,22groupforthe2andNH rstgraphene-3wasdemonstratedbasedsensor(seeFigure11).Inthecaseofeitheranalyte,adsorptioneventsinducedsomepopulationoffreecarriersandtheresistivityofasinglelayer akedecreaseduponexposure.AHall-typecon gurationcon rmedtheoppositesignofcarriersgeneratedbythetwogases,withanelectron-withdrawingspecies(e.g.,NO2)inducingconductionbyholes(p-type)andanelectron-donor(e.g.,NH3)inducingconduc-tionbyelectrons(n-type).

Withsuchexcitingearlyresults,experimentswithgraphene-basedsensorshavecertainlyjustbegun.Whiletherearefewquestionsaboutthelimitsofsensitivityforthesedevices,therealdrawbackthusfarisalackofselectivity.Asensorisratherimpracticalifitrespondsinasimilarwayuponexposuretoanyanalyte.Thisisanexcellentareaofopportunityforchemists.Modi cationofthebasalplaneoritsedgescouldcertainlyincorporateanalyte-speci clock-and-keytypebindingsites.Suchanapproachwouldnotonlyprovideselectivesensitivitytoalargevarietyofchemicalspeciesbutperhapsalsoenabledetectionofbiologicalagentsaswell.Similarschemeshavebeensuccessfullydemon-stratedwithcarbonnanotubesandquantumwires.92-95

5.AlternativestoMechanicalExfoliation

Excitingprogressinthe eldofgraphene,andespeciallysosoonafteritsinitialdiscovery,begantosuggestabrightfuture.Thelimitingstepformostexperimentswassimplyobtaininggoodsinglelayersbymechanicalexfoliation.Thiswouldhavegreaterimplicationsforreal-worlddevicesbecausetheprocessislowthroughputandunlikelytobeindustriallyscalable.Withthisinmind,thechallengeof ndinganalternateroutetosingle-layergraphenebecamethefocusofagreatdealofresearch.

Oneshouldkeepinmindthreeimportantfactorsbeyondscalabilitywhenconsideringthepro ciencyofanysyntheticroutetographene.Firstandforemost,aprocessmustproducehighqualityinthe2Dcrystallatticetoensurehighmobility.Second,themethodmustprovide necontrolovercrystallite

纳米材料在生物医学中的应用

HoneycombCarbon:AReviewofGrapheneFigure12.Molecularmodelsshowtheconversionprocessfromgraphitetochemicallyderivedgraphene.(Reprintedwithpermissionfromref101.Copyright2009NaturePublishingGroup.)

thicknesssoastodeliveruniformdeviceperformance.Finally,andforeaseofintegration,anyprocessshouldbecompatiblewithcurrentCMOS(complementarymetal-oxide-semiconductor)processing.

5.1.Oxide

ChemicallyDerivedGraphenefromGraphiteIn2006,Ruoff’sgroupwasthe rsttodemonstrateasolution-basedprocessforproducingsingle-layergraphene(seeFigure12).27,29,96,97Themethodhingedonchemicalmodi cationofgraphitetoproduceawaterdispersibleintermediary,graphiteoxide(GO).AfteroxidationbyHummers’method,GOisalayeredstackofpuckeredsheetswithABstacking,whichcompletelyexfoliatesupontheadditionofmechanicalenergy.98,99Thisisduetothestrengthofinteractionsbetweenwaterandtheoxygen-containing(epoxideandhydroxyl)functionalitiesintroducedintothebasalplaneduringoxidation.Thehydrophilicityleadswatertoreadilyintercalatebetweenthesheetsanddispersethemasindividuals.

AlthoughGOitselfisnonconducting,thegraphiticnetworkcanbesubstantiallyrestoredbythermalannealingorthroughtreatmentwithchemicalreducingagents,anumberofwhichhavebeenexplored.Ruoff’sgroupdetailedtheuseofhydrazinehydratetoeliminateoxidationthroughtheforma-tionandremovalofepoxidecomplexes.29ThiswasdonebyaddinghydrazinedirectlytoaqueousdispersionsofGO.Intheiroriginalreport,thereducedsinglesheetswereusedasanadditiveforpolystyrene-basedcomposites.27,100The2Dgeometryledtoanextremelylowpercolationthresholdofjust0.1%,enhancingboththeconductivityandstrengthofthematrix.

OneproblemwiththeoriginalaqueousreductionofGOwasthattheremovalofoxygengroupscausedthereducedsheetstobecomelesshydrophilicandquicklyaggregateinsolution.GordonWallace,DanLi,andco-workersincollaborationwithourgrouplatershowedthatraisingthepHduringreductionleadstocharge-stabilizedcolloidaldispersions,evenofthedeoxygenatedsheets.30Recentlywe’veimprovedthereductionstepbymakingdispersionsdirectlyinanhydroushydrazine.101-103Notethatuseofhydrazinerequiresgreatcarebecauseitisbothhighlytoxicandpotentiallyexplosive.104

ThemostexcitingadvantagesoftheGOmethodareitslow-costandmassivescalability.Thestartingmaterialissimplegraphite,andthetechniquecaneasilybescaled-uptoproducegramquantitiesorlargerof“chemicallyderivedgraphene”dispersedinaliquid.GOisalsoaninterestingmaterialinitsownrightforcompositesapplications.Ruoff’sgrouphasdemonstratedfree-standing lmswithextremelyhightensilestrengthupto~42GPa(seeFigure13).105,106

ChemicalReviews,2010,Vol.110,No.1

139

5.1.1.Depositions

Obtaininguniformandreproducibledepositionsisoneforthemostimportantrequirementsforincorporatingasolution-basedtechniqueintodevicefabrication.Furthermore,thetypeofdepositionrequiredcanrangewidelydependingonthedesignspeci csofagivendevice.Well-suitedtothistask,chemicallyconvertedgraphenesuspensionsareversatileandhavepermitteda-large109numberofdepositiontechniques(seeFigure14).101,107Thesehavebeenusedtoproduce lmswithcoverageranginganywherefromevenlyspacedsinglesheetstodenselypackedoverlapping lms.

Theoriginaltechniqueusedbyourgroupfordepositing lmswasspraycoatingfromwaterontoaheatedsubstrate.31Althoughwewereabletoisolateandcharacterizesomesinglesheets,highsurfacetensioncausedsigni cantag-gregationevenifthesubstratewasheatedto ash-drythesuspensionuponcontact.Wehavebeenmoresuccessfulspin-coatingdispersionsmadedirectlyinhydrazine.Themethodallowsforafullrangeofcoveragedensitiesby ne-tuningofspin-speedandapretreatmentappliedtothesurfaceofthesubstrate.

Huang’sgroupatNorthwesternrecentlydemonstratedwonderfulcontroloverdepositionsusingLangmuir-BlodgettassemblyofGO.107Theyshowedthatelectrostaticrepulsionpreventsthesinglelayersfromoverlappingwhencompressedatanair/surfaceinterface.ThisledtodepositionsonSiOthatincludeddilute,close-packed,andoverpacked lms.2Dai’sgroupatStanfordhasdonesimilarworkwithLangmuir-Blodgetttechniquesandalsolayer-by-layeras-semblyusingelectrostaticattractiontobiasedsubstrates.109

5.1.2.DefectDensityinChemicallyDerivedGraphene

Aswithmechanicallyexfoliatedgraphene,itisimportanttocharacterizechemicallyderived akesbeforefabricatingdevices.Thisisespeciallytrueinthechemicalcasebecausethebasalplaneofgrapheneundergoesseriousalterationduringtheprocessofoxidationandreduction.ResidualoxidationwasmadeobviousbyanappreciableDbandnear1350cm-1intheRamanspectrumofchemicallyderivedgraphene.29ThisbandismadeRamanactivebythesigni cantnumberofdefectsandresultingbrokensymmetryofthebasalplane.X-rayphotoelectronspectroscopy(XPS)ofreducedGOindicatesnearlycompleteremovalofoxygen,whichhasledRuoff’sgroupandourowntosurmisethatnonconjugatedsp3carbonconstitutesmostofthedefects.Thesealsolimittheobservationofinterestingphysicsphenomenainchemicallyderivedgrapheneandinhibitmobility.

ThepresenceofalargeDbandalsoprecludesthe ngerprintingtechniquethatisusedtodeterminecrystallitethicknessformechanicallyexfoliatedgraphene.Thepromi-nenceofthebandmakesassigninganyexactpositiontotheGbandnexttoimpossible.Instead,mostgroupshaveturnedtoatomicforcemicroscopyinordertocon rmthethicknessofdeposited akes.Asinothercases,thegraphene-substratestepheightisdif culttoresolveandreportsrangebetween0.4and1.0nmforsinglelayers.30,101,107

5.1.3.Field-EffectDevices

Evenataloweroverallcrystalquality,theavailabilityofchemicallyderivedgraphenehasremovedaseriouslogjamintheengineeringofgraphene-baseddevicesandscientistshavebeeneagertomakeelectricalmeasurements.The rst

纳米材料在生物医学中的应用

140ChemicalReviews,2010,Vol.110,No.1Allenet

al.

Figure13.Free-standinggraphene lmsshowextremelyhightensilestrength.(a)Cross-sectionalSEMimageofgraphiteoxidestackingina lmproducedby ltration.[ReprintedwithpermissionfromNature(),ref105.Copyright2007NaturePublishingGroup.](b)Chemicalreductionproducesa lmwithshinyluster[ReprintedwithpermissionfromScience(),ref125.Copyright2008AmericanAssociationfortheAdvancementofScience.]

Figure14.Solutionprocessingallowsdepositionofsynthesized/modi edgrapheneinavarietyofdensities.(a)SEMimagesofdifferent lmsspin-coatedfromhydrazine.(b)SEMandatomicforcemicroscopyimagesofagraphiteoxide lmdepositedbyLangmuir-Blodgettassembly.(Reprintedwithpermissionfromref107.Copyright2009AmericanChemicalSociety.)(c)Multilayercoatingsarestillquitetransparent.[ReprintedwithpermissionfromNature(),ref109.Copyright2008NaturePublishingGroup.]

deviceswerefabricatedbye-beamlithographyon akesaround1µm2insize.31Morerecently,Ruoff’sgroupandourownhaveproducedmuchlarger akes,whichenabledustodemonstratescalablearraysof eld-effectdevicesusingconventionalphotolithography(seeFigure15).96,101

Thequalityofthe2Dlatticeinchemicallyderivedgrapheneissacri cedduringoxidationasthehybridizationofmanycarbonschangesfromplanarsp2totetrahedralsp3andthesheetpuckers.Thishasseveralconsequencesindeviceperformance.Unlikethosemadefrommechanicallyderivedgraphene,weobservedp-typecurrentmodulationfortop-contactandback-gated eld-effectdevices.Weattributethistoresidualoxidation,whichprovidesdeeptrapstatesforelectronsandlimitsanygatemodulationtothatofholes.Anotherconsequenceisinhibitedmobility,whichweestimateatlessthan1000cm2/(Vs).

Whilethesepropertieshaveledsometoquestiontheappropriatenessofchemicallyderivedgraphene-basedde-

vices,thematerialhasprovidedanexcellentplatformfortestingnoveldevicestructures.Furthermore,researchershavegainedvaluableexperienceintegratingasolution-basedtechniqueintodevicefabrication.Thosemethodswillcarryovershouldaless-severeroutetocompleteexfoliationbedeveloped.

5.1.4.PracticalSensors

Whilesingle-moleculedetectionfrommechanicallyex-foliatedgraphenewasanexcitingproof-of-principle,thedif cultyofproducingthinspecimensandtherequirementofultrahighvacuumlimitsthepracticalityofthesedevices.Recently,anumberofgroups,includingRobinson’sattheNavalResearchLaboratoryandourown,havedemonstratedgoodsensitivityforNO2,NH3,anddinitrotolueneunderambientconditionsusingchemicallyderivedgraphene(seeFigure16).103,110

纳米材料在生物医学中的应用

HoneycombCarbon:AReviewofGrapheneChemicalReviews,2010,Vol.110,No.1

141

Figure15.(a)SEMimageofalargesinglesheetdepositedonSiO2.(b)Schematicviewofatop-contact,back-gateddevice.(c)Photograph(left),opticalimage(middle),andSEMimage(right)ofaworkingdevicewithachannellengthof7µm.(Reprintedwithpermissionfromref101.Copyright2009NaturePublishingGroup.)

Figure16.Chemicallyderivedgrapheneprovidesapracticalroutetographene-basedresistivesensors.Theresistanceofthep-typematerialdecreasesuponexposuretoelectronwithdrawers(e.g.,NO2)andincreasesuponexposuretoelectrondonors(e.g.,NH3).(Reprintedwithpermissionfromref103.Copyright2009AmericanChemicalSociety.)

Itisinterestingtonotethedifferencesinresponseofchemicallyderivedgraphenesensorsandmechanicallyexfoliatedones.Asdiscussedearlier,electrondonatingorwithdrawinggroupsincreaseelectronorholepopulationsinpristinegrapheneandthusbothleadtoincreasedconductiv-ity.Chemicallyderivedgrapheneisnominallyp-type.Therefore,electronwithdrawinggroupscontributeadditionalcarriers,butelectrondonatorsactuallyservetodepleteholesfromthevalenceband.Hence,NO2andNH3ledtooppositedirectionsofresponseinoursensors.

solarcell,whichhadapowerconversionef ciency(PCE)of0.26%.Chhowalla’sgrouplaterfabricatedapolymersolarcellwithaPCEof0.1%usingasimilar lm.112,113TheperformanceofthesecellswaslessthanthatofthecorrespondingcontroldevicesonITO,buttheyprovideaproof-of-conceptforlow-costtransparentcoatingsbasedongraphene.

5.2.TotalOrganicSynthesis

Althoughgraphiteoxidehasproducedthe rstchemicallyderivedmicrometer-scalegraphene,synthetictechniquesforsmallerplanar,benzene-basedmacromoleculeshavebeenknownforsometime.33,34,114-117Thesegraphene-likepolya-cyclichydrocarbons(PAHs)occupyaninterestingplaceinbetween“molecular”and“macromolecular”structuresandarenowattractingnewinterestasapossiblealternativeroutetographene.

PAHsareattractivebecausetheyarehighlyversatileandcanbesubstitutedwitharangeofaliphaticchainstomodifysolubility.36Thusfar,themajordrawbackofPAHshasbeentheirlimitedsizerange.Thisisduetothefactthatincreasingmolecularweightgenerallydecreasessolubilityandincreasestheoccurrenceofsidereactions.Undertheseconditions,preservationofdispersibilityandaplanarmorphologyforlargePAHshasbeenverychallenging.

Amajoradvancecamein2008,whenMullenandco-workersreportedthesynthesisofnanoribbon-likePAHsupto12nminlength(seeFigure17).35Althoughtheelectronicpropertiesofthesenanoribbonshaveyettobecharacterized,

5.1.5.TransparentElectrodes

Solutionprocessingofchemicallyderivedgrapheneandthedepositionsachievedsoonledresearcherstoconsiderusingthematerialintransparentconductors.Thedemandforsuchcoatingshasgrownrapidlyduetooptoelectronicdevicesincludingdisplays,LEDs,andsolarcells.Whilethecurrentindustrystandardisindiumtinoxide(ITO),carbonnanotubeshavelongbeentoutedasapossiblealternativeduetotheirlowdimensionalityandabilitytoformapercolatingconductivenetworkatextremelylowdensities.Thesamemeritsmakegrapheneanobviouschoice.

Mullenandco-workersdemonstratedthe rstgraphene-basedtransparentconductor.111Filmsweredepositedbydip-coatingwithGOandreducingbythermalannealing.Sheetresistancesaslowas0.9k /)wereobtainedat70%transmittance.WhiletheperformancewasconsiderablylessthanthatofITO(70 /)at90%transmittance),the lmswerelow-costanddidnotrequirevacuumsputtering.Thegroupalsousedthe lmastheanodeinadye-sensitized

纳米材料在生物医学中的应用

142ChemicalReviews,2010,Vol.110,No.1Allenet

al.

Figure17.Polyacyclicaromatichydrocarbons(PAHs)mayofferaground-upsynthesisofgraphene.(a)ChemicalstructureofPAHsand(b)TEMofananoribbonsynthesizedbyMullen.(Reprintedwithpermissionfromref35.Copyright2008AmericanChemicalSociety.)

theymayindeedexhibitgraphene-likebehavior.Ifresearch-ersinthisareaareabletofurtherextendthesizerangeofPAHsinthecomingyears,thiscouldprovideacleansyntheticroutetographeneforsomeapplications.Inanyevent,theorganictechniquesdevelopedwillhaveimportantimplicationsformodi cationoforadditiontoconjugatedcarbonmacromolecules.

5.3.EpitaxialGrapheneandChemicalVaporDeposition

Whilesolution-basedsyntheticschemesaimtocircumventtheneedforsupportsubstrates,twotechniquestakeadvan-tageofspeciallychosenplatformstoencouragegrowthofhighqualitygraphene.

DeHeerandothersattheGeorgiaInstituteofTechnologypioneeredanepitaxialmethodinwhichgrapheneresultsfromthehightemperaturereductionofsiliconcarbide(seeFigure18).38-40,118-120Theprocessisrelativelystraightforward,assilicondesorbsaround1000°Cinultrahighvacuum.Thisleavesbehindsmallislandsofgraphitizedcarbon,whichwere rstlocatedbySTMandelectrondiffractionexperiments.Morerecently,groupshaveusedphotolithographytopatternepitaxialgrowthinpredeterminedlocationsandtomakedevices.119

Anumberofphysicalpropertiesdifferbetweenepitaxiallygrownandmechanicallyexfoliatedgraphene.37,39Thisisduetothein uenceofinterfacialeffectsinepitaxialgraphene,whichareheavilydependentonboththesiliconcarbidesubstrateandseveralgrowthparameters.Forepitaxialgraphene,differencesintheperiodicityobservedbySTMandLEEDSarenotwellunderstood.121Thesameistruefor

Figure19.Chemicalvapordepositionofgrapheneontransitionmetalsubstrates.Opticalmicroscopeimageof(a)thenickelcatalystand(b)theresultinggraphene lm.TEMimagesshowthenucleationof(c)one,(d)three,or(e)fourlayersduringthegrowthprocess.(Reprintedwithpermissionfromref41.Copyright2009AmericanChemicalSociety.)

theenergygapobservedbyangle-resolvedphotoemissionspectroscopy(ARPES).122

Thesecondsubstrate-basedmethodischemicalvapordeposition(CVD)ofgrapheneontransitionmetal lms(seeFigure19).GroupsatMITandinKoreapioneeredtheprocess,whichreliesonthecarbon-saturationofatransitionmetaluponexposuretoahydrocarbongasathightemperature.41-43Mostoften,nickel lmsareusedwithmethanegas.Uponcoolingthesubstrate,thesolubilityofcarboninthetransitionmetaldecreasesandathin lmofcarbonisthoughttoprecipitatefromthesurface.

Oneofthemajoradvantagesofsubstrate-basedmethodsforgraphenesynthesisistheirhighcompatibilitywithcurrentCMOStechnology.Intheory,bothepitaxialandCVDtechniqueshavetheprospectofproducingasinglesheetofgrapheneoveranentirewafer,whichmaybethesimplestwaytointegratethenewmaterialintocurrentsemiconductorprocessesanddevices.TheremainingchallengeforepitaxialandCVDmethodsisobtaining necontrolover lm

Figure18.Siliconcarbideisreducedtographeneassiliconsublimesathightemperature.(a)SEMimageshowssmallhexagonalcrystallites.(Reprintedwithpermissionfromref120.Copyright2006Elsevier.)(b)STMimageshowslong-rangeorderandalowdensityofdefects.[ReprintedwithpermissionfromScience(),ref38.Copyright2006AmericanAssociationfortheAdvancementofScience.]

纳米材料在生物医学中的应用

HoneycombCarbon:AReviewofGrapheneChemicalReviews,2010,Vol.110,No.1

143

Figure20.Nanoribbonsofferenhancedtransistorbehaviorduetoquantumcon nement.(a)SEMimageofnanoribbonsde nedbyphotolithographyandO2plasmaetching.(b)Kim’sgroupdemonstratedIon/Ioffratiosashighas104atwidthsof~50nm.(Reprintedwithpermissionfromref124.Copyright2007AmericanPhysicalSociety.)

thicknessandpreventingsecondarycrystalformation.Inanidealcase,bothmethodsrelyonthenucleationandgrowthofasinglecrystalwithouttheformationofaboundaryorseedingofasecondlayer.Currently,thebestspecimenshaveavariationinthicknessofperhaps1-3layersandarepolycrystalline.FieldeffectdevicesfabricatedwithepitaxialandCVDgraphenedisplaycarriermobilitiesinexcessof1000cm2/(Vs).42,118

InthecaseofCVDgraphene,etchingoftheunderlyingmetalallowsthecarbon lmstobetransferredtoothersubstrates.This,combinedwiththelargeareaofdepositions,hasgreatpromisefortransparentconductingapplications.Onesuch lmgrownbyCVDandtransferredviaaPDMSstampontoglassshowedasheetresistanceofjust280 /)at80%opticaltransmittance.42

exfoliatedgraphenetomakethe rstsub-50nmnanoribbons(seeFigure20).123,124AlthoughtheprocessyieldedIon/Ioffratiosofupto104,devicesshowedhighvariabilityduetothelackofcontroloveredgetermination.Stencil-likepatterningwasindiscriminateofcrystallographicdirection,andthusedgeeffectswereessentiallydifferenteverytime.Thechallengeofsynthesizingreproduciblegraphenenanoribbonsisaninterestingoneforchemists,whohavesoughttoexploitthedifferencesinreactivityalonggraphene’stwocrystallographicdirections.64In2008,Dai’sgroupatStanforddevelopedthe rsttechniqueforisolatingnano-ribbonsdirectlyfrombulkgraphite(SeeFigure21).61Itinvolvedsonicationofexpandedgraphiteinthepresenceofapolymerknowntoparticipateinπ-stackingwithconjugatedcarbons.Thepolymeractedtononcovalentlyfunctionalizeandconsequentlystabilizenanoribbonsformedbymechan-icalfracture.Atomicforcemicroscopyofthenanoribbonssuggeststhatfracturefollowsnicelyalongthecrystal-lographicdirectionsofgraphene.Inthepresenceofthepolymer,theribbonscanbesuspendedinorganicsolventsandthendepositedbyspin-coating.

ElectricaltestingofDai’snanoribbonsshowedmuchgreaterconsistencythanthosemadebylithography.Aspredictedbytheory,thebandgap(Eg)ofnanoribbonswasfoundtobeinverselyproportionaltotheirwidth,withanEgof~0.4eVforspecimensfewerthan10nmwide.ThisledtoIon/Ioffratiosofupto106forthethinneststrips.Thenextmajorchallengewillbe ndingawaytoreliablydepositthenanoribbonsinprede nedlocationsforscalabledevicefabrication.

6.GrapheneNanoribbons

Amajorissuewithgraphene-basedlogicdevicesistheirpoorIon/Ioffratios.Conductivityingrapheneisminimizedunderzerogatebias,butdevicesareessentiallyimpossibletoturnoffatanyreasonabletemperaturebecausethermalenergyand uctuationsaremorethansuf cienttoproducelargecarrierpopulations.Thishigh“leakage”currentresultsinIon/Ioffratiosthataretypicallyjust1or2ordersofmagnitude,whichisinsuf cientforimplementationinrealdevices.

Whileanumberofapproacheshavebeensuggested,themoststraightforwardwaytominimizetheoffcurrentingraphene-baseddevicesistointroduceanappreciablebandgap.Thishasmotivatedagreatdealofresearchintographenenanoribbons,whicharenolongersemimetallicduetoquantumcon nement.In2007,Kim’sgroupusede-beampatterningandoxygen(O2)plasmaetchingofmechanically

7.FutureWork

Graphenehasaninterestinghistory,butmanynowwonderaboutitsfuture.Thesubjectofconsiderablescholarlydebate,itdoesseemreasonabletoassertafewthingslookingahead.First,thequalityandavailabilityof“synthetic”graphenewillcontinuetoimprove.Whetherhighqualitymaterialcomesintheformofanalternativechemicalroutetothecompleteexfoliationofgraphiteorfromoptimizationofthethermalprocessesrequiredforsubstrate-basedmethods,thereisnosignthatsynthetictechniquesarenearingtheirupperlimit.Thismeansthatdeviceengineerswillhaveampleaccesstoimprovedmaterialsfordevelopingnovelstructuresand ndingwaystointegrategrapheneintopresent-dayelectronicdevices.

Second,chemicalmodi cationofgraphene’sbasalplaneoritsedgeswillsubstantiallyin uencegraphene-baseddevices.Forelectronicapplications,onecanimaginethe

Figure21.Solution-basedmethodforproducinggraphenenanoribbons.(a)Dai’sgroupusedπ-stackingpolymeragentstostabilizenanoribbonsinsolution.(b)Afterspin-coating,ribbonsranginginwidthdownto10nmwerelocatedbyatomicforcemicroscopy.(c)Ion/Ioffratiosupto106weredemonstrated.[ReprintedwithpermissionfromScience(),ref61.Copyright2008AmericanAssociationfortheAdvancementofScience.]

纳米材料在生物医学中的应用

144ChemicalReviews,2010,Vol.110,No.1attachmentoffunctionalgroupsaimedatself-assemblyofsimplecircuitsortheincorporationofchemicaldopantstolimitleakagecurrentunderzerogatebias.Forsensors,lock-and-keytypebindingsitescouldprovideselectivesensitivitytoawidevarietyofanalytes.Thesemightincludechemicalwarfareagentsorevenbiologicalspecies.

Third,industrialuseofgrapheneasatransparentconductorcouldhavehugeimplicationsforthesolarindustry.Assyntheticroutesimprove,theprospectofreplacingITOwithalow-costcarbon-basedcoatingseemsfeasible.Thiswouldnotonlyremovesigni cantuncertaintyabouttheavailabilityandcostofindiumbutalsoenablenonevaporativeroll-to-rollprocessingoftransparentconductors.

8.Conclusions

The eldofgraphene-relatedresearchhasgrownataspectacularpacesincesingle-layer akeswere anicandmaterialschemistsarebusilyworkingonnewsyntheticroutestohigh-qualitysinglelayers,whileengineersaredesigningnoveldevicestoexploitgraphene’sextraordinaryproperties.Inlightofsuchcollaborations,itisdif culttobelievethatthefutureforgrapheneisanythingbutbright.

9.Acknowledgments

TheauthorswouldliketothanktheNationalScienceFoundation’sNSF-IGERTprogram,theUCLA-basedFunc-tionalEngineeringNanoArchitechtonicsFocusedCenterResearchProgram(FENA-FCRP),theDARPACERAprogram,andNorthrop-Grumman/UCDiscoveryfor nancialsupport.

10.References

(1)Lu,X.K.;Yu,M.F.;Huang,H.;Ruoff,R.S.Nanotechnology1999,

10,269.

(2)Novoselov,K.S.;Geim,A.K.;Morozov,S.V.;Jiang,D.;Zhang,

Y.;Dubonos,S.V.;Grigorieva,I.V.;Firsov,A.A.Science2004,306,666.

(3)Landau,L.D.Phys.Z.Sowjetunion1937,11,26.(4)Peierls,R.E.Ann.Inst.HenriPoincare1935,5,177.

(5)Stangl,J.;Holy,V.;Bauer,G.ReV.Mod.Phys.2004,76,725.(6)Meyer,J.C.;Geim,A.K.;Katsnelson,M.I.;Novoselov,K.S.;

Booth,T.J.;Roth,S.Nature2007,446,60.

(7)Bolotin,K.I.;Sikes,K.J.;Jiang,Z.;Klima,M.;Fudenberg,G.;

Hone,J.;Kim,P.;Stormer,H.L.SolidStateCommun.2008,146,351.

(8)Bolotin,K.I.;Sikes,K.J.;Hone,J.;Stormer,H.L.;Kim,P.Phys.

ReV.Lett.2008,101,096802.

(9)Novoselov,K.S.;Jiang,D.;Schedin,F.;Booth,T.J.;Khotkevich,

V.V.;Morozov,S.V.;Geim,A.K.Proc.Natl.Acad.Sci.U.S.A.2005,102,10451.

(10)Geim,A.K.;Novoselov,K.S.Nat.Mater.2007,6,183.(11)Katsnelson,M.I.Mater.Today2006,10,20.

(12)Novoselov,K.S.;McCann,E.;Morozov,S.V.;Fal’ko,V.I.;

Katsnelson,M.I.;Zeitler,U.;Jiang,D.;Schedin,F.;Geim,A.K.Nat.Phys.2006,2,177.

(13)Jiang,Z.;Zhang,Y.;Tan,Y.W.;Stormer,H.L.;Kim,P.SolidState

Commun.2007,143,14.

(14)Jiang,Z.;Zhang,Y.;Stormer,H.L.;Kim,P.Phys.ReV.Lett.2007,

99,106802.

(15)Zhang,Y.B.;Tan,Y.W.;Stormer,H.L.;Kim,P.Nature2005,

438,201.

(16)Novoselov,K.S.;Jiang,Z.;Zhang,Y.;Morozov,S.V.;Stormer,

H.L.;Zeitler,U.;Maan,J.C.;Boebinger,G.S.;Kim,P.;Geim,A.K.Science2007,315,1379.

(17)Ozyilmaz,B.;Jarillo-Herrero,P.;Efetov,D.;Abanin,D.A.;Levitov,

L.S.;Kim,P.Phys.ReV.Lett.2007,99,186804.

Allenetal.

(18)Novoselov,K.S.;Geim,A.K.;Morozov,S.V.;Jiang,D.;Katsnelson,

M.I.;Grigorieva,I.V.;Dubonos,S.V.;Firsov,A.A.Nature2005,438,197.

(19)Morozov,S.V.;Novoselov,K.S.;Katsnelson,M.I.;Schedin,F.;

Elias,D.C.;Jaszczak,J.A.;Geim,A.K.Phys.ReV.Lett.2008,100,016602.

(20)Han,M.;Ozyilmaz,B.;Zhang,Y.;Jarillo-Herero,P.;Kim,P.Phys.

StatusSolidiB:BasicSolidStatePhys.2007,244,4134.

(21)Schedin,F.;Geim,A.K.;Morozov,S.V.;Hill,E.W.;Blake,P.;

Katsnelson,M.I.;Novoselov,K.S.Nat.Mater.2007,6,652.(22)Novoselov,K.;Geim,A.Mater.Technol.2007,22,178–179.(23)Ruoff,R.Nat.Nanotech.2008,3,10.

(24)Castro,E.V.;Novoselov,K.S.;Morozov,S.V.;Peres,N.M.R.;

DosSantos,J.M.B.L.;Nilsson,J.;Guinea,F.;Geim,A.K.;Neto,A.H.C.Phys.ReV.Lett.2007,99,216802.

(25)Meyer,J.C.;Geim,A.K.;Katsnelson,M.I.;Novoselov,K.S.;

Obergfell,D.;Roth,S.;Girit,C.;Zettl,A.SolidStateCommun.2007,143,101.

(26)Yan,J.;Henriksen,E.A.;Kim,P.;Pinczuk,A.Phys.ReV.Lett.2008,

101,136804.

(27)Stankovich,S.;Dikin,D.A.;Dommett,G.H.B.;Kohlhaas,K.M.;

Zimney,E.J.;Stach,E.A.;Piner,R.D.;Nguyen,S.T.;Ruoff,R.S.Nature2006,442,282.

(28)Stankovich,S.;Piner,R.D.;Chen,X.Q.;Wu,N.Q.;Nguyen,S.T.;

Ruoff,R.S.J.Mater.Chem.2006,16,155.

(29)Stankovich,S.;Dikin,D.A.;Piner,R.D.;Kohlhaas,K.A.;

Kleinhammes,A.;Jia,Y.;Wu,Y.;Nguyen,S.T.;Ruoff,R.S.Carbon2007,45,1558.

(30)Li,D.;Muller,M.B.;Gilje,S.;Kaner,R.B.;Wallace,G.G.Nat.

Nanotechnol.2008,3,101.

(31)Gilje,S.;Han,S.;Wang,M.;Wang,K.L.;Kaner,R.B.NanoLett.

2007,7,3394.

(32)Hernandez,Y.;Nicolosi,V.;Lotya,M.;Blighe,F.M.;Sun,Z.Y.;

De,S.;McGovern,I.T.;Holland,B.;Byrne,M.;Gun’ko,Y.K.;Boland,J.J.;Niraj,P.;Duesberg,G.;Krishnamurthy,S.;Goodhue,R.;Hutchison,J.;Scardaci,V.;Ferrari,A.C.;Coleman,J.N.Nat.Nanotechnol.2008,3,563.

(33)Muller,M.;Kubel,C.;Mullen,K.Chem.sEur.J.1998,4,2099.(34)Tyutyulkov,N.;Madjarova,G.;Dietz,F.;Mullen,K.J.Phys.Chem.

B1998,102,10183.

(35)Yang,X.Y.;Dou,X.;Rouhanipour,A.;Zhi,L.J.;Rader,H.J.;

Mullen,K.J.Am.Chem.Soc.2008,130,4216.

(36)Wu,J.S.;Pisula,W.;Mullen,K.Chem.ReV.2007,107,718.(37)Berger,C.;Song,Z.M.;Li,T.B.;Li,X.B.;Ogbazghi,A.Y.;Feng,

R.;Dai,Z.T.;Marchenkov,A.N.;Conrad,E.H.;First,P.N.;deHeer,W.A.J.Phys.Chem.B2004,108,19912.

(38)Berger,C.;Song,Z.M.;Li,X.B.;Wu,X.S.;Brown,N.;Naud,C.;

Mayou,D.;Li,T.B.;Hass,J.;Marchenkov,A.N.;Conrad,E.H.;First,P.N.;deHeer,W.A.Science2006,312,1191.

(39)deHeer,W.A.;Berger,C.;Wu,X.S.;First,P.N.;Conrad,E.H.;

Li,X.B.;Li,T.B.;Sprinkle,M.;Hass,J.;Sadowski,M.L.;Potemski,M.;Martinez,G.SolidStateCommun.2007,143,92.

(40)Hass,J.;deHeer,W.A.;Conrad,E.H.J.Phys.:Condens.Matter

2008,20,323202.

(41)Reina,A.;Jia,X.T.;Ho,J.;Nezich,D.;Son,H.B.;Bulovic,V.;

Dresselhaus,M.S.;Kong,J.NanoLett.2009,9,30.(42)Kim,K.S.Nature2009,457,706.

(43)Sutter,P.W.;Flege,J.I.;Sutter,E.A.Nat.Mater.2008,7,406.(44)Gomez-Navarro,C.;Weitz,R.T.;Bittner,A.M.;Scolari,M.;Mews,

A.;Burghard,M.;Kern,K.NanoLett.2007,7,3499.

(45)Kam,N.W.S.;Liu,Z.;Dai,H.J.J.Am.Chem.Soc.2005,127,

12492.

(46)Shim,M.;Kam,N.W.S.;Chen,R.J.;Li,Y.M.;Dai,H.J.Nano

Lett.2002,2,285.

(47)Strano,M.S.;Dyke,C.A.;Usrey,M.L.;Barone,P.W.;Allen,

M.J.;Shan,H.W.;Kittrell,C.;Hauge,R.H.;Tour,J.M.;Smalley,R.E.Science2003,301,1519.

(48)Boul,P.J.;Liu,J.;Mickelson,E.T.;Huffman,C.B.;Ericson,L.M.;

Chiang,I.W.;Smith,K.A.;Colbert,D.T.;Hauge,R.H.;Margrave,J.L.;Smalley,R.E.Chem.Phys.Lett.1999,310,367.

(49)Holzinger,M.;Vostrowsky,O.;Hirsch,A.;Hennrich,F.;Kappes,

M.;Weiss,R.;Jellen,F.Angew.Chem.,Int.Ed.2001,40,4002.(50)Georgakilas,V.;Kordatos,K.;Prato,M.;Guldi,D.M.;Holzinger,

M.;Hirsch,A.J.Am.Chem.Soc.2002,124,760.

(51)DasSarma,S.;Geim,A.K.;Kim,P.;MacDonald,A.H.SolidState

Commun.2007,143,1.

(52)Neto,A.H.C.;Guinea,F.;Peres,N.M.R.;Novoselov,K.S.;Geim,

A.K.ReV.Mod.Phys.2009,81,109.

(53)Graphiteintercalationcompoundsandapplications;Endo,M.,Ed.;

OxfordUniversityPress:2003.

(54)Delhaes,P.Graphiteandprecursors;CRCPress:2001.(55)Survey,U.S.G.,2007.

纳米材料在生物医学中的应用

HoneycombCarbon:AReviewofGraphene

(56)ToshiakiEnoki,M.S.;MorinobuEndo.Graphiteintercalation

compoundsandapplications;OxfordUniversityPress:2003.(57)Shaffault,P.J.J.Prakt.Chem.1841,21,155.

(58)Dresselhaus,M.S.;Dresselhaus,G.AdV.Phys.2002,51,186.(59)Viculis,L.M.;Mack,J.J.;Kaner,R.B.Science2003,299,1361.(60)Viculis,L.M.;Mack,J.J.;Mayer,O.M.;Hahn,H.T.;Kaner,R.B.

J.Mater.Chem.2005,15,974.

(61)Li,X.L.;Wang,X.R.;Zhang,L.;Lee,S.W.;Dai,H.J.Science

2008,319,1229.

(62)Kouvetakis,J.;Kaner,R.B.;Sattler,M.L.;Bartlett,N.J.Chem.

mun.1986,1758.

(63)Kaner,R.B.;Kouvetakis,J.;Warble,C.E.;Sattler,M.L.;Bartlett,

N.Mater.Res.Bull.1987,22,399.

(64)Jiang,D.E.;Sumpter,B.G.;Dai,S.J.Chem.Phys.2007,126,

134701–134701-6.

(65)Miyata,Y.;Kawai,T.;Miyamoto,Y.;Yanagi,K.;Maniwa,Y.;

Kataura,H.J.Phys.Chem.C2007,111,9671.

(66)Kawai,T.;Miyamoto,Y.Chem.Phys.Lett.2008,453,256.

(67)Girit,C.O.;Meyer,J.C.;Erni,R.;Rossell,M.D.;Kisielowski,C.;

Yang,L.;Park,C.-H.;Crommie,M.F.;Cohen,M.L.;Louie,S.G.;Zettl,A.Science2009,323,1705.

(68)Zhang,Y.B.;Small,J.P.;Pontius,W.V.;Kim,P.Appl.Phys.Lett.

2005,86,073104-1.

(69)Affoune,A.M.;Prasad,B.L.V.;Sato,H.;Enoki,T.;Kaburagi,Y.;

Hishiyama,Y.Chem.Phys.Lett.2001,348,17.

(70)Nair,R.R.;Blake,P.;Grigorenko,A.N.;Novoselov,K.S.;Booth,

T.J.;Stauber,T.;Peres,N.M.R.;Geim,A.K.Science2008,320,1308.

(71)Stauber,T.;Peres,N.M.R.;Geim,A.K.Phys.ReV.B2008,78,

085432.

(72)Blake,P.;Hill,E.W.;Neto,A.H.C.;Novoselov,K.S.;Jiang,D.;

Yang,R.;Booth,T.J.;Geim,A.K.Appl.Phys.Lett.2007,91,063124.

(73)Blake,P.;Brimicombe,P.D.;Nair,R.R.;Booth,T.J.;Jiang,D.;

Schedin,F.;Ponomarenko,L.A.;Morozov,S.V.;Gleeson,H.F.;Hill,E.W.;Geim,A.K.;Novoselov,K.S.NanoLett.2008,8,1704.(74)Jung,I.;Pelton,M.;Piner,R.;Dikin,D.A.;Stankovich,S.;

Watcharotone,S.;Hausner,M.;Ruoff,R.S.NanoLett.2007,7,3569.

(75)Ni,Z.H.;Chen,W.;Fan,X.F.;Kuo,J.L.;Yu,T.;Wee,A.T.S.;

Shen,Z.X.Phys.ReV.B2008,77,115416.

(76)Batra,I.P.;Garcia,N.;Rohrer,H.;Salemink,H.;Stoll,E.;Ciraci,

S.Surf.Sci.1987,181,126.

(77)Rabe,J.P.;Buchholz,S.Science1991,253,424.

(78)Soler,J.M.;Baro,A.M.;Garcia,N.;Rohrer,H.Phys.ReV.Lett.

1986,57,444.

(79)Stolyarova,E.;Rim,K.T.;Ryu,S.M.;Maultzsch,J.;Kim,P.;Brus,

L.E.;Heinz,T.F.;Hybertsen,M.S.;Flynn,G.W.Proc.Natl.Acad.Sci.U.S.A.2007,104,9209.

(80)Ferrari,A.C.;Meyer,J.C.;Scardaci,V.;Casiraghi,C.;Lazzeri,

M.;Mauri,F.;Piscanec,S.;Jiang,D.;Novoselov,K.S.;Roth,S.;Geim,A.K.Phys.ReV.Lett.2006,97,187401.

(81)Ferrari,A.C.;Robertson,J.Phys.ReV.B2000,61,14095.

(82)Casiraghi,C.;Pisana,S.;Novoselov,K.S.;Geim,A.K.;Ferrari,

A.C.Appl.Phys.Lett.2007,91,233108.

(83)Ferrari,A.C.SolidStateCommun.2007,143,47.

(84)Calizo,I.;Balandin,A.A.;Bao,W.;Miao,F.;Lau,C.N.Nano

Lett.2007,7,2645.

(85)Matthews,M.J.;Pimenta,M.A.;Dresselhaus,G.;Dresselhaus,M.S.;

Endo,M.Phys.ReV.B1999,59,R6585.

(86)Gupta,A.;Chen,G.;Joshi,P.;Tadigadapa,S.;Eklund,P.C.Nano

Lett.2006,6,2667.

(87)Wallace,P.R.Phys.ReV.1947,71,476.

(88)Slonczewski,J.C.;Weiss,P.R.Phys.ReV.1958,109,272.

(89)Hwang,E.H.;Adam,S.;DasSarma,S.Phys.ReV.Lett.2007,98,

186806.

(90)Novoselov,K.S.;Morozov,S.V.;Mohinddin,T.M.G.;Ponomar-enko,L.A.;Elias,D.C.;Yang,R.;Barbolina,I.I.;Blake,P.;Booth,T.J.;Jiang,D.;Giesbers,J.;Hill,E.W.;Geim,A.K.Phys.StatusSolidiB:BasicSolidStatePhys.2007,244,4106.

(91)Morozov,S.V.;Novoselov,K.S.;Geim,A.K.Phys.sUsp.2008,

51,744.

ChemicalReviews,2010,Vol.110,No.1145

(92)Alivisatos,P.Nat.Biotechnol.2004,22,47.

(93)Chen,R.J.;Bangsaruntip,S.;Drouvalakis,K.A.;Kam,N.W.;Shim,

M.;Li,Y.;Kim,W.;Utz,P.J.;Dai,H.Proc.Natl.Acad.Sci.U.S.A.2003,100,4984.

(94)Chen,R.J.;Zhang,Y.;Wang,D.;Dai,H.J.Am.Chem.Soc.2001,

123,3838.

(95)Wang,J.Electroanalysis2005,17,7.

(96)Jung,I.;Dikin,D.A.;Piner,R.D.;Ruoff,R.S.NanoLett.2008,8,

4283.

(97)Yang,D.;Velamakanni,A.;Bozoklu,G.;Park,S.;Stoller,M.;Piner,

R.D.;Stankovich,S.;Jung,I.;Field,D.A.;Ventrice,C.A.;Ruoff,R.S.Carbon2009,47,145.

(98)Jeong,H.-K.;Lee,Y.P.;Lahaye,R.J.W.E.;Park,M.-H.;An,K.H.;

Kim,I.J.;Yang,C.-W.;Park,C.Y.;Ruoff,R.S.;Lee,Y.H.J.Am.Chem.Soc.2008,130,1362.

(99)Hummers,W.S.;Offeman,R.E.J.Am.Chem.Soc.1958,80,1339.(100)Watcharotone,S.;Dikin,D.A.;Stankovich,S.;Piner,R.;Jung,I.;

Dommett,G.H.B.;Evmenenko,G.;Wu,S.E.;Chen,S.F.;Liu,C.P.;Nguyen,S.T.;Ruoff,R.S.NanoLett.2007,7,1888.

(101)Tung,V.C.;Allen,M.J.;Yang,Y.;Kaner,R.B.Nat.Nanotechnol.

2009,4,25.

(102)Allen,M.J.;Fowler,J.D.;Tung,V.C.;Yang,Y.;Weiller,B.H.;

Kaner,R.B.Appl.Phys.Lett.2008,93,193119.

(103)Fowler,J.D.;Allen,M.J.;Tung,V.C.;Yang,Y.;Kaner,R.B.;

Weiller,B.H.ACSNano2009,3,301.

(104)Schmidt,E.W.HydrazineanditsderiVatiVes;Wiley-Interscience:

NewYork,2001.

(105)Dikin,D.A.;Stankovich,S.;Zimney,E.J.;Piner,R.D.;Dommett,

G.H.B.;Evmenenko,G.;Nguyen,S.T.;Ruoff,R.S.Nature2007,448,457.

(106)Park,S.;Lee,K.S.;Bozoklu,G.;Cai,W.;Nguyen,S.T.;Ruoff,

R.S.ACSNano2008,2,572.

(107)Cote,L.J.;Kim,F.;Huang,J.J.Am.Chem.Soc.2009,131,1043.(108)Wu,J.H.;Tang,Q.W.;Sun,H.;Lin,J.M.;Ao,H.Y.;Huang,

M.L.;Huang,ngmuir2008,24,4800.

(109)Li,X.;Zhang,G.;Bai,X.;Sun,X.;Wang,X.;Wang,E.;Dai,H.

Nat.Nanotechnol.2008,3,538.

(110)Robinson,J.T.;Perkins,F.K.;Snow,E.S.;Wei,Z.Q.;Sheehan,

P.E.NanoLett.2008,8,3137.

(111)Wang,X.;Zhi,L.J.;Mullen,K.NanoLett.2008,8,323.

(112)Eda,G.;Fanchini,G.;Chhowalla,M.Nat.Nanotechnol.2008,3,

270.

(113)Eda,G.;Lin,Y.Y.;Miller,S.;Chen,C.W.;Su,W.F.;Chhowalla,

M.Appl.Phys.Lett.2008,92,233305.

(114)Berresheim,A.J.;Muller,M.;Mullen,K.Chem.ReV.1999,99,1747–

1785.

(115)Dotz,F.;Brand,J.D.;Ito,S.;Gherghel,L.;Mullen,K.J.Am.Chem.

Soc.2000,122,7707.

(116)Watson,M.D.;Fechtenkotter,A.;Mullen,K.Chem.ReV.2001,101,

1267–1300.

(117)Gutman,I.;Tomovic,Z.;Mullen,K.;Rabe,E.P.Chem.Phys.Lett.

2004,397,412.

(118)Kedzierski,J.;Hsu,P.L.;Healey,P.;Wyatt,P.W.;Keast,C.L.;

Sprinkle,M.;Berger,C.;deHeer,W.A.IEEETrans.ElectronDeVices2008,55,2078.

(119)Berger,C.;Song,Z.M.;Li,X.B.;Wu,X.S.;Brown,N.;Maud,

D.;Naud,C.;deHeer,W.A.Phys.StatusSolidiA:Appl.Mater.Sci.2007,204,1746.

(120)Sadowski,M.L.E.A.J.Phys.Chem.Solids2006,67,2172.

(121)Brar,V.W.;Zhang,Y.;Yayon,Y.;Ohta,T.;McChesney,J.L.;

Bostwick,A.;Rotenberg,E.;Horn,K.;Crommie,M.F.Appl.Phys.Lett.2007,91,122102.

(122)Rotenberg,E.;Bostwick,A.;Ohta,T.;McChesney,J.L.;Seyller,

T.;Horn,K.Nat.Mater.2008,7,258.

(123)Ozyilmaz,B.;Jarillo-Herrero,P.;Efetov,D.;Kim,P.Appl.Phys.

Lett.2007,91,192107.

(124)Han,M.Y.;Ozyilmaz,B.;Zhang,Y.B.;Kim,P.Phys.ReV.Lett.

2007,98,206805.

(125)Li,D.;Kaner,R.B.Science2008,320,1170.

CR900070D

本文来源:https://www.bwwdw.com/article/i6oj.html

Top