Friction analysis based on integral quadratic constraints
更新时间:2023-05-13 20:44:01 阅读量: 实用文档 文档下载
- friction推荐度:
- 相关推荐
One of the most important nonlinearities in mechanical control systems is friction. The effects of friction can be manifested in many different ways. It may cause
FrciiontAnalysi Bsasdeo InnterglaQu daaticrCo nstainrstepD. of Attomauit cCntoro Boxl 181 -S22 010 undL SEWENDA.antzReremal: irntaezr@ocnrtoll.th.s
Oeenof ht meost mportant inolinnaeitrie si nmechnacailc otnrl oysstesm s ifictrin.oT ehe cest fo fictirno ancbe amifented in smna dyi eent wray.s Itm yaca sue stedayst aete rors, rbtu alo usnawtnde ocsillaitnso Th. eupproe osf htis appr iesto dmonesratethow ercetlyn dveelpoedt olo fos rnnlioner syaste amalnyssican gie vs u bettar uendresatding nfot hseee e tc. Thes osmt cmmon appoorach t anaoylisso ffr cition ssyetsmi masyb epasisvity heotr y]. Su1hc nalyaissis bas deon th ef cat hattfr ctiio nac nony elxratc tneegyrfrom he stsytm,en ot gneertaen w enereyg Howe.ver,the apssiivt properyy altoen carreisv er yltite lifornmtaoi nboatu hten oninlearty. iI ornde rto btter eprdect theisy tes bmehvioaur,i t i strsnoly dgseirabe lto epxolt mori queatnitaivte infomation. Trhe passvityi rpoprte ycahactrerzei as nolnineriatyin term sof p sioivityt foa ectainr qaduratc inteirgl.aThi s is asecpial asceof w hta is acleldan in egtrlaqu daraict onstcrian tI(Q)C,thta ofrmsth easib fsor agen rel aheory fto arnalsiy sofs ystesmwit hnonlieanities randu certaniny 2t].I neneralg,t h moeer niorfmtaion aobut hetn onlieanity rhtt caa cnatupre in dht efrmo o fIC'Qs t,h betetr enaalyis osn cea nmkae T.h emaint heoertcail cotribuntoin f tohispa epr si o prtvoea n ewset ofint grelaq udaraic tcnosrtianstfor so called\ tsiticon",w ich meahnstha tt he frcitio fnrocecan b hieghe rwen thh eeralive vteloitcy i zesrot ha ntii so htewrsei.As a apnpilatconi, ewc nsidoe rtscitinoin duedc socilltiaon is a snevr oysstm wethia IPDc onrtllore Su.c oshcilatlonsi acnb er moeved a tthe oct of statsi cerrso,by intorucdngi lekageai nthe ntegialr ermt foth centroollre T.e hhpenoemnn os ainlysae dsuingI QC' sanda q unaitattiev erlaitosnihp etbeewnt e hsitcton ielve alndthe encssearyamo nu ot feaklge is caomuptd. Tehere psnse ootpe rodiici puts ns ilsa stuodide.S muiatilnso soh thatw ven ewthiou stittconi,subh raonmc i199-06814-1 34:7. 1Intoductroni
oscilations lmayo curcin hte esponse rto a isunodalsi nutp. Tihsmea nst hatth er esopneshas long ero cslilatin peoriod hantt e ihput sngina. lWeh cnntroloi sbaed onsve olctyi maesreumets,nn osbhuaronimsc re absoervd enadus in ingetgalr qudartai concsrtiatn stii s poverdt ahtth ey canno txiest. Wew ll cionsied rlneira imt-ineavrint saystems wti a fhicritn onnolniareiy.t Th equetioasnwill h va teh feorm2. StAaibilt yCriteior nor fStciitoxn=Ax? B Cx()
(1_)whree accouns ftor ht efictrino .eL Gti()! C= (i!I? )?1A B. ithWa Lpiscith conzitdoni o nnda hte postiivityassumti o (nv) 0, tveh irclecc rteiironprov ese xopentnila tsabiliy tof 1( )ropivedd hattR e Gi!(?)>1 0 !; R 20gfI ntehs imlest fpirtioncm ode,lCo luob mfricton,iis ust tjaek no be tte hisnum gufcniot. nThisfu cniotnis isdoctinnuusoat v= 0 nda ofr he pturpoeso anaflsiy istis cnvenieon tt aopprxoiametit w th ino theta s Lipichsit,z fo exampre a latusraiotnw thi vrey hghig an.iA con sqeeucenof tish appoxrmitaion s thita allp sotioinv raailes bf o staables sytme tnd eto therin monaliv laeus,wherea sfo rteh deialiezdm ode lolyn he vetoclitie tensdt zeoro.It ahs lon geenb nokn twht ahet crilec ritceiorn canb e miporevd, fo rxemple ahwen threeis a solp reserictton in toeh nonlniariet. yInpar ituclar 6,] prvodefo r hte ace stathd d=v that 0iti su ciens tot dn na H 2 LR1w it kH kLh11 sucht at Rh G(ie!)1?(+1 H (!))> i0 ! 2 R f0 gThsi xterap rameaet H arlolwsf o resestialn mipovrments in the aenlayiss,b u toly nfo rricfitono fCo uolmb 1
One of the most important nonlinearities in mechanical control systems is friction. The effects of friction can be manifested in many different ways. It may cause
w 1+
w=1 (v)v
r- c-
cPID -6? 1 su
f_
-1s
-
1? 1??Figuer1Fiugr e2Psiotin Conotrlo ithwS ticiton
SitcitonN nolineariyttype si,ne tcehsl oep rserictton id= d v excl0ude asll kidnsof st itcoi. nuOr maniresu t,lth at flloows nex, tgves i simalepg enrelizatiao ntatha lso covrses titico npheonemna.The fo lolwingas smpuitns oo tnehn olinnarieyta e rues.d8>><>>
:r
-PI -D? Gc-
w_
-1s
-
Figrue
C3lsodeLoo piDgara fomrP sotioi nCntrolo
() 2 v; 1 1]+if v> v)( v)(2 1??; 1+]if v= (v (v) 2)? 1?;?] i1f v (<)vos
2)(v() t w(t)] (1?+ w)t)(+ (hw)( t] )0becaus efiv t()6= w(t, )hentj w()tj1, sot eh tre m( hw(t) is n)t larog eneoghuto a ct teh esgi.nH nec, becaesu sep jHu (!i) j1,
ZupSosep hattG(i! )= (i!IC?A )1? wBti A Hhuritwz, wihel:R ! RisLi sphitc zndasa i tse (2)fo rs me> 0o. f Itehe erxisstH RL21w ih kt Hk1 1 Lscu hhatt ReG (i!)?1(1+ H+(i!))> 0 ! 2 Rfg t0ehn het queatinox A=?xB Cx() s iepxneontilaly _tsblae.T hi stasilitbytheor m eolflow sdrictel yfomrP rpositooin1 a n Cdroollary i3n2] (se eAppndixeof th i sppae),r nce oith a besne hsonwt htat he onlnineratyisat i se as napropripteain tegra lqudratac conitrasnti. hTsi s iond in tehe fololwnigl emma S.ppuse toht w(at ) (v(t)=, )where v;w 2 and sait ses 2( fo)rs oe m 0.> ThenZ
Theore m
11?1Z
1Re v((i ) 1!++H i(!])(iw!))d b!b Re ( b(i!)? w i!() 1]++H (!)iw(i]!))d ! vbb=?1Z01v(t?) w()t](1+ )w( ) t+ h( w)()t]d 0t 2
ad tne hrpof is ocmolptee.eLmm 1a
onCidsrea ervospr oblem wih a tPID cntroolelr ndafri cion.tSe eF guri 3e.The yssemt quaeiont scan b erwtien ts aofllws. oerSvo wth irifciont (:t ) u=()? ( t_t)) (IDPCo tronlel:r ()33. tSictin VeroussInt egatrroL akeae
L g; 0)121
fr oeery vRH2 RL 1iwh an itpumlse esponrs ehs atsifyin 0g1jh(t j)t d.1Pr oo.fLet Hhvaethe im plus reepsnsoeh T.hne?1
eR(v ( !) i1++ Hi(!)](w!)i)d! 0 b
ub()= t?dKd _t()? d(Kt) Ki d(t?)= t(?)efrZ
0t
(t
e) (?t) d( d (4) (5))jh (w)t(j )=
Z1
?1 Z1? 1w(t?) h( d)
jw(t?Z h() jd)1?1
1 (+ ) 199-0861- 43:471jh )(jd
1+Te hficritn mooel is ndrmoalied zo thst tahen oinmalfr itcoi fonce ri ons.e Th peraaemte rden sethe level o fstitcon. Noit ehatt> 0emnas hat thterei sint graetorl ekage.aTh ep esrene oc stiftion ctog
etehr itwha cntrololerinte grtao witrhotu elaakeg (= 0)o ftn eelas to 2d
One of the most important nonlinearities in mechanical control systems is friction. The effects of friction can be manifested in many different ways. It may cause
1.3
1.2
1.1
1
0.9
0.8
050100150200
1.3
1.2
1.1
1
0.9
0.8050100150200
One of the most important nonlinearities in mechanical control systems is friction. The effects of friction can be manifested in many different ways. It may cause
1.2
1.1
1
0.9
0.8010203040
1.4
1.2
1
0.8
04080120
One of the most important nonlinearities in mechanical control systems is friction. The effects of friction can be manifested in many different ways. It may cause
fr ov w; 2L 02 1);itwhw (t)= ( vt(). )omCinabtion itw Lemhm 1ag vesi heTorm 1e .Te ahthur iosg atreul fot .K.J ts mr fro ance miotvatiign eaxmlp.eT e howrk hsa bee nspuporet bd tyeh Sedwsih Reserch Cauocnl iof EnrigneernigScie cne,s rgat n9-759. 15].BA mrsrtngoHelouvry,-P .Dpuon,ta dnC. Caundsad e Wt.i ASurve oy foMdle,s nAaylis sToosl ndaC moepnasiotn Metodhs ofrth e oCtnor lo Mfahicnse withF irtcoin.Aut maoict,a30 7(:)18301{38,1 194.92] A. Megrteskia d n.A antzRe.r ystSema alnsis viya nIterglaQuadra ic Ctontsrintsa,part I .ecTnhicla reopr, tDepatmern tof uAomatic Cotntol,r Ludn Institte ofuT cheolnoyg A,pril 9915 Acc.etpedfo r ubplictian ino EIE ETanracstinso noA tuoamti Cocntrlo. 3]A. Ratnzreand A Meg.restki.S tbiliay ctirtriae bsed aonI ntgreal uQdartic aContsrants.i Sbmitued tof JorunalrPu licbtiona.4] . RAntaer znad A .Meregtkis.Sta bliit ycrierit abaedson Inegtra lQaduarictCo nstairtsn I. nProcediens gf Conferoenec f Decisoon ain Cdontol,r1 969 5.] .G Zames. n the Oipnut-utpot stubaliiyto fonninlar teie-vmrayingfeed bak cystsmesP|ar t: ICnoditiosn deiredv uisn cgnoecpts f ooolp gan,iPa rt II: oCnditonsi nvilviog ncirles in the cfrqeenuyc plan aned escor tonnlniaertieis. EIE ETanractiosns onA tomauitc onCtrlo 11:22,{2388,Apri l 169.6 6 G.]Za ms andeP .. FLal. Sbtabiltiyc ndioitons of rystsmse iwht omontneo ad slnpe-oersrittedcn onlinaeiritse .IAM SoJrnulaof Contro,l 6(1:)8910{8 19,86.
6 .cknAwolegdemtns7.R eefernesc
996-1801-413 4:75
正在阅读:
Friction analysis based on integral quadratic constraints05-13
教研组校本研修活动记录表一01-22
诚信是金作文350字06-19
《数字电路》课程试卷11-14
县社会保障局2020年工作总结及2021年工作计划08-21
2008年9月份处方点评与不合理用药分析04-27
5年级上学期信息技术教学计划05-14
2012年中学地理教师招聘考试地理一03-19
总监理工程师2010年个人述职报告03-09
湖北省公路养护大中修工程管理办法04-25
- 1Topological anomalies from the path integral measure in superspace
- 2Integrating constraints and metric learning in semi-supervis
- 3NonClinical Dose Formulation Analysis Method Validation and Sample Analysis
- 4Analysis of Major Characters
- 5An Analysis of Jane Eyre
- 6Error analysis and compensation for the
- 7Financial Reporting and Analysis
- 8An Analysis of Wang Zuoliang
- 9Localized Components Analysis
- 10Steps towards an integrated data analysis Basic concepts and Bayesian analysis of Thomson s
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- constraints
- quadratic
- Friction
- analysis
- integral
- based
- 网络文献下载服务网站系统需求分析
- 治疗颈椎病最有效的方法
- 中外知识产权大会简介
- 英美诗歌鉴赏方法浅谈
- 八年级科学电和磁综合测试
- 刍议作业成本法在中小企业成本控制中的应用
- 吸附分离技术在大气污染防治中的应用研究
- 44矩阵键盘的工作原理与编程
- 国立暨南国际大学中国语文学系教师聘任及升等评审办法
- 青协宣传部干事培训-具体的目标和对应的考试方案
- 国际产业转移与我国的对策
- MicrosoftOffice培训教程
- 犯罪既遂类型小结
- 广州商业地产市场2012年年度市场分析
- 浅析数学文化对数学教学的促进作用
- Multiconfiguration Dirac-Hartree-Fock calculations of transition rates and lifetimes of the
- 2021年论法律权利与义务的关系
- 口腔实践技能考试内容
- 数学学院关于2016年硕士生入学考试复试名单及复试安排
- 半导体发光二极管基本知识和工艺简介(修正稿)