高中数学-直线、圆与方程压轴题(培优、提高)

更新时间:2024-02-03 08:29:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

高二数学 第3讲 直线与圆综合

1.已知圆C:x+y+2x-3=0.

(1)求圆的圆心C的坐标和半径长;

(2)直线l经过坐标原点且不与y轴重合,l与圆C相交于A(x1,y1)、B(x2,y2)两点,求证:为定值;

(3)斜率为1的直线m与圆C相交于D、E两点,求直线m的方程,使△CDE的面积最大.

2.已知点G(5,4),圆C1:(x-1)2+(x-4)2=25,过点G的动直线l与圆C1相交于E、F两点,线段EF的中点为C.

(1)求点C的轨迹C2的方程;

(2)若过点A(1,0)的直线l1与C2相交于P、Q两点,线段PQ的中点为M;又l1与l2:x+2y+2=0的交点为N,求证|AM|?|AN|为定值.

2

2

11?x1x23.已知点C(1,0),点A,B是⊙O:x2+y2=9上任意两个不同的点,且满足AC?BC?0,设M为弦AB的中点.求点M的轨迹T的方程;

4.已知平面直角坐标系上一动点P(x,y)到点A(?2,0)的距离是点P到点B(1,0)的距离的2倍。 (1)求点P的轨迹方程;

(2)若点P与点Q关于点(2,1)对称,点C(3,0),求|QA|?|QC|的最大值和最小值;

(3)过点A的直线l与点P的轨迹C相交于E,F两点,点M(2,0),则是否存在直线l,使S△EFM取得最大值,若存在,求出此时l的方程,若不存在,请说明理由。

225.已知圆O:x2?y2?4和点M(1,a).

(1)若过点M有且只有一条直线与圆O相切,求正数a的值,并求出切线方程; (2)若a?2,过点M的圆的两条弦AC,BD互相垂直.

①求四边形ABCD面积的最大值;②求|AC|?|BD|的最大值.

6.已知过原点的动直线l与圆C1:x2+y2-6x+5=0相交于不同的两点A,B. (1)求圆C1的圆心坐标;

(2)求线段AB的中点M的轨迹C的方程;

(3)是否存在实数k,使得直线L:y=k(x-4)与曲线C只有一个交点?若存在,求出k的取值范围;若不存在,说明理由.

7.已知以点A(-1,2)为圆心的圆与直线l1:x+2y+7=0相切.过点B(-2,0)的动直线l与圆A相交于M、N两点,Q是MN的中点,直线l与l1相交于点P. (I)求圆A的方程;

(Ⅱ)当MN=219时,求直线l的方程;

(Ⅲ)BQ?BP是否为定值,如果是,求出定值;如果不是,请说明理由.

8.已知直线l:4x+3y+10=0,半径为2的圆C与l相切,圆心C在x轴上且在直线l的右上方 (1)求圆C的方程;

(2)过点M(1,0)的直线与圆C交于A,B两点(A在x轴上方),问在x轴正半轴上是否存在定点N,使得x轴平分∠ANB?若存在,请求出点N的坐标;若不存在,请说明理由.

9.平面直角坐标系xoy中,直线x-y+1=0截以原点O为圆心的圆所得的弦长为6. (1)求圆O的方程;

(2)若直线l与圆O切于第一象限,且与坐标轴交于D,E,当DE长最小时,求直线l的方程; (3)设M,P是圆O上任意两点,点M关于x轴的对称点为N,若直线MP、NP分别交于x轴于点(m,0)和(n,0),问mn是否为定值?若是,请求出该定值;若不是,请说明理由.

10.已知圆M:x2+(y-4)2=4,点P是直线l:x-2y=0上的一动点,过点P作圆M的切线PA、PB,切点为A、B.

(Ⅰ)当切线PA的长度为23时,求点P的坐标;

(Ⅱ)若△PAM的外接圆为圆N,试问:当P运动时,圆N是否过定点?若存在,求出所有的定点的坐标;若不存在,说明理由;

(Ⅲ)求线段AB长度的最小值.

11.已知一动圆经过点M(2,0),且在y轴上截得的弦长为4,设动圆圆心的轨迹为曲线C. (1)求曲线C的方程;

(2)过点N(1,0)任意作相互垂直的两条直线l1,l2,分别交曲线C于不同的两点A,B和不同的两点D,E.设线段AB,DE的中点分别为P,Q.

①求证:直线PQ过定点R,并求出定点R的坐标; ②求|PQ|的最小值.

本文来源:https://www.bwwdw.com/article/hxtw.html

Top