介孔碳材料及负载金属催化剂表征

更新时间:2023-03-15 22:41:01 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

介孔碳材料及负载金属催化剂表征

摘要:介孔材料作为纳米材料的一个重要发展,已成为国际科技界普遍关注的新的研究热点.本文综述了以氧化铝、活性炭为载体负载镍基催化剂的研究方法。

1.前言

近几年来,介孔材料作为一种新兴的材料在光化学、催化及分离等领域具有

十分重要的应用,是当今研究的热点之一。

按照国际纯粹与应用化学协会(IUPAC)的定义,孔径在2-50nm范围的多孔材料称为介孔(中孔)材料。按照化学组成,介孔材料可分为硅基和非硅基组成两大类,后者主要包括碳、过渡金属氧化物、磷酸盐和硫化物等,由于它们一般存在着可变价态,有可能为介孔材料开辟新的应用领域,展示出硅基介孔材料所不能及的应用前景[1]。按照介孔是否有序,介孔材料可分为无定形(无序)介孔材料和有序介孔材料[2]。前者如普通的SiO2气凝胶、微晶玻璃等,孔径范围较大,孔道形状不规则;后者是以表面活性剂形成的超分结构为模板,利用溶胶-凝胶工艺,通过有机物和无机物之间的界面定向导引作用组装成一类孔径约在1.5-30nm,孔径分布窄且有规则孔道结构的无机多孔材料,如M41S等。

介孔材料的特点在于其结构和性能介于无定形无机多孔材料(如无定形硅铝酸盐)和具有晶体结构的无机多孔材料(如沸石分子筛)之间,其主要特征[3]为:具有规则的孔道结构;孔径分布窄,且在1.5-10 nm之间可以调节;经过优化合成条件或后处理,可具有很好的热稳定性和一定的水热稳定性;颗粒具有规则外形,且可在微米尺度内保持高度的孔道有序性。

现阶段有多种方法可对介孔材料进行表征。差热/热重(DTA/TG)分析可用于表征物质表面吸附、脱附机理及晶型转变温度,并可鉴别中间体。X射线衍射分析(XRD)法是利用衍射的位置决定晶胞的形状和大小,以及晶格常数。透射电镜(TEM)是在极高、极大倍数下直接观察样品的形貌、结构、粒径大小,并能进行纳米级的晶体表面及化学组成分析。而气体吸附测试(Adsorption measurement)法则是通过向介孔材料中通人氮气等气体来测试其孔径[4]。对介孔材料中装载纳米微粒的表征,同样可以借助许多经典及现代测试手段获得。如利用X射线衍射及广延X射线精细结构能得到孔穴中纳米微粒的元素组成、离子间距及尺寸形

态等信息。扫描电子显微镜(STM)、透射电子显微镜可用来观察组装前后介孔材料的显微变化,并直观地了解介孔孔道中纳米微粒的尺寸、形态及分布特征。另外,红外及拉曼光谱是检测金属阳离子与阴离子成键、金属离子配位、对称性等化学环境变化的有力工具。而固体核磁共振(NMR)则可对介孔材料骨架原子的位置、骨架与外来原子的相互作用进行研究[5-6]。

介孔碳是近年来飞速发展的一类新型非硅介孔材料,它是由有序介孔材料为模板制备的结构复制品。由于其具有大的比表面(可高达2500m2·g-1)和孔容(可达到2.25cm3·g-1),良好的导电性、对绝大多数化学反应的惰性等优越的性能,且易通过煅烧除去,与氧化物材料在很多方面具有互补性[7],使其在催化、吸附、分离、储氢、电化学等方面得到应用而受到高度重视。

介孔碳的合成方法分为催化活化法、有机凝胶炭化法和模板法。催化活化法是利用金属及其化合物对碳的气化的催化作用,有机凝胶炭化法是炭化由溶胶一凝胶反应制备的有机凝胶。二者的共同缺点是都难以精确控制中孔的结构、尺寸及孔分布。催化活化法制备中孔炭材料,金属进入炭材料内部是不可避免的,并且以该方法制得的中孔炭拥有大量的微孔。有机凝胶炭化法所得的中孔是至少部分相连的空间,且昂贵而复杂的超临界干燥设备制约着其商业化。到目前为止,模板法是控制中孔率和孔结构、尺寸的有效方法。模板法通过选用一种具有特殊孔隙结构的材料作为模板,导入目标材料或前驱体并使其在该模板材料的孔隙中发生反应,利用模板材料的限域作用,达到对制备过程中的物理和化学反应进行调控的目的,最终得到微观和宏观结构可控的新颖材料。模版法又分为无机模版法、有序介孔分子筛模版法和有机模版法。模板法最突出的特点是具有良好的结构可控制性,它提供了一个能控制并改善纳米微粒在结构材料中排列的有效手段。用这种方法所制备的材料具有与模板孔腔相似的结构特征,若采用的模板具有均一的孔径,则所合成的纳米材料亦将具有均匀的结构。

介孔碳材料可以用作催化剂载体,高的比表面和孔隙率可以使活化相得到高度分散,反应热可以及时移走,减少缩聚和凝结。介孔炭材料作为催化剂载体归纳起来有以下优点:碳基体本身具有很强的耐酸碱性;碳的耐温性好,即使在很高的温度下仍可保持其结构形态不变;介孔炭材料的孔径可以根据实际需要,通过选择合适的前躯体和制备方法进行调整,而且介孔炭材料可以制成不同的物理

形态:粉状、柱状、球状等;介孔炭材料通过制造工艺的控制,可以使其具有离子交换的特性,从而提高介孔炭材料的吸附能力以及对活性相的分散能力;介孔炭材料可以根据实际情况调整其亲水、疏水性;从实用的角度来讲,通过燃烧介孔炭材料载体的办法可以将贵金属从废旧催化剂中回收[8]。

介孔碳材料因具有开放的孔结构和介孔特性,在吸附和扩散过程方面也显示出巨大的优势[9];又由于其特定孔径的选择性还可以作为纳米反应器。介孔碳材料还是可以作为合成其它介孔材料的二次摸板合成孔材料[10-11],如用CMK-3作模板制备出氧化硅的反转品(接近SBA-15)。有序介孔炭材料在电化学方面也有广泛的用途,如:制作高能电池、电容、电极材料和传感器等。

介孔碳具有很广泛的用途,其中,作为催化剂载体的研究应该得到充分重视,同时介孔碳在储氢、储能材料方面的应用可能成为未来的研究热点。

2.以介孔碳材料为催化剂载体的研究

对于负载型催化剂,载体不仅可以使活性组分高度分散、提高活性组分的表面积和利用效率, 而且还可能影响催化剂的性能[12]。介孔材料由于具有在纳米尺寸上连续可调的均一孔径、较大的比表面积和孔容量、可控的形貌、孔道表面可进行化学改性等优点[13],从而已经作为催化剂载体开始研究。

党王娟[14]等以介孔硅SBA-15为模版,糠醇为碳源制备了介孔碳CMK-5,并以其为载体用微波合成法制备了介孔碳负载铂催化剂。用此法制备的介孔碳材料CMK-5具有六角形规则的孔道结构,1500 m2·g-1以上的比表面积和较好的导电性能。使用这种介孔碳为Pt催化剂的载体,负载Pt的质量分数为2%时,Pt颗粒的粒径可以小至1.3nm,当负载Pt的质量分数为50%时,Pt颗粒的粒径仍可控制在3nm以下。

分对SBA-15和CMK-5进行性质表征,SBA-15的BET比表面积为665 m2·g-1,孔容为0.92cm3·g-1,孔径为5.4nm;CMK-5的BET比表面积高达1545 m2·g-1,孔容为1.47cm3·g-1,孔径为3.8nm。分别对直接在CMK-5上负载铂催化剂Pt/CMK-5(MW)和加入稳定剂CTBA并经N2气氛350℃热处理2h后制得的负载铂催化剂Pt/CMK-5(MW-CTAB- N2)进行表征,Pt/CMK-5(MW)的TEM显示铂微

粒有团聚现象;Pt/CMK-5(MW-CTAB- N2)的TEM显示铂微粒均匀地分散在介孔碳表面,无明显团聚现象,同时介孔碳的孔道结构也很清晰,说明CTBA作为稳定剂只是抑制了粒子的长大和团聚,并未破坏介孔碳载体的孔道特征。XRD表征的结果可以看出这两种催化剂中铂的衍射峰与标准峰完全一致,即CTAB的加入没有影响催化剂Pt的晶体结构,仅仅是抑制了Pt的长大和提高铂粒子的分散性。

将这Pt/CMK-5(MW)和Pt/CMK-5(MW-CTAB- N2)进行伏安测试,结果表明,以介孔碳为载体,CTAB为稳定剂,微波合成Pt/CMK-5催化剂,大大改善了催化剂中铂微粒的分散性,从而提高了铂微粒的比表面积,催化性能大大提高。

胡龙兴[15]等以硅基介孔分子筛SBA-15为模板、以蔗糖为碳源合成通过一种简易的方法在介孔碳CMK-3的孔道内负载氧化铜粒子制备Cu/CMK-3复合物,利用粉末X射线衍射、氮气吸附-脱附、透射电镜等手段对其进行表。结果表明,氧化铜均匀地分散在CMK-3孔道中,CMK-3在负载氧化铜后仍有较大的比表面积。考察了载铜CMK-3对水中苯酚的吸附和低温干法催化氧化苯酚性能。吸附和循环使用结果表明,Cu/CMK-3对水中苯酚具有较大的吸附量和良好的催化氧化效率。热重-质谱(TG-MS)联用测试结果表明,吸附的苯酚在180℃左右开始被催化氧化为CO2和水, 此时不会造成苯酚的脱附和介孔碳CMK-3的烧蚀。

CMK-3及Cu/ CMK-3的小角XRD表征得出,介孔碳CMK-3孔道具有很强的有序性; 负载CuO后,CuO粒子已进入CMK-3的孔道之中。以氮气吸附-脱附分析结果来看,介孔碳材料CMK-3在载铜前后孔径分布都较窄,BJH平均孔径分布为3.4nm,CMK-3的比表面积和孔容分别为1196 m2·g-1和0.98 cm3·g-1,微孔孔容仅约占4%,为0.04 cm3·g-1;Cu/ CMK-3的比表面积和孔容分别为988 m2·g-1和0.81 cm3·g-1,与CMK-3相比降低量均约为17%。这进一步证明了催化剂已进入了CMK-3的介孔孔道内。Cu/ CMK-3的大角XRD表征可以识别出属于CuO 物相的衍射峰。属于CuO物相的衍射峰较宽,且峰值较小,说明CuO 粒子的尺寸很小,且具有良好的分散性。Cu/ CMK-3的透射电镜图这表明CuO 的进入并没有破坏介孔碳CMK-3的结构有序性;在Cu/ CMK-3的表面较少看到大片的CuO 颗粒聚集,一方面说明CuO 的分散性较好,同时也表明CMK-3可以有更大的催化剂负载量。

将Cu/ CMK-3用于催化氧化苯酚,Cu/ CMK-3在经过7 次吸附和催化氧化循环之后,吸附性能没有明显降低。与传统的载铜活性炭相比,载铜介孔碳可作为去除水中苯酚的更有效的吸附-催化剂,具有更好的重复使用性。

谭正立[16]等以介孔硅SBA-15为模板,焦糖和呋喃醇为碳源,通过多种浇注法制备介孔炭材料。采用低温氮吸附、透射电镜和x射线小角衍射分析模板及介孔炭的织构。结果显示合成的介孔炭成功地复制了SBA-15的结构。以制备的介孔炭作载体担载钴钼合成了加氢脱硫催化剂,利用x射线能谱、透射电镜能量分布谱及一氧化氮化学吸附评估了催化剂的活性及活性点分布,结果表明介孔炭担载的催化剂活性高于活性炭担载的同类催化剂。

张华[17]等利用介孔碳作为载体,制备介孔碳担载Pt-WO3复合催化剂应用于质子交换膜燃料电池(PEMFC)电极。以苯为碳源,采用气相沉积法复制介孔Si02 Al-SBA-15模板结构合成石墨化介孔碳Cg,采用浸渍法制备无定形介孔碳CMK-3。通过分步沉积,将Pt和WO3担载到介孔碳载体上,采用比表面分析(BET)、X线衍射(XRD)、透射电子显微镜(TEM)、循环伏安法以及单电池极化性能测试对介孔碳担载的复合催化剂进行表征。结果表明:介孔碳作为催化剂载体,其孔道结构有助于催化剂的均匀分散,从而提高催化剂的电催化剂活性。由于石墨化介孔碳的导电性能高于无定形介孔碳,因此Pt- WO3/Cg比Pt-WO3/CMK-3具有更好的电极催化活性。

石国军,沈俭一[18] 用镍离子和次磷酸盐在473K时在介孔碳上发生的固相反应,制备了在介孔碳孔道有高分散度的Ni2P/MC。这种催化剂在喹啉加氢脱烃和噻吩加氢的反应中显示了更高的催化活性。

石国军, 赵鹬[19]等自制的介孔碳CMC具有比传统活性碳AC更大的比表面积、孔径和孔体积,以其为载体,在浸渍液中加入螯合剂,采用等量浸渍法制备了Co-Mo/CMC和Ni-Mo/CMC催化剂,分别用于模型汽油和柴油加氢脱硫反应。结果表明,Co-Mo/CMC和Ni-Mo/CMC催化剂具有比Co-Mo/AC催化剂更好的织构性质和加氢脱硫活性。在模型汽油的加氢脱硫反应中,Co-Mo/CMC催化剂活性比工业催化剂Co-Mo/Al2O3高得多;而在模型柴油的加氢脱硫反应中,Ni-Mo/CMC催化剂活性也比工业催化剂FH-98高得多。

本文来源:https://www.bwwdw.com/article/hw6v.html

Top