数学里的 e 为什么叫做自然底数

更新时间:2024-06-30 00:07:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

数学里的 e 为什么叫做自然底数?是不是自然界里什么东西恰好是 e?修改

我的意思是它和“自然”有什么关系?为什么这个数要叫做“自然底数”呢?修改 举报4 条评论 分享 ? 邀请回答

按票数排序按时间排序 17 个回答

赞同2205反对,不会显示你的姓名

张英锋,好答案不在对错,在于让心智获得更多自由。

陈成、乔乔、郁欣 等人赞同

好问题,让我尝试不用公式,用跨越7000年人类文明的方式,来解读e的自然之美,争取有中学基础的人就能看懂。

e有时被称为自然常数(Natural constant),是一个约等于2.71828182845904523536……的无理数。

以e为底的对数称为自然对数(Natural logarithm),数学中使用自然(Natural)这个词的还有自然数(Natural number)。这里的“自然”并不是现代人所习惯的“大自然”,而是有点儿“天然存在,非人为”的意思。就像我们把食品分为天然食品和加工食品,天然食品就是未经人为处理的食品。

但这样解读“自然”这个词太浅薄了!为了还原全貌,必须穿越到2500多年前的古希腊时代。

(你也知道,穿越剧都很长(>﹏<),不喜欢长篇大论的,可直接跳到后面看结论。)

“自然”的发明

我们知道,人类历史上曾出现过很多辉煌的文明,例如大家熟知的四大文明:古巴比伦、古埃及、古印度河以及古代中国。

但是要说谁对现代文明的影响最大?对不起,四大文明谁都排不上!真正对现代文明影响最大的是古希腊文明,特别是古希腊的哲学、科学思想,是整个现代文明的源头和基石。这里并不是要贬低四大文明,现代文明也从各文明继承了大量的文化遗产,只是相比古希腊要少很多。

现代人的基础教育,无论是什么国家、什么社会制度、什么民族,在教科书里除了介绍自己的古代成就外(如四大发明),还会大篇幅的介绍古希腊的科学、哲学思想,来启蒙学生的心智,这是跨越国界的共同做法。

大家都这样做的原因,就是因为古希腊哲学家发明了科学的思维方法和“自然”(Natural)这个词,在理论中用自然来取代具体的神灵,这是人类文明史上划时代的发明。如果没有这个发明,现代文明可能还会晚出现数千年,所以这是至关重要的进步。

在古希腊文明之外的古文明里,人们解释世间万物的运行时,总是要引入神灵等超自然、拟人化的因素。例如,得病了就认为鬼神附体,洪水泛滥就认为天神发怒,石人一出天下就可以造反了,总有一个超自然的神灵在操纵万物的运行。人们偏爱形象而戏剧化的解释,拟人化的神灵恰恰具有形象、戏剧化的特点,最易于接受和传播。现代喜欢希腊神话的人数,也远多于喜欢希腊哲学的。电视里最流行各种奇幻故事,例如狼人、吸血鬼什么的。古代人也一样,不同的是我们知道这是假的,古人则认为是真的,这成为他们理解世界运行的思维定势。

直到公元前624年,泰勒斯的出现,才第一次用自然取代神灵的位置。

泰勒斯被称为“科学和哲学之祖”、“科学之父”、“哲学史上

第一人”!(还有比这更牛的称号吗?)

其实泰勒斯是个多神论者,他认为神是存在的,是神让万物有了自己内在的规律。但解释万物的运行,不能靠凭空的制造故事,要靠坚实的证据来发现这些规律,并用理性的方法解读。这就是泰勒斯的最大贡献,开创了一套认识世界的全新思维方法,他关注的是证据、规律、理性,而不是神。

尽管泰勒斯提出的理论现在看起来很粗糙。但是人们不再需要像宗教一样,把旧理论看成是不可否定的权威结论。只要有坚实的新证据和理性的推理,旧理论可以被修改或推翻,更好的理论就可以建立起来。这是一种可靠的、可进化的理论体系。相反,宗教是停止进化的、只能膨胀的理论体系,例如你只能解读圣经,但不能否定圣经。

后来的希腊哲学家不断借鉴和发展泰勒斯的理论,建立了“自然”(φ?σι?)的概念,“自然”代表万物因为本源而发生自然而然的变化。赫拉克利特还引入了逻各斯(希腊语:λ?γο?,英语:Logos)的观点,用以说明万物变化的规律性。逻各斯原来是指语言、演说、交谈、故事、原则等,这里的逻各斯则主要指一种尺度、大小、分寸,即数量上的比例关系。后来对数的发明人纳皮尔就用Logos和arithmos(算法)创造了单词Logarithm 来命名对数法,经过后人简化变成了对数符号log。

“自然”与美

古希腊的学者还给“自然”赋予美的含义,他们认为规律性就是一种和谐感,数学的比例是种超越肉体感官、只能靠心智才能领悟到的美。毕达哥拉斯就是其中最极端的代表,他对数学美的狂热追求超过了偏执的程度,美像神一样不可冒犯,毕达哥拉斯主义走向了科学的反面,成了宗教。

毕达哥拉斯主义者庆祝日出

这种宗教的狂热驱动他和信徒们不断的去挖掘“自然”之美,并在数学之外的音乐、建筑、雕刻、绘画等领域发现了大量的比例关系,最有名的是毕达哥拉斯定理(中国叫勾股定理)。毕达哥拉斯认为所有图形中,圆是最对称的,所以圆是最完美的图形。参见毕达哥拉斯学派美学思想(朱光潜)

“自然”思想的意义

雷军说得好,“在风口上,猪都会飞”!就像乔布斯开启了移动互联网时代,泰勒斯则开启了古希腊哲学时代。

古希腊时代是一个科学、哲学大爆炸的时代,原本黑暗的天空中突然爆发出无数的新星:赫拉克利特、毕达哥拉斯、德谟克利特、苏格拉底、柏拉图、亚里士多德、阿基米德、欧几里得、希波克拉底等等,都因为得益于这套思维方法,发现了大量的自然规律,成为各学科领域里开天辟地的先贤。

古希腊人还把自然的概念引入社会领域,来分析社会中的现象和规律。例如亚里士多德就曾经激烈的抨击借贷,认为在所有赚钱方法中,利息是最不自然的。

以自然作为基础,会比人为强制规定作为基础更稳定和可靠。 例如:

英尺(foot)的长度就是根据人的脚长来人为规定,人的脚长差异太大,历史上英尺发生过很多次变化,不稳定,这是不自然的。

而海里的长度则接近自然,如下图,海里是根据地球周长计算的,是1角分的长度,变化就极小。

对比之下,宗教等理论体系的基石并不是自然的,靠的是强制手段来确立的权威,这是不稳定的。当强制手段不再有效时,就会使宗教分裂成各种教派。

自然思想不同于宗教,靠的是坚实的观察证据和理性思维,任何人都可以反复验证,具有可证伪性。这样打下的基础就非常的稳固。正是这种稳定性和可靠性,古希腊思想被越来越多的人所接受,对后人产生了巨大的影响,几乎奠定了现代所有科学领域的基础。

经过2500多年的不懈努力,终于在古希腊文明所铺就的最稳固基石上,人类建立起了现代文明的宏伟大厦。

自然数中的“自然”

古希腊认为像1、2、3这样的数,是事物本身就有的属性,可以用来描述日常事物的数量和顺序,无需过多解释,就是3岁小孩也能快速理解,所以这些数被称为自然数(Natural number)。

但这种朴素的自然观限制了数的范围,无法解释0,负数、分数、小数等数。古希腊人认为这些数并不自然,是人为了计算而发明出来的,不是自然的数。

毕达哥拉斯就非常厌恶无理数,无理数的不规律破坏了和谐美。他的门生希帕索斯Hippasus就是因为发现了√2并公布出去,居然被毕达哥拉斯以渎神的罪名被淹死了,这被称为数学史上的第一次數學危機。后人认为毕达哥拉斯也发现了黄金分割率,但因为也是无理数,所以一直秘而不宣。

现代我们知道,没有受过基础数学教育的人要想理解这些数,不仅需要了解更复杂的概念模型,还要熟悉加、减、乘、除等运算方法,只有这样才能完全明白。而更复杂的数,例如无理数、代數數和超越數,也需要了解更复杂的运算。

我们的主角e,就是超越数,既然理解e的含义需要理解相关的运算,而这些运算最早都和利息有关,所以我们继续穿越。从古希腊再往回穿越4000年,穿越到7000年前的苏美尔文明时代。

利息的发明

7000年前,美索不达米亚的苏美尔人因为发达的农业和贸易,建立起人类最早的文明和城市,参见

? ?

然后再找出收益最接近10倍,100倍,1000倍的年份指给土豪 土豪一看第4年、第7年、第10年就肯定超过预期收益,非常高兴!

经理用这张表查找收益,再找到最接近收益的大体年份的过程,就是利息的逆运算,是最简单的对数运算,这个表就是对数表的雏形。

其实这和我们根据加法表进行减法运算、根据乘法表进行除法运算是同一个道理。 例如知道了

好了,放松一下大脑,继续回来穿越历史。

对数发明的历史

据说4000多年前,古巴比伦时代的人们就发明对数和对数表了,但因为我没找到资料证实,只能从近代开始。

16、17世纪,英、法加入了大航海的行列,开始了美洲殖民地的开拓,远洋贸易变得日益频繁。那时的人们已经知道地球是球形,大海上船只的位置靠经纬度来确定。

纬度测定很容易,几千年前人们就知道,通过测量北极星的仰角,可以估算出船已经在南北方向航行了多远。但是经度的测量不是一般的困难。在茫茫的大洋上,如果无法准确测定船只的经度,代价会极为高昂。

1707年,四艘英国战舰击败法国地中海舰队回航,10多天的浓雾让舰队完全迷失,因为算错经度,舰队触礁,两千名士兵死亡。1714年英国悬赏2万英镑(相当于现代的2000多万人民币),寻求精确测得经度的方法。

,就可以很快知道

的除法逆运算结果了。

对于商人来说,与市场上的同类对手竞争,谁的航海定位越准确,意味着风险越低、利润越高。 对海军也是,同样的战舰,定位越准确,航行的时间越短,在战争中速度往往是决胜的关键。

经度的精确测量问题直到18世纪才得到有效解决,这归功于约翰·哈里森发明了高精度机械钟表。这段历史还被拍成了电影和记录片,推荐一本精彩的书《经度:一个孤独的天才解决他所处时代最大难题的真实故事》和罗辑思维的节目《击溃牛顿的钟表匠》。

击溃牛顿的钟表匠[罗辑思维]No.23

http://v.youku.com/v_show/id_XNTU3ODc1MzYw.html

但是在哈里森之前的数百年里,人们只能求助于天文学家来解决,因为天空就是人们最早、最精确的钟表,太阳、月亮、星星等天体就是上面的表针,读懂这个钟表,就可以知道时间和经度了。

天文学家观测天体,计算出运行的轨道,来预测未来几年每个时间点上天体所在的精确位置,英国天文学家以格林尼治天文台的时间为基准,再把时间和天体位置整理成详细的表格,公开出版发行。这套星表可不便宜,星表加上六分仪售价约20英镑,相当于现在2万人民币,即便这样也经常脱销。海上的人用六分仪测量天体,再去查那本高价天文表格,求得当地时间和格林尼治时间,知道两地的时间差,就知道现在的经度了。

16世纪和17世纪之交,天文学家第谷和开普勒通过大量的观测,绘制了当时最精确的星图,解决了天文学家天文数据精度不足的难题。有了高精度的星图,全欧洲的数学家开始了天体轨道的计算竞赛,很多科学家也因此获得了商业和学术上的丰厚回报。那时的天文学家、数学家可不是像现代这么冷门,更像当今那些IT、金融等热门行业里的精英一样,享受着人人羡慕的不菲高薪。

顺便说一下,日心说之所以能取代地心说,也是因为日心说模型更简洁,不仅计算起来更简单,而且预测非常准确,可以很好的解释行星逆行等现象,这是地心说完全做不到的。

即使这样,要想预测天体的运行,其计算也是极其繁琐和浩瀚的,在解决计算问题时,数学家们发明了大量崭新的数学理论和计算工具,包括对数、解析几何、微积分和牛顿力学等伟大的创新。可以说天文学是当时科学界最闪亮的宝石,是当时的高科技热门产业。

其中,对数的发明人就是約翰·納皮爾。

纳皮尔是天文学家、数学家,在计算轨道数据时,也被浩瀚的计算量所折磨。

\看起来在数学实践中,最麻烦的莫过于大数字的乘法、除法、开平方和开立方,计算起来特别费事又伤脑筋,于是我开始构思有什么巧妙好用的方法可以解决这些问题。\ --约翰·纳皮尔,《奇妙的对数表的描述》(1614) 《e的故事:一个常数的传奇 》

但纳皮尔不是一般人,不想像IT民工一样苦逼的重复劳动,于是用了20年的时间,进行了数百万次的计算,发明了对数和对数表,堪称学霸中的战斗机。

为了理解对数计算的优势,我们通过案例来说明,下面的表格里有两个数列:

第1行是自

然数,他们是等差的;

第2行是2的倍数,他们是等比的;

要计算第2行的等比数列中任意两个数的乘积,例如

先到第1行的等差数列,寻找对应的数,16对应4,64对应6; 然后做加法,

,再查找10所对应等比数列的1024;

得到计算结果就是

借助这个表,仅靠心算就可以用的加法,完成麻烦的16×64乘法。

,变为

,对应结果为8。

同样也可以进行除法变减法的运算,把

把这个表变的更长,就可以计算数值更大的乘法,这个表就是极度简化的对数表。 以上仅仅是对数的优点之一,对数的易于计算,大大减少了数学家、天文学家的计算量。 拉普拉斯认为“对数的发现,以其节省劳力而延长了天文学家的寿命” 伽利略说过“给我空间、时间及对数,我就可以创造一个宇宙。”

如果把对数表的数列设计成尺子,就成了计算尺。有兴趣可以读果壳网的《如果没有计算器,我们就用计算尺吧》

把直尺掰弯了就成了柱状算尺,像不像风水大师的道具?

微积分中的e

有人说:我不懂微积分和导数,估计看不懂!

没关系!你可以这样理解,积分是升维的过程,微分是降维的过程。 例如

把一张张纸叠起来变成厚厚的词典,这是从2维变成3维的升维,这是积分;

把一大块羊肉,切成一片片羊肉片,就是从3维为变2维的降维,这是微分。

在微积分中,底数为e的指数函数

举个例子: 西瓜都切过吧?

无论你怎么切一个实心球,其横截面都是圆面,也就是3维降2维,还是和圆有关。 2维的圆面也是有很多1维的同心圆组成,也就是2维降1维,还是和圆有关。 如上所说,球被降维了2次还是和圆有关,π这个常数你是甩不掉的。 这一点对更高维度的球也适用,参见n维球面。

也是这样,而且比球面更厉害 无论如何降维,

总是老样子,一点儿都没变!

,其导数还是这个函数

,也就是不论求多少次导数,其

导数就像一个常量一样永远是恒定的。不知道别人的感觉如何,反正我第一次知道时是很惊奇的。

就好像你切掉孙悟空的一部分,你以为是一小块肉,睁眼一看,居然是另一个孙悟空,而且一样大! 太匪夷所思、太好玩儿了!大刘!我知道怎么化解《三体》外星人的降维攻击了! 下面就是

在直角坐标系中的样子

美妙的螺线

在上面的部分中,指数函数

我们知道二维坐标系除了直角坐标系外,还有一种常用的是极坐标系,如下图

的美并没有真正的体现出来。

让我们换一个视角看,你一定会大吃一惊。

我们把指数函数

换成极坐标,就变成了

是点与极轴的夹角。

这时的指数函数就会变成下图的样子,这个螺线叫对数螺线(Logarithmic spiral),又叫等角螺线。 之所以叫等角螺线,是因为在极坐标中,螺线和射线的夹角始终是一个固定夹角,如下图所示,蓝线每次穿过射线时,其夹角是固定的,也就是等角,我们在后面会用到这个等角特性。

有人说:等等!我好想在哪里见过这货?

不对,这个图,好像有什么东西乱入了!>_<#

这就是人体曲线,啊不,是斐波那契螺线,网上很流行玩这种摄影,都快被玩坏了。

柯南的搞笑甩湿发秀 Conan Wet Hair

http://v.youku.com/v_show/id_XNzU5MDE2MDM2.html

柯南的表情好贱!

斐波那契数列就是1,1,2,3,5,8,13,21,34,55,89……这样的数列。 其特点是前两个数加起来就是下一个数,例如 1+1=2 1+2=3 2+3=5 …… 34+55=89 ……

用这些数画出来的半圆,可以拼接成下面的螺线形状,这就是斐波那契螺线。

套用在美女图片上就可以这样玩,虽有过度解读之嫌,但可以获得极好的传播效果。

有趣的是这个数列还和黄金比例有关,例如55/34≈1.6176,接近黄金分割比例1.618,数列的数字越到后面,结果就越趋近于黄金分割这个无理数,如下图

不过斐波那契螺线仅仅是对一种叫黄金螺线(Golden spiral)的近似,黄金螺线是一种内涵黄金分割比例的对数螺线,下图红色的才是黄金曲线,绿色的是“假黄金螺线”(斐波那契螺线),近似却

不重合。

很多科学家发现对数螺线宙中到处都是对数螺线

在自然界中广泛存在。从大如星系、台风,到小如花朵、海螺……宇的身影

原来e以这种特殊的方式隐藏在自然之中。需要注意的是,这不是e被称为自然底数的原因,这和大自然没太大关系。

为什么自然界中存在这么多的对数螺线呢?

因为对数螺线具有等角性,受环境影响,很多直线运动会转变为等角螺线运动。

我们以飞蛾扑火为例

亿万年来,夜晚活动的蛾子等昆虫都是靠月光和星光来导航,因为天体距离很远,这些光都是平行光,可以作为参照来做直线飞行。如下图所示,注意蛾子只要按照固定夹角飞行,就可以飞出直线,这样最节省能量。

但自从该死的人类学

会了使用火,这些人造光源距离很近,是放射型光源,可怜的蛾子就开始倒霉了。

蛾子还以为按照与光线的固定夹角飞行就是直线运动,结果越飞越坑爹,飞出了等角螺线,飞到火里去了,这种现象还被人类称为昆虫的正趋光性。

蛾子说:

趋你妹的光啊,傻瓜才瞪着光飞,不知道会亮瞎眼啊?!

我们完全被人类误导了,亿万年才演化出的精妙直线导航方法,被人类的垃圾光源干扰失效了! 不用假慈悲的飞蛾扑火纱罩灯了,凸(#‵′)凸,赶紧把灯关了吧!

同样的现象在其他直线运动中也可以看到,例如流体本来是直线运动的,但在地球自转的作用下就会发生偏移,于是流体就像飞蛾一样走出类似等角螺线的形状,天上的台风和水中的漩涡就是这样形成的,不过实际情况远比这要复杂,只能近似这样考虑。

关于对数螺线还有一个小笑话。

对数螺线是笛卡儿在1638年发现的,雅各布·伯努利也做了研究,并发现了许多非常优美的特性,类似于我们之前说的给

降维的结果还是自身。

他十分惊叹和欣赏这种美,要求死后自己的墓碑上一定要刻上对数螺线,以及墓志铭“纵使改变,依然故我”(eadem mutata resurgo)。

结果石匠同志误将阿基米德螺线刻了上去,雅各布酒泉有知一定会把棺材掀翻的! (╯ ̄皿 ̄)╯︵┴─┴

阿基米德螺线是这样的:

常人的确看不出区别,你能看出来吗?千万不

要搞混啊!

好了!长篇大论快结束了,能坚持到这的都是Winner!下面开始讲为什么叫自然底数了。

对数的底数

对数中最常用的底数是10、2和e,

为什么要以10为底数?

因为我们使用10进制,数量级和科学计数法也是10的倍数,例如阿伏伽德罗常数所以

10进制是数字表示法中最容易普及的,根源是我们有10个手指,人们初学数字时都喜欢借助10个手指学习1、2、3……10。到了学加减运算时,更是喜欢借助手指计算。不仅老师认为这样教学直观,学生也认为这样练习方便。通过教育,这个强大的习惯,被最广泛的传播和固化下来。估计章鱼要是进化出了文明,可能更喜欢8进制。

的逆运算,以10为底的对数 lg x最常用、最方便,所以又称常用对数。

为什么要以2为底数? 因为2倍或成倍式的增长,即

,是我们日常中最简单的指数式增长。我们经常说数量成倍、翻

倍、翻番、翻两番,都是2倍率的增长。 你可能也发现了,前面的存款例子实际上都是算,底数为2的对数 lb x 也会比较常见。

虽然对数的底数2和10是人们使用体验和认知体验最好的对数,但是在数学中,这两个数却是不自然的,因为都是在适用人的需要。

为什么e被称为自然底数? 用e做底数的对数表达方式是 ln x

按照古希腊哲学家的自然思想,自然是指万物的内在规律,就像自然数一样,是事物本身的属性,不以人的喜好而变化。

前面在讲“利息中的e”时,曾拿π和e做过对比。

,因为这样的例子最容易理解。所以

的逆运

? ? ?

边数越多越接近圆,利滚利越多越接近最大收益 一个对角线为1的多边形,其周长最大值是π

一个本金为1利率为1的存款,其存款余额的最大值是e

按照古希腊的自然思想来看:

? ?

对于一个完美的圆来说,π才是自然的,是圆本身的属性,尽管从数值上是一个“无理”的数。 对于最快速的指数增长来说,e才是自然的,这是指数增长本身的属性。

而科学家们也发现,在做数学分析时,用e做底数的对数 ln x 做计算,其形式是最简约的,用其他对数例如lg x 做计算,都会画蛇添足的多一些麻烦。

ln x 就像美学上的“增之一分则太长,减之一分则太短”。

对数学家来说,最简就是最美。这是一种纯理性的美,通过感官是无法欣赏的,只有熟悉数学的人才能深刻的感受到。这种美令无数数学家为之痴迷,虽然不会像毕达哥拉斯那样狂热,但也终其一生孜孜以求。 结论

1. 2. 3. 4.

历史上,\自然\是一种划时代的思维方法,自然还有和谐、完美的内涵 随着利息、对数、指数的发明,人们发现了e的存在 1元存1年,在年利率100%下,无穷次的利滚利就会达到e e和π一样都是内在规律,反映了指数增长的自然属性

5. 6. 7.

大自然中到处都有对数螺线的身影

其他底数都是发明出来方便人使用,只有e为底数是被发现的 数学家发现以e为底数的对数是计算中最简、最美、最自然的形式

把e冠以自然底数、自然常数之名,把e为底数的对数称为自然对数,是数学家们用自己的方式对e所进行的美学评价。

2004年Google公司IPO上市,创始人Larry Page和Sergey Brin决定上市融资总额为2718281828美元,也就是e的前10位数字。因为他们都精通数学,很喜欢e的自然之美,当然也希望公司能像一样实现指数型高速增长。

Google其实是Googol的错误拼写,Googol代表靠

指数增长了。

这样的天文数字,实现这样大的数看来也只能

本文来源:https://www.bwwdw.com/article/hs33.html

Top