Degradationbehaviorof Mg-based biomaterials containing different long-period stacking ordered phases
更新时间:2023-05-30 08:15:01 阅读量: 实用文档 文档下载
镁合金,LPSO
OPEN
SUBJECTAREAS:
MECHANICALENGINEERINGMETALSANDALLOYS
DegradationbehaviorofMg-basedbiomaterialscontainingdifferentlong-periodstackingorderedphases
QiumingPeng1,JianxinGuo1,HuiFu1,XuechengCai1,YananWang1,BaozhongLiu1,2&ZhigangXu3
12
Received18July2013Accepted
13December2013Published9January2014
StateKeyLaboratoryofMetastableMaterialsScienceandTechnology,YanshanUniversity,Qinhuangdao066004,China,SchoolofMaterialsScience&Engineering,HenanPolytechnicUniversity,Jiaozuo454000,China,3NSFEngineeringResearchCenterforRevolutionizingMetallicBiomaterials,1601EastMarketStreet,Greensboro,NC27411,USA.
Correspondenceandrequestsformaterialsshouldbeaddressedto
Q.M.P.
(pengqiuming@gmail.
com)
Long-periodstackingordered(LPSO)phasesplayanessentialroleinthedevelopmentofmagnesiumalloysbecausetheyhaveadirecteffectonmechanicalandcorrosionpropertiesofthealloys.TheLPSOstructuresaremostlydividedto18Rand14H.However,todatetherearenoconsistentopinionsabouttheirdegradationpropertiesalthoughbothofthemcanimprovemechanicalproperties.HereinwehavesuccessfullyobtainedtwoLPSOphasesseparatelyinthesameMg-Dy-ZnsystemandcomparativelyinvestigatedtheeffectofdifferentLPSOphasesondegradationbehaviorin0.9wt.%NaClsolution.Ourresultsdemonstratethatafinemetastable14H-LPSOphaseingraininteriorismoreeffectivetoimprovecorrosionresistanceduetothepresenceofahomogeneousoxidationfilmandrapidfilmremediationability.TheoutstandingcorrosionresistantMg-Dy-Znbasedalloyswithametastable14H-LPSOphase,coupledwithlowtoxicityofalloyingelements,arehighlydesirableinthedesignofnovelMg-basedbiomaterials,openingupanewavenueintheareaofbio-Mg.
M
agnesium(Mg)alloyshaveattractedagreatdealofattentionasorthopedicbiodegradableimplantmaterialsduetotheirpropermechanicalpropertiescomparabletonaturalboneandgoodbiocompat-ibility1.Incomparisonwithceramicsorpolymericmaterials,metallicMgmaterialsaremoresuitablefor
load-bearingapplicationsduetotheircombinationofhighmechanicalstrengthandfracturetoughness2.Moresignificantly,thedegradationproductisasoluble,non-toxicoxidesorhydroxideswhichcantemporarilyenhanceosteoblastactivityanddecreaseosteoclastnumberduringboneremodelling3.TheseintriguingcharacteristicshavemadeitpossibleforMgalloystobedevelopedintodegradablebio-Mgimplants.However,themainbottleneckofdegradablebio-Mgstentsliesinitsfastcorrosionratewhichleadstoweakmechanicalintegrity.Therefore,duringthehealingprocesstheycannotprovideenoughmechanicalsupport,resultinginbloodvesselrestenosis4.Consequently,thedevelopmentofnewbio-Mg-basedmaterialbecomesacriticalissue.
Recently,Mgalloyswithlong-periodstackingordered(LPSO)phaseshavebeenfoundinternaryMg-Zn-RE(RE5Y,Gd,Tb,Dy,Hoetc.)alloys5–7.ThemajortypesofLPSOstructuresinvolvethe18Rand14Hmodels.TherelationshipbetweenLPSOphasesandmechanicalpropertieshasbeenwellconfirmed.Suzukietal.8reportedthatasmallamountofZncanincreasethenumberofstackingfaultsinMg-Ybasedalloysbyintroducing18R-LPSOphase,whereinthemovementofdislocationscanbeprohibited,resultingintheimprovementoftensilestrength.Yamadaetal.9pointedoutthattheadditionofZnisattributedtotheformationof18R-LPSOphaseinMg-2.1Gd-0.6Y-0.2Zr(at.%)alloy,inwhichboththestrengthandplasticityareenhancedsignificantlyatlowtemperatures.Theseimprovedmechanicalpropertiesarewellelucidatedintermsoftheincrementofcriticalresolvedshearstressofbasalornon-basalslips10,theinterfacebetweenLPSOphaseandMgmatrix11andtheformationofkinkbands9,12–14.
Comparedtomechanicalproperties,theeffectofLPSOphasesoncorrosionpropertiesisunclear.Ingeneral,theLPSOphaseactsasaheterogeneousspot,andthenthepitting/galvaniccorrosionmightbeincreased15.However,Zhangetal.16recentlyreportedthattheas-extrudedMg-Gd-Zn-Zralloyexhibitalowanduniformcorrosionrateof0.17mm/yinHank’ssolutionowingtothepresenceof14H-LPSOphase.Zhaoetal.17verifiedthatthecorrosionpropertiesofMg-Zn-Yalloycontaining18R-LPSOphaseinsimulatedbodyfluidarebetterthanconventionalengineeringMgalloyssuchastheAZ31,WE43,ZK60andZX60alloys.Unfortunately,bothstudiesdidnotprovidedetailedmechanismswithrespecttotheselowdegradationrates.
镁合金,LPSO
objectivesintheMg-2Dy-0.5Zn(at.%)alloy,inwhichboth18R-LPSOand14H-LPSOphasesareproducedindependentlybytuningtheheattreatmentprocessing.TheinfluenceofLPSOphasesoncorrosionpropertiesin0.9wt.%NaClhasbeeninvestigatedandthecorrosionmechanismshavebeenclarifiedindetail.Theseresultsprovidesomevaluablecluesfortheexplanationofdegradationbeha-viorsofdifferentLPSOphases,aswellasforthedeterminationofsuitablethermo-mechanicalprocessinMg-Zn-RE-basedalloyscon-tainingLPSOphasesinthefuture.
Figure1|DSCcurvesoftheas-castMg-2Dy-0.5Znalloyataheatrateof66
C/min.
Inaddition,thepresenceofdifferentLPSOstructuresiscloselyassociatedwithsolidificationprocessandheattreatmentcondition.ThecorrosionrateofMg97.25Zn0.75Y2alloycontainingtheLPSOstructurepreparedbyrapidcoolingissignificantlydependentonphasemorphology18.An18R-LPSOphasecanbedetectedinas-castordeformedsamples,whilsta14H-LPSOphasefrequentlyformsafterisothermalheattreatmentatelevatedtemperatures19.Both18Rand14HLPSOphasesareofparticularimportancetoimprovethemechanicalpropertiesfromtheviewpointofpractice,therefore,itisverynecessarytounderstandthedifferenceincorrosionprop-ertiesbetween18R-LPSOand14H-LPSOphases.
Basedontheaboveanalysis,twoquestionsareproposed:(i)whetherthecorrosionmechanismisthesameforboth18R-LPSOand14H-LPSOphases?(ii)whichphaseisbettertoimprovethecorrosionpropertiesalthoughbothofthemplayanessentialroleonimprovingthemechanicalproperties?Inordertoanswerthesequestions,itisbettertoobtainthedifferentLPSOphasesinthesamealloysystem,whichcaneliminatetheeffectofdifferentalloyingelementsoncorrosionproperties.Inthiswork,weachievethese
Results
Phasecharacterization.Twopeaksareobservedat539uCand633uCfromtheDSCheatingcurve(Fig.1)oftheas-castMg-2Dy-0.5Znalloy(MDZ-C),whereinthesecondarypeak(633uC)isverywide.TheDSCcoolingcurvealsorevealsthesimilartrend.Themerediscrepancyliesinthevariationofpeakpositions,whichismostlyaffectedbythermalhysteresis.AccordingtoMg-Dybinaryphasediagram20,thesecondarypeakcorrespondstomeltingprocess.Inordertoclarifythefirstpeak,thesampleissolid-solutiontreatedat545uCfor4h(MDZ-545).
ItcanbeseenfromFig.2thattheMDZ-Csampleismostlycomposedofa-Mgmatrix,anet-likeeutecticphaseandasand-wichedblock-shapedprecipitatewithanapproximatecompositionofMg87.88Zn4.91Dy7.21(Fig.2c),paratively,theMDZ-545samplemainlycontainsa-Mg,aeutecticphaseandafinelamel-lar-shapedphasewithanapproximatecompositionofMg89.34Zn4.42Dy6.24(Fig.2f).
Basedonthebright-fieldTEMmicrographoftheMDZ-Calloy(Fig.3a),wecanseethatatypicalsandwichedstructureisdistributedingrainboundaries.Inthecorrespondingselectedareaelectrondiffraction(SAED)patternofgrayphase(Fig.3b)withtheincidenceofelectronbeamdirectionof[1000]Mg(Fig.3c),someextraweakerspotsaredetectedatpositionsn/6(wherenisaninteger)betweendirectspotand(0002)Mgdiffraction,indicatingthattheLPSOphaseis18R-typestructure13,22.Therectangleprecipitateisdistributedalonggrainboundaries(Fig.3d),whichisascribedtoMg24(Zn,Dy)5eutecticphasewithfcccrystalstructure.Thecalculatedavalueis1.023nm(Fig.3e),whichisslightlylessthanthatofMg24Dy
5
Figure2|TypicalSEMgraphsofMDZalloysunderdifferentstates;(a)and(b)theMDZ-Calloy;(c)representativeelementalcompositionof18R-LPSOphase;(d)and(e)theMDZ-545sample;(f)representativeelementalcompositionsof14H-LPSOphase.
镁合金,LPSO
Figure3|(a)typicalTEMgraphoftheMDZ-Csample;(b)and(c)SAEDpatternsof18R-LPSOphasealong[1000]directionandMgmatrixin(a),respectively;(d)eutecticphaseintheMDZ-Calloy;(e)SAEDpatternofeutecticphasealong[114]directionin(d);(f)TEMgraphoftheMDZ-545sample;(g)SAEDpatternof14H-LPSOphasealong[1000]directionin(f).
phaseduetothesubstitutionofDybyZn.Thesimilarfinelaminar-shapedconfigurationisalsoobservedintheMDZ-545alloy(Fig.3f).However,thewidthisreducedandtheaspectratioisincreased.AccordingtotheSAEDoffinelayer-shapedprecipitatealong[1000]Mgdirection(Fig.3g),itisfoundthatsmallperiodicdiffractionspotsattheintervalof1/14ofdistancebetweendirectspotand(0002)Mgreflection.Thespotsof(00014)and(0002)Mgarecoincid-entinthesameposition.Basedonthediffractionpeakappearancealongc-directionandthepreviousresults7,23,itcanbeconfirmedthatthefinelaminar-shapedLPSOphaseis14H-typestructure.Opencircuitpotentialandimmersiontest.Fig.4depictstheevolu-tionofcorrosionpotential(vs.SCE)ofimmersiontest.TheOCPoftheMDZ-Calloyisincreasedfromapproximately21750mVto21579mVin20min.Incontrast,theMDZ-545alloymerelytook3mintoreacharelativelystablevalueof21639mV.Additionally,notethattheactivestatedissolutionpotential(Ecorr)oftheMDZ-C
alloyfluctuatesgreatlyincontrasttotheMDZ-545alloy,whichismainlyascribedtotheruptureofoxidationfilm24.
Theeffectoftheimmersiontimeonmicrostructuresandsurfacemorphologiesofcorrosionproductsarestudiedtounderstandtheformationprocessoftheoxidationfilm.FortheMDZ-Csample,thecoarseprecipitatesingrainboundariesarestillidentifiedclearlyafterimmersingfor10minor30min(Fig.5a-1and5b-1),however,theconfigurationbecomesunclearafterimmersingfor60minand120min(Fig.5c-1and5d-1).Inaddition,itwashardlyobservedcracksonthesurfacefilmofcorrosionproductsafterimmersingfor10and30min.Nevertheless,somecrackscanbeseenbetweensec-ondaryphaseandthematrixafterimmersingfor60min(Fig.5c-2).Underhighmagnifications(Fig5a-3,5b-3and5c-3),ahoneycombcorrosionfilmwithcorrosionproductsisdetected.Moreover,acor-rosionfilmfirstlyformsonthesurfaceofMgmatrix(Fig.5b-3).Withincreasingimmersiontime,thecorrosionfilmgrowstowardsanoblesecondaryphase.Somecracksof,1mminwidthareobservedintheareasbetween18R-LPSOphaseandmatrix(whitearrows,Fig.5c-2).
Nevertheless,itisworthytonotethatthecracksarerecoveredafterimmersingfor120min(Fig.5d-2and5d-3),suggestingthattheremediationofoxidationfilmoccurs25.AnotherelucidationisthattheMDZ-Calloytakesabout120mintoformacompactoxidationfilm26.
AsimilarcorrosionprocessisalsoobservedintheMDZ-545sample.Theprecipitatesbecomevaguewhentheimmersiontimeis60min(Fig.6).Underhighermagnifications(Fig.6a-3,6b-3and6c-3),ahoneycombconfigurationfilmisobservedontheentiresurface.Astheimmersiontimeisextended,theoxidationfilmbecomesmoreandmorecompact.UnlikethediscontinuousoxidefilmonsurfaceoftheMDZ-Calloy,thecorrosionfilmformsonthesurfaceofbothMgmatrixandthe14H-LPSOphaseconcurrently(Fig.6a-3).
Figure4|OCPcurvesofMDZalloysunderdifferentstatesin0.9wt.%NaClsolution.
镁合金,LPSO
Figure5|TheinitiationanddevelopmentofthecorrosionproductsformedontheMDZ-Calloy,(a)afterimmersion10min;(b)30min,(c)60minand(d)120
min.
Cyclicpolarization.Acyclicpolarizationscanprovidesaqualitativeviewofpittingcorrosionmechanismanddeterminesthetrendofundergoingsurfacepittingwhenamaterialisplacedinacorrosivemedium27.ItisparticularlysuitableforMgalloyscontainingLPSOphases,inwhichpittingcorrosionoccursfrequently.ThecyclicpolarizationcurvesoftheMDZ-CandMDZ-545alloysafterdifferenttimeswereshowninFig.7.Thepolarizationcurveswereusedtoestimatethecorrosionpotential(Ecorr),pittingpotential(Epp),andcorrosioncurrentdensity(Icorr)bytheTafel
extrapolationofthecathodicbranches26.Theaveragecorrosionrate(ACR,mmy21)iscalculatedbasedonfollowingequation:
ACR~
IcorrKEw
d
ð1Þ
WhereKisconstantthatdefinestheunitsofthecorrosionrate(,3272mm/A-cm-y).
Ewisequivalentweight(,12g/equivalent).disdensity(,1.7g/cm3
).
Figure6|TheinitiationanddevelopmentofthecorrosionproductsformedontheMDZ-545alloy,(a)afterimmersion10min;(b)30minand(c)60min.
镁合金,LPSO
Figure8|Thesurfacepittingmorphologiesaftercyclicpolarizationtest(10min),(a)theMDZ-Calloy;(b)theMDZ-545alloy.
Figure7|CyclicpolarizationcurvesoftheMDZ-CandMDZ-545alloysatascanrateis2.5mV/sin0.9wt.%NaClsolutionafterimmersingfor10min,2hand4h,respectively.
EISmeasurement.Fig.9ashowstheNyquistspots,measuredatcorrosionpotential,ontheMDZ-Calloyimmersedin0.9wt.%NaClaqueoussolutionsfordifferenttimes.AllEISdiagramsexhi-bitthesameconfigurations.TheBodespots(Fig.9b)demonstratesthatthesamplepresentsahighfrequencyresistivebehaviorfollowedbyahigh/medium(100–10Hz)capacitiveresponse.Additionally,adistortedinductanceloopisobservedatmedium/lowfrequencies(,1–0.1Hz).Thediameterofcapacitiveloopisreducedastheimmersiontimeisincreased.Bycomparison,itisseenfromtheNyquistspots(Fig.9c)oftheMDZ-545alloythattheEIScurvesof1hand4harecomposedoftwoloopsandtheothercurvescontainmerelyaloop.IncontrasttotheMDZ-Csamples,twodifferentcha-racteristicsareobserved,whereinthediameterofcapacitiveloopisincreasedwithincreasingimmersingtimeandtheinductanceloopishardlydetected.
TheSEMgraphsafterEIStestsareshowninFig.10,whereitrevealsthatbothoxidationfilmsarerupturedduringtheEIStest(Fig.10a-1and10b-1).However,underhighmagnificationsoftheMDZ-C(Fig.10a-2and10a-3),thenakedmicrostructureisiden-tifiedinthebottomofcracks.Conversely,anewhoneycomboxida-tionfilmisobservedintheMDZ-545sample,suggestingthattheabilitytoformanoxidationfilmoftheMDZ-545alloyisstrongerthanthatoftheMDZ-Coneaftertheruptureofoxidationfilm.Corrosionproducts.TheXRDresults(Fig.11a)revealthatthephasesintheun-immersedMDZ-CalloyscontainMgmatrixand18R-LPSOphase,whichisconsistentwiththeaboveSEMandTEMresults.ThelowvolumefractionandlimitationofXRDtechniqueisresponsiblefortheabsenceofeutecticphase.Somenewpeaksareobserved,whicharewellassignedtothefollowingcrystallinephase:Mg(OH)2,Dy(OH)3andMgCl2compounds.IntheMDZ-545alloy(Fig.11b),thepeaksareidentifiedasMgmatrixand14H-LPSOphase,whicharepresentinboththeun-immersedsampleandintheoneimmersedfor12h.Nevertheless,comparedwiththeMDZ-Csample,theMgCl2peaksarehardlydetectedintheMDZ-545sample,whileMg(OH)2andDy(OH)3compoundsarestilldetectable.
ThedetailedresultsaresummarizedinTable1.Basically,twoEcorrvaluesshiftforwardpositivelywithincreasingimmersiontime.FortheMDZ-Calloy,theEPPshowsthesametrendasEcorr.However,aconstantEPPof21303mVisobservedintheMDZ-545alloy.TheIcorroftheMDZ-Calloyisincreasedwithextendingimmersiontime,resultinginalargeACRvalue(24mmy21).However,theoppositetrendisachievedintheMDZ-545alloy.Thoughthebackwardscanbreakstheoxidationfilmlayerdown,therelativelystableIcorrandACRvaluesareobserved.TherepresentativeSEMmicrographsoftheMDZ-CandMDZ-545alloysaftercyclicpolarization(10min)areshowninFig.8.InregardstotheMDZ-Calloy,aporousbandalongthegrainboundariesisobserved,whichindicatesthattheoxidationfilmisabsolutelybrokendownduringtheEIStesting(alsoconfirmedinFig.10).Conversely,onlysomeisolatedpittingspotsaredetectedintheMDZ-545alloyaftercyclicpolarizationtest.
Discussion
Inpresentstudy,theprecipitatesaremostlydistributedingrainboundariesintheMDZ-Calloy,whichiscomposedofa-Mgand18R-LPSOphase.18R-LPSOphasedissolvesgraduallyand
14H-
Table1|Electrochemicalparametersofthesamplesderivedfrompolarizationtestsin0.9wt.%NaCl
SampleMDZ-CMDZ-545
Immersedtime10min2h4h10min2h4h
Ecorr(mV)216002154621507216052157121516
Icorr(mAcm22)0.10110.13081.04210.09510.08620.0461
EPP(mV)214532131021213213032130321303
ACR(mmy21)2.33443.020224.0622.19511.99041.0645
镁合金,LPSO
Figure9|Impedanceplotsofalloysimmersedin0.9wt.%NaClsolutionfordifferentimmersiontimes,(a)NyquistdiagramoftheMDZ-Csample;(b)BodeplotsoftheMDZ-Csample;(c)NyquistdiagramoftheMDZ-545sample;(d)BodeplotsoftheMDZ-545sample.
Figure10|SEMmicrographsoftheMDZ-C(a-1,a-2anda-3)andMDZ-545(b-1,b-2andb-3)samplesafterEIS
test.
镁合金,LPSO
ThisexplanationisconsistentwiththeOCPresultsthattheMDZ-Calloytakeslongertimetoreachingbalancepotentialanditspoten-tialfluctuatessignificantlyduetotheruptureofoxidationfilm.Ontheotherhand,theoxidationfilmremediationabilityalsoplaysanimportantroleincorrosionproperties.Itiswell-knownthattheoxidefilmonthesurfaceofMgalloysisnotcompact,andthenthesolutioncanpenetratethroughtheoxidationlayer.Takingintoaccountthereleaseofhydrogenduringcorrosionprocess,theoxidationfilmwillbebrokendownwithextendingimmersiontime.ThisisthereasonforthecontinuousdecompositionofMgalloys25,28.Therefore,inviewoftheformationfreshsurface,theoxidationfilmremediationabilityiscrucialtodeterminecorrosionrate.BasedonEISresults(Fig.9),thecapacitiveresistanceisreducedwithincreas-ingimmersiontestintheMDZ-Calloy,whileitisenhancedintheMDZ-545onemonotonously.Themainreasonliesinthedifferentoxidationfilmremediationability(Fig.10).AfterEIStesting,thepristineoxidationfilmisbrokendownandtheoxidationfilmreme-diationoccursimmediatelyintheMDZ-545alloy(Fig.10d-10f).Anewcompactoxidationfilmformsinthecracks,whicheffectivelyprohibitsthecontactbetweensolutionmediaandthematrix.Itisconsistentwiththeimmersiontest,whereMDZ-Ctakesmoretime(Fig.5d)toformacompleteoxidationfilm.Thisstrategyofimprov-ingcorrosionpropertiesbyformationofseparatedlayerwasemployedinMg-AlalloybySonget.al.28,29.
Theoretically,thesurfacefilmonMgalloysismainlycomposedofaqueoussolutionmagnesiumoxideormagnesiumhydroxide.Thecorrosionreactionsinneutralaqueousmediaarepresentedbythefollowingequations30–33.
Mg?Mg2zz2e{2H2Oz2e{?H2z2OH{
Figure11|XRDpatternsofalloysbeforeandafter12hofimmersionin0.9wt.%NaClsolution,(a)MDZ-C;(b)MDZ-545.
ð2Þð3Þð4Þð5Þ
Mg2zz2OH{<Mg(OH)2Dy3zz3OH{?Dy(OH)3
LPSOphasegenerateswhenitissolid-solutionheattreatedat545uC.Bothmorphologyanddistributionof14H-LPSOphasearedifferentfromthoseof18R-LPSOphase.Thewidthof14H-LPSOphaseisreducedanditismainlydistributedinsidegrains.TheseoccurrencesareconfirmedbyDSCresult,togetherwiththeSEMandTEMresults.Itisbelievedthatthe18R-typestructureisnotthermodyna-micallystableat/above500uC.Itisbecausethatitcontainsfoura-Mgatomicfaultlayerswhichprovideasimpletransitionalpathwaytoform14H-typeLPSO13,whichisconsistentwiththethermalcalcula-tionsofLPSOphasetransformations7.
AccordingtotheaboveSEMandEISresults,itcanbeconfirmedthatthecorrosionmechanismsaredifferentbetweentheMDZ-C(18R-LPSO)andMDZ-545(14H-LPSO)alloys.Specifically,thedetailedschematicdiagramsforcorrosionprocessexplanationwerepresentedinFig.12.IncontrasttotheMDZ-C(18R-LPSO)alloy,theMDZ-545(14H-LPSO)onepossesseslowercorrosionrate.Therearetwomainfactorsresponsibleforthedecreaseofcorrosionrate.Ontheonehand,differentfromtheMDZ-Csample,itisfaciletoformahomogeneousandcompactoxidationfilmattheinitialcorrosionstageintheMDZ-545one(Fig.5andFig.6),whichisascribedtodifferentformingsequencesofoxidationfilms.FortheMDZ-Calloy,theoxidefilmgeneratesonthesurfaceofMgmatrixfirstandthen
expandstowardthesecondaryphase.Thus,thethicknessoffilmisdifferent,whichresultsintensilestress27.Withincreasingtheimmer-siontime,thetensilestressisincreased,resultingintheruptureoftheoxidationfilmcontainingcorrosionproductsintheinterfacebetween18R-LPSOphaseandMgmatrix.Asaresult,theformedcracksprovidechannelsforthecorrosivesolutiontopenetratethroughandreachthefreshsurface,aswellasforhydrogentorelease.Consequently,thecorrosionprocessoccurssequentially.
However,thefollowingreactionpossiblyoccurswhentheenvir-onmentcontainschlorideion:
Mg2zz2H2Oz2Cl{?2Mg(OH)2Cl2?MgCl2z2H2Oð6ÞAccordingtocorrosionproducts,itcanbeconfirmedthatequation5ismorefaciletoproceedintheMDZ-CalloythanintheMDZ-545one.Chlorideionsareveryaggressivetomagnesium.ChlorideionsintheinterfacetransformMg(OH)2toeasilysolubleMgCl2.Asaresult,thethermodynamicalequilibrium(equation3)isreadilybro-kendownduetotheexistenceofchlorideions,whichdeterioratesthecorrosionpropertiesofthealloys5.ThiscorrosionexplanationagreeswellwiththecurrentopinionthatthecorrosionresistanceofMgalloysisdeterminedbyapartiallyprotectivesurfacefilmwherethecorrosionreactionoccursprincipallyatthebreaksofthefilm.Theseresultsarealsoconsistentwiththetendencyofchlorideioncausingfilmbreakdown,whichacceleratesthecorrosionofMgalloy34.However,thedirectevidencethatthechlorideioniseasiertobeabsorbedonthesurfaceofalloycontaining18R-LPSOphaseisnotdemonstratedinthisworkandfurtherresearchworksarenecessarytoclarifytheirdiscrepancies.
Insummary,paredwiththealloycontaining14H-LPSOphase,itispronetoformsomecracksintheinterfacesbetween18R-LPSOandMgmatrixatthebeginningofcorrosion,whichismostlyrelatedtotheinhomogeneous
镁合金,LPSO
Figure12|Thedetailedschematicdiagramsofcorrosionprocess,a1-a4graphscorrespondtotheMDZ-Calloy;b1-b4graphscorrespondtotheMDZ-545alloy.Itrevealsthatbothrapidformfilmabilityandremediationabilityaretwoimportantreasonsinenhancingthecorrosionproperties.
distributionoftensilestress.Inaddition,asdegradationprocessispreceded,bothsurfaceoxidationfilmsarebrokendown.However,incontrasttoas-castalloycontaining18R-LPSOphase,thealloywith14H-LPSOphaseexhibitsrapideroxidationfilmremediationability,whicheffectivelyinhibitsthecontactbetweensolutionandthematrix.
Methods
Samplepreparation.AnormalcompositionMg-2Dy-0.5Zn(at.%)alloyhasbeenpreparedbychillcastingtechnology.Thealloyhadbeenpreparedinatantalum-crucibleunderacovergasmixtureofCO2andSF6.Aftermixingat720uCfor1h,thealloywascasttothemouldpreheatedat600uC.Thefilledmouldwasheldat670uCfor1hundertheprotectivegas.Then,thewholetantalumcruciblewiththemeltingalloywasimmersedtotheflowingwaterat600ml/s.Whenthebottomoftantalumcrucibletouchedthewater,itstoppedfor2second.Assoonastheliquidleveloftheinsidemeltwasinalignmentwiththeheightofoutsidewater,thesolidificationprocesswasfinished.Thediameterandlengthoftheingotwere70mmand80mm,respectively.ThechemicalcompositionofMg-1.91Dy-0.32Zn(indexedasMDZ-C)wasmeasuredbyX-rayfluorescencespectroscopy.Theelementcompositionwaslowerthanthenominalcompositionowingtotheelementburningloss.Moreover,thetotalcontentofmainimpurities(Cu,FeandNi)islowerthan0.015wt.%.Microstructureandphaseidentification.Themicrostructuralinvestigationswereperformedusingscanningelectronmicroscopywithafieldemissiongun(SEM-FEG,JEOLJSM-7001F).Thestandardmetallographicprocedureswereapplied,includinggrinding,polishingandetching.Thesampleswereetchedinapicralsolutiontorevealgrainboundaries.Theelementalconcentrationinthematrixandphaseswere
investigatedbySEMequippedwithenergydispersiveX-rayanalysis(EDX)(INCAfromOxford).Theaveragevalueswereobtainedbasedonatleastfiverandomspots.Calorimetricresponseoftheas-castalloywasmeasuredusingdifferentialscanningcalorimetry(DSC,STA449C).Aheatingrateof6uC/minwasemployedunderargonpurgeat35ml/min.Thephaseshavebeenidentifiedbytransmissionelectronmicroscopy(TEM,JEM-2010).ThinfoilsamplesfortheTEMobservationwerepreparedusinganIonPolishingSystem(RES101).
Electrochemicaltest.Electrochemicalbehaviorsweretestedusingapotentiostat/frequencyresponseanalysissystem(Bio-logic,VSP).Experimentswerecarriedoutinathree-electrodeelectrochemicalcell,inwhichasaturatedcalomelelectrode(SCE)asthereferenceelectrode,aplatinummeshascounterelectrodeandthespecimenunderinvestigationastheworkingelectrode.Theexperimentswerecarriedoutin0.9wt.%NaClaqueoussolutions.InordertoreducethefluctuationofpH,theratioofsolutiontosurfaceis80mlto1mm2.Duringthewholetest,thetrayswereplacedinanincubator.Thetemperatureintheincubatorwasmaintainedat25uC.Opencircuitpotential(OCP)measurementsweremadebetweentheworkingelectrodeandthereferenceelectrodewithoutcurrentbeingpassedtothecounterelectrodes.This
measurementshowedthepotentialatwhichtheanodicandcathodicreactioncurrentsattheworkingelectrode/solutioninterfacewerebalanced.TheOCPtestswerebegunimmediatelyafterthespecimenwasimmersedinthesolutionandweremeasuredfor6hduration.
Thecyclicpolarizationswereperformedafterimmersingfor10min,2hand4h.Theforwardscannedpolarizationcurvesstartedfromacathodicpotentialof
21800mV,wherethesurfacesofthealloyswerenotyetcorroded,andextendedtothevertexpotentialof250mV.Theforwardscanwasfollowedbyareversescanbacktothefinalpotential21950mV.Thescanratewas2.5mV/s,thestepheightwas1mV.Thesurfacemorphologyaftercyclicpolarizationtestafterimmersingfor10minwasdriedandobservedbySEMimmediately.
Theelectrochemicalimpedancespectroscope(EIS)wascarriedoutatopen
potentialwithanappliedsignalof10mVrms.Thescanningfrequencyrangedfrom100kHzdownto0.1Hz.Thesampleswereimmersedin0.9wt.%NaClsolutionsfordifferenttimes,viz.2h,4h,6h,8hand12h,toinvestigatethecorrosionprocess.AfterEIStests,theMDZ-CandMDZ-545samplesweredriedandobservedbySEMimmediately.
Immersiontestandproductanalysis.Theimmersiontestsweretoinvestigatethecorrosionmechanismandtorevealthedevelopmentandgrowthofcorrosion
productsofMDZalloysinNaClaqueoussolutions.Tothispurpose,threecylinder(Ø1035)specimenscontaining18R-LPSOor14HLPSOphaseswereimmersioninNaClaqueoussolutionsatdifferenttimesviz.10min,20min,60minand120min.Theywerecleanedbyrinsingwithpurewater,andthenrinsedbyethanolanddriedinairpriortoSEM-FEGobservation.
Thephasecompositionofcorrosionproductsonthesamplesimmersedupto12hinthetestsolutionswereconfirmedbyx-rayelectrondiffractiondirectly(XRD,Rigaku).TheXRDanalysiswasperformedbyscanningfrom20uto80uwithastepsizeof0.02uwithCuKaradiation.Thefilamentcurrentandaccelerationvoltagewere30mAand40kV,respectively.
1.Staiger,M.P.,Pietak,A.M.,Huadmai,J.&Dias,G.Magnesiumanditsalloysasorthopedicbiomaterials:Areview.Biomaterials.27,1728–1734(2006).
2.Serre,C.M.,Papillard,M.,Chavassieux,P.&Boivin,G.Invitroinductionofacalcifyingmatrixbybiomaterialsconstitutedofcollagenand/orhydroxyapatite:anultrastructuralcomparisonofthreetypesofbiomaterials.Biomaterials.14,97–106(1993).
3.Janning,C.etal.Magnesiumhydroxidetemporarilyenhancingosteoblastactivityanddecreasingtheosteoclastnumberinperi-implantboneremodelling.ActaBiomater.6,1861–1868(2010).4.Zberg,B.,Uggowitzer,P.J.&Lo¨ffler,J.F.MgZnCaglasseswithoutclinicallyobservablehydrogenevolutionforbiodegradableimplants.NatureMater.8,887–891(2009).
5.Yamasaki,M.,Hayashi,N.,Izumi,S.&Kawamura,Y.CorrosionbehaviorofrapidlysolidifiedMg-Zn-REelementalloysinNaClsolution.Corr.Sci.49,255–262
(2007).
镁合金,LPSO
6.Yokobayashi,H.etal.EnrichmentofGdandAlatomsinthequadrupleclosepackedplanesandtheirin-planelong-rangeorderinginthelongperiodstacking-orderedphaseintheMg-Al-Gdsystem.ActaMater.59,7287–7299(2011).7.Zhu,Y.M.,Morton,A.J.&Nie,J.F.The18Rand14Hlong-periodstackingorderedstructuresinMg-Y-Znalloys.ActaMater.58,2936–2947(2010).
8.Suzuki,M.,Kimura,T.,Koike,J.&Maruyama,K.StrengtheningeffectofZninheatresistantMg-Y-Znsolidsolutionalloys.Scr.Mater.48,997–1002(2003).9.Kentaro,Y.etal.AlloydevelopmentofhightoughnessMg-Gd-Y-Zn-Zralloys.Mater.Trans.47,1066–1070(2006).
´s,G.etal.EffectofmicrostructureoncreepbehaviorofcastMg97Y2Zn110.Garce
(at.%)alloy.Mater.Sci.Eng.A539,48–55(2012).
11.Zhang,J.etal.Researchonlong-period-stacking-orderedphaseinMg-Zn-Y-Zralloy.J.AlloysCompd.558,195–202(2013).
12.Shao,X.H.,Yang,Z.Q.&Ma,X.L.StrengtheningandtougheningmechanismsinMg-Y-Znalloywithalongperiodstackingorderedstructure.ActaMater.58,4760–4771(2010).
13.Zhu,Y.M.,Morton,A.J.&Nie,J.F.Growthandtransformationmechanismsof18Rand14HinMg-Y-Znalloys.ActaMater.60,6562–6572(2012).
14.Tong,L.B.,Li,X.H.&Zhang,H.J.Effectoflongperiodstackingorderedphaseonthemicrostructure,textureandmechanicalpropertiesofextrudedMg-Y-Znalloy.Mater.Sci.Eng.A563,177–183(2013).
15.Ambat,R.,Aung,N.N.&Zhou,W.EvaluationofmicrostructuraleffectsoncorrosionbehaviourofAZ91Dmagnesiumalloy.Corr.Sci.42,1433–1455(2000).16.Zhang,X.etal.BiocorrosionbehaviorandcytotoxicityofaMg-Zn-Yalloywithlongperiodstackingorderedstructure.Mater.Lett.86,42–45(2012).
17.Zhao,X.,Shi,L.I.&Xu,J.Mg-Zn-Yalloyswithlong-periodstackingorderedstructure:Invitroassessmentsofbiodegradationbehavior.Mater.Sci.Eng.C.33,3627–3637(2013).
18.Izumi,S.,Yamasaki,M.&Kawamura,Y.RelationbetweencorrosionbehaviorandmicrostructureofMg-Zn-Yalloyspreparedbyrapidsolidificationatvariouscoolingrates.Corr.Sci.51,395–402(2009).
19.Yin,D.D.etal.EffectsofheattreatmentsonmicrostructureandmechanicalpropertiesofMg-11Y-5Gd-2Zn-0.5Zr(wt.%)alloy.J.AlloysCompd.509,1696–1704(2011).
20.Avedesian,M.M.&Baker,H.ASMSpecialtyHandbook:MagnesiumandMagnesiumAlloys.MaterialsPark,OH:ASMInternational,1999.
21.Bi,G.etal.AnelevatedtemperatureMg-Dy-Znalloywithlongperiodstackingorderedphasebyextrusion.Mater.Sci.Eng.A.528,3609–3614(2011).
22.Abe,E.,Kawamura,Y.,Hayashi,K.&Inoue,A.Long-periodorderedstructureinahigh-strengthnanocrystallineMg-1at%Zn-2at%Yalloystudiedbyatomic-resolutionZ-contrastSTEM.ActaMater.50,3845–3857(2002).
23.Hagihara,K.,Yokotani,N.&Umakoshi,Y.PlasticdeformationbehaviorofMg12YZnwith18Rlong-periodstackingorderedstructure.Intermetallics.18,267–276(2010).
24.Atrens,A.etal.Stresscorrosioncrackingandhydrogendiffusioninmagnesium.Adv.Eng.Mater.8,749–751(2006).
25.Song,G.&Atrens,A.Understandingmagnesiumcorrosion-aframeworkforimprovedalloyperformance.Adv.Eng.Mater.5,837–858(2003).
26.Song,G.etal.Theelectrochemicalcorrosionofpuremagnesiumin1NNaCl.Corr.Sci.39,855–875(1997).
27.Guo,X.etal.InvestigationofcorrosionbehaviorsofMg-6Gd-3Y-0.4ZralloyinNaClaqueoussolutions.Electrochim.Acta.52,2570–2579(2007).
28.Song,G.&StJohn,D.H.Corrosionofmagnesiumalloysincommercialenginecoolants.Mater.Corr.56,15–23(2005).
29.Song,Y.L.etal.EffectofceriumadditiononmicrostructureandcorrosionresistanceofdiecastAZ91magnesiumalloy.Mater.Corr.58,189–192(2007).30.Liu,M.etal.Theinfluenceofyttrium(Y)onthecorrosionofMg-Ybinaryalloys.Corr.Sci.52,3687–3701(2010).
31.Pardo,A.etal.Corrosionbehaviourofmagnesium/aluminiumalloysin3.5wt.%NaCl.Corr.Sci.50,823–834(2008).
32.Sudholz,A.D.etal.ElectrochemicalbehaviourandcorrosionofMg-Yalloys.Corr.Sci.53,2277–2282(2011).
33.Zhao,M.C.,Liu,M.,Song,G.L.&Atrens,A.InfluenceofpHandchlorideionconcentrationonthecorrosionofMgalloyZE41.Corr.Sci.50,3168–3178(2008).34.Dhanapal,A.,Rajendra,S.&Balasubramanian,V.InfluenceofpHvalue,chlorideionconcentrationandimmersiontimeoncorrosionrateoffrictionstirweldedAZ61Amagnesiumalloyweldments.J.AlloysCompd.523,49–60(2012).
Acknowledgments
ThisresearchissupportedbyNSFC(51101142,50821001and51102206),NewCenturyExcellentTalentsinUniversityofMinistryofEducationofChina(NCET-12-0690),ScienceFoundationfortheExcellentYouthScholarsofHebeiProvince(Y2012019)andScienceSupportingProjectofHebeiProvince(13961002D).
Authorcontributions
Q.P.designedtheexperimentsandcontributedtotheexperimentalanalysisand
interpretationofdata,andwrotethemanuscript.J.G.contributedtotheexperimentsandanalysis.X.C.contributedtotheexperimentsandanalysis.Y.W.contributedtothe
experimentsandanalysis.B.L.contributedtotheinterpretationoftheexperimentaldataandcontributedtothewritingofthemanuscript.Z.X.contributedtotheinterpretationoftheexperimentaldataandcontributedtothewritingofthemanuscript.Allauthorsreviewedthemanuscript.
Additionalinformation
Competingfinancialinterests:Theauthorsdeclarenocompetingfinancialinterests.Howtocitethisarticle:Peng,Q.M.etal.DegradationbehaviorofMg-basedbiomaterialscontainingdifferentlong-periodstackingorderedphases.Sci.Rep.4,3620;DOI:10.1038/srep03620(2014).
ThisworkislicensedunderaCreativeCommonsAttribution-NonCommercial-ShareAlike3.0Unportedlicense.Toviewacopyofthislicense,
visit
/licenses/by-nc-sa/3.0
正在阅读:
Degradationbehaviorof Mg-based biomaterials containing different long-period stacking ordered phases05-30
多渠道整合开始NGBOSS第一步TmaxSoft谈运营商统一接口平台建设和管理05-26
复习资料(xptx)12-15
基于AT89C51单片机控制的智能化转速测量仪_毕业论文05-07
(试卷合集5份)2022届江西省名校高一物理下学期期末经典试题05-07
四年级科学上册3.4《鱼儿的奥秘》教学设计大象版〔精品篇〕03-16
2201.某火电厂施工组织设计06-23
施工组织设计(老城区改造)04-09
- 1MG160说明书
- 2Poster 1039-Investigation the effect of different methods of
- 3Chapter 2 The Renaissance Period
- 4The Digital Game-Based Learning
- 5State Based Visualization of PVM Applications
- 6Problem-based Learning in Mathematics
- 7苹果经典广告think different 非同凡想
- 8机械工程材料考试复习题long
- 9Problem-based Learning in Mathematics
- 10Information flow based event distribution middleware
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- Degradationbehav
- biomaterials
- containing
- different
- stacking
- ordered
- period
- phases
- iorof
- based
- long
- Mg
- 软件08-3-逄治明-UC公司人事信息管理系统
- 《教育科研与教师自主专业发展》
- 日语专业2012届论文样本
- 下篇-06 C语言程序设计_2013-2014-2(V2.0)
- 流动性暗流冲击新兴国家货币政策
- (施永荣)信号完整性分析读书报告1-2
- 对马克思哲学革命的多重理解及思想意义
- 来京人员信息登记表(正式版)
- 论“超越法律”的纠纷与多元纠纷解决机制
- MFC下实现位图的透明色显示
- MDM-25PBSM7-TL58A141中文资料
- 题型一 正误判断选择题
- 浅析现代企业的财务管理的特点、目标与监督
- WINDOWS XP系统安装过程
- 油田含油污泥污染与国内外处理、处置技术
- 便携式梯子使用安全管理规范
- 中央财经大学会计专业英语教程Chapter 1
- 大连理工贾振元版机械制造技术基础重点
- JUKI-KE2000HLC连线方法
- KDDI战略和业务分析201307