最新整理数中考试题分类汇编函数与几何图形 doc

更新时间:2023-03-10 04:49:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

中考试卷分类—函数与几何图形(2)

1. 如图4,正方形ABCD的边长为10,四个全等的小正方形的对称中心分别在正方形

ABCD的顶点上,且它们的各边与正方形ABCD各边平行或垂直.若小正方形的边长为x,且0

2. (连云港)如图,现有两块全等的直角三角形纸板Ⅰ,Ⅱ,它们两直角边的长分别为1

和2.将它们分别放置于平面直角坐标系中的ΔAOB,ΔCOD处,直角边OB,OD在x轴上.一直尺从上方紧靠两纸板放置,让纸板Ⅰ沿直尺边缘平行移动.当纸板Ⅰ移动至ΔPEF处时,设PE,PF与OC分别交于点M,N,与x轴分别交于点G,H.(1)求直线AC所对应的函数关系式;(2)当点P是线段AC(端点除外)上的动点时,试探究:①点M到x轴的距离h与线段BH的长是否总相等?请说明理由;②两块纸板重叠部分(图中的阴影部分)的面积S是否存在最大值?若存在,求出这个最大值及S取最大值时点P的坐标;若不存在,请说明理由. 解:(1)由直角三角形纸板的两直角边的长为1和2, 知A2)(21). ,C两点的坐标分别为(1,,,设直线AC所对应的函数关系式为y?kx?b. ···················································· 2分

?k?b?2,?k??1,有?解得?

2k?b?1.b?3.??所以,直线AC所对应的函数关系式为y??x?3. ············································· 4分 (2)①点M到x轴距离h与线段BH的长总相等. 因为点C的坐标为(2,1),

所以,直线OC所对应的函数关系式为y?又因为点P在直线AC上, 所以可设点P的坐标为(a,3?a).

过点M作x轴的垂线,设垂足为点K,则有MK?h.

因为点M在直线OC上,所以有M(2h,h). ···················· 6分 因为纸板为平行移动,故有EF∥OB,即EF∥GH. 又EF?PF,所以PH?GH.

y 1x. 2A P I C N M II O G K B H F E (第24题答图)

x 法一:故Rt△MKG∽Rt△PHG∽Rt△PFE,

GKGHEF1???. MKPHPF21111得GK?MK?h,GH?PH?(3?a).

222213所以OG?OK?GK?2h?h?h.

2213又有OG?OH?GH?a?(3?a)?(a?1). ················································ 8分

2233所以h?(a?1),得h?a?1,而BH?OH?OB?a?1,

22从而总有h?BH. ······················································································ 10分

GHEF1法二:故Rt△PHG∽Rt△PFE,可得??.

PHPF211故GH?PH?(3?a).

2213所以OG?OH?GH?a?(3?a)?(a?1).

22从而有故G点坐标为??3?(a?1),0?. ?2?设直线PG所对应的函数关系式为y?cx?d,

?3?a?ca?d,?c?2?则有?解得 3?0?c(a?1)?d.d?3?3a???2所以,直线PG所对的函数关系式为y?2x?(3?3a). ········································ 8分 将点M的坐标代入,可得h?4h?(3?3a).解得h?a?1.

而BH?OH?OB?a?1,从而总有h?BH. ················································ 10分 ②由①知,点M的坐标为(2a?2,a?1),点N的坐标为?a,a?.

??1?2?S?S△ONH?S△ONG?111113a?3NH?OH?OG?h??a?a???(a?1) 22222221331?3?3·························································· 12分 ??a2?a????a???. ·

2242?2?8当a?33时,S有最大值,最大值为. 28?33?S取最大值时点P的坐标为?,?.

?22?

3. (沈阳)如图所示,在平面直角坐标系中,矩形ABOC的边BO在x轴的负半轴上,

边OC在y轴的正半轴上,且AB=1,OB=3,矩形ABOC绕点O按顺时针方向旋转600后得到矩形EFOD.点A的对应点为点E,点B的对应点为点F,点C的对应点为点D,抛物线y=ax2+bx+c过点A,E,D.(1)判断点E是否在y轴上,并说明理由;(2)求抛物线的函数表达式;(3)在x轴的上方是否存在点P,点Q,使以点O,B,P,Q为顶点的平行四边形的面积是矩形ABOC面积的2倍,且点P在抛物线上,若存在,请求出点P,点Q的坐标;若不存在,请说明理由.

解:(1)点E在y轴上 ··············································································· 1分 理由如下:

连接AO,如图所示,在Rt△ABO中,

AB?1,BO?3,

?AO?2

?sin?AOB?1,??AOB?30 2由题意可知:?AOE?60

??BOE??AOB??AOE?30?60?90

点B在x轴上,?点E在y轴上. ································································· 3分 (2)过点D作DM?x轴于点M

OD?1,?DOM?30

?在Rt△DOM中,DM?点D在第一象限,

31,OM? 22?31??点D的坐标为?··············································································· 5分 ??2,? ·2??由(1)知EO?AO?2,点E在y轴的正半轴上

?点E的坐标为(0,2)

, ?点A的坐标为(?31)·················································································· 6分

抛物线y?ax?bx?c经过点E,

2?c?2

,,D?由题意,将A(?31)?31?2代入y?ax?bx?2中得 ,??22???8??3a?3b?2?1a???9?? 解得 ?3?31b?2??a??b??53?422?9?853x?2 ·?所求抛物线表达式为:y??x2?················································· 9分

99(3)存在符合条件的点P,点Q. ································································· 10分 理由如下:

矩形ABOC的面积?ABBO?3 ?以O,B,P,Q为顶点的平行四边形面积为23.

由题意可知OB为此平行四边形一边, 又

OB?3

······················································································ 11分 ?OB边上的高为2 ·依题意设点P的坐标为(m,2)

点P在抛物线y??8253x?x?2上 99853??m2?m?2?2

99解得,m1?0,m2??53 8?53??P(0,2),P2??2?1?8,?

??以O,B,P,Q为顶点的四边形是平行四边形,

?PQ∥OB,PQ?OB?3, ?当点P1的坐标为(0,2)时,

点Q的坐标分别为Q1(?3,2),Q2(3,2);

A B F y E C D O M x 当点P2的坐标为???53?2??8,?时,

???133??33?点Q的坐标分别为Q3??,2?2???,Q4??8,?. 8????

4. (徐州)如图1,一副直角三角板满足AB=BC,AC=DE,∠ABC=∠DEF

=90°,∠EDF=30°

【操作】将三角板DEF的直角顶点E放置于三角板ABC的斜边AC上,再将三..角板绕点旋转,并使边DE与边AB交于点P,边EF与边BC于点Q ..DEF.....E...

【探究一】在旋转过程中, (1) 如图2,当(2) 如图3,当

CE=1时,EP与EQ满足怎样的数量关系?并给出证明. EACE=2时EP与EQ满足怎样的数量关系?,并说明理由. EACE=m时,EP与EQ满足的EA(3) 根据你对(1)、(2)的探究结果,试写出当

数量关系式

为_________,其中m的取值范围是_______(直接写出结论,不必证明)

【探究二】若,AC=30cm,连续PQ,设△EPQ的面积为S(cm2),在旋转过程中:

(1) S是否存在最大值或最小值?若存在,求出最大值或最小值,若不存在,

说明理由.

(2) 随着S取不同的值,对应△EPQ的个数有哪些变化?不出相应S值的取

值范围.

5. (河南)如图,直线y??4x?4和x轴、y轴的交点分别为B、C,3点A的坐标是(-2,0).(1)试说明△ABC是等腰三角形;(2)动点M从A出发沿x轴向点B运动,同时动点N从点B出发沿线段BC向点C运动,运动的速度均为每秒1个单位长度.当其中一个动点到达终点时,他们都停止运动.设M运动t秒时,△MON的面积为S.① 求S与t的函数关系式;② 设点M在线段OB上运动时,是否存在S=4的情形?若存在,求出对应的t值;若不存在请说明理由;③在运动过程中,当△MON为直角三角形时,求t的值.

6. 如图20,在平面直角坐标系中,四边形OABC是矩形,点B的坐标

为(4,3).平行于对角线AC的直线m从原点O出发,沿x轴正方向以每秒1个单位长度的速度运动,设直线m与矩形OABC的两边..

分别交于点M、N,直线m运动的时间为t(秒).(1) 点A的坐标

是__________,点C的坐标是__________; (2) 当t= 秒或 秒时,MN=

1AC;(3) 设△OMN的面积为S,求S与t的函数关2系式;(4) 探求(3)中得到的函数S有没有最大值?若有,求出最大值;若没有,要说明理由.

解:(1)(4,0),(0,3); ··································································· 2分 (2) 2,6; ·························································································· 4分 (3) 当0<t≤4时,OM=t. 由△OMN∽△OAC,得∴ ON=

OMON, ?OAOC33····························· 6分 t,S=t2. ·

48当4<t<8时,

如图,∵ OD=t,∴ AD= t-4. 方法一:

33······················ 7分 (t?4),∴ BM=6-t. ·

444由△BMN∽△BAC,可得BN=BM=8-t,∴ =t-4. ······························· 8分

3由△DAM∽△AOC,可得AM=

S=矩形OABC的面积-Rt△OAM的面积- Rt△MBN的面积- Rt△NCO的面积

3133(6-t)-(t?4) (t?4)-(8-t)

22423=?t2?3t. ·············································································· 10分

8=12-方法二:

易知四边形ADNC是平行四边形,∴ =AD=t-4,BN=8-t. ······························· 7分 由△BMN∽△BAC,可得BM=以下同方法一. (4) 有最大值. 方法一: 当0<t≤4时,

333············· 8分 BN=6-t,∴ AM=(t?4). ·

44432t的开口向上,在对称轴t=0的右边, S随t的增大而增大, 83∴ 当t=4时,S可取到最大值?42=6; ················································ 11分

8∵ 抛物线S=当4<t<8时, ∵ 抛物线S=?32,∴ S<6. t?3t的开口向下,它的顶点是(4,6)

8综上,当t=4时,S有最大值6. ····························································· 12分 方法二:

?32t,0?t≤4??8∵ S=?

??3t2?3t,4?t?8??8∴ 当0<t<8时,画出S与t的函数关系图像,如图所示. ························· 11分 显然,当t=4时,S有最大值6.

7. (郴州)如图10,平行四边形ABCD中,AB=5,BC=10,BC边上的高AM=4,E为 BC

边上的一个动点(不与B、C重合).过E作直线AB的垂线,垂足为F. FE与DC的延长线相交于点G,连结DE,DF..(1) 求证:ΔBEF ∽ΔCEG.(2) 当点E在线段BC上运动时,△BEF和△CEG的周长之间有什么关系?并说明你的理由.(3)设BE=x,△DEF的面积为 y,请你求出y和x之间的函数关系式,并求出当x为何值时,y有最大值,最大值是多少?

(1) 因为四边形ABCD是平行四边形, 所以ABDG ··························· 1分 所以?B??GCE,?G??BFE

所以△BEF∽△CEG ··············································································· 3分 (2)△BEF与△CEG的周长之和为定值. ····················································· 4分 理由一:

过点C作FG的平行线交直线AB于H ,

因为GF⊥AB,所以四边形FHCG为矩形.所以 FH=CG,FG=CH 因此,△BEF与△CEG的周长之和等于BC+CH+BH

由 BC=10,AB=5,AM=4,可得CH=8,BH=6, 所以BC+CH+BH=24 ··············································································· 6分 理由二:

H由AB=5,AM=4,可知

DA在Rt△BEF与Rt△GCE中,有:

4343EF?BE,BF?BE,GE?EC,GC?CE,

55551212所以,△BEF的周长是BE, △ECG的周长是CE

55FBMxEGC又BE+CE=10,因此BEF与CEG的周长之和是24. ···································· 6分

43x,GC?(10?x) 551143622所以y?EFDG?······························· 8分 x[(10?x)?5]??x2?x

2255255655121配方得:y??. (x?)2?256655所以,当x?时,y有最大值. ·································································· 9分

6121最大值为.

6(3)设BE=x,则EF?

8. (镇江)如图,在直角坐标系xoy中,点P为函数y?12x在第一象限内的图象上的4任一点,点A的坐标为(0,1),直线l过B(0,-1)且与x轴平行,过P作y轴的平行线分别交x轴,l于C,Q,连结AQ交x轴于H,直线PH交y轴于R.(1)求证:H点为线段AQ的中点;(2)求证:①四边形APQR为平行四边形;②平行四边形APQR

为菱形;(3)除P点外,直线PH与抛物线y?

(1)法一:由题可知AO?CQ?1.

12x有无其它公共点?并说明理由. 4?AOH??QCH?90,?AHO??QHC,

············································································· (1分) ?△AOH≌△QCH.

·························································· (2分) ?OH?CH,即H为AQ的中点. ·法二:

················································· (1分) A(01),,B(0,?1),?OA?OB. ·

又BQ∥x轴,?HA?HQ. ···································································· (2分) (2)①由(1)可知AH?QH,?AHR??QHP,

AR∥PQ,??RAH??PQH,

············································································ (3分) ?△RAH≌△PQH. ·

?AR?PQ,

又AR∥PQ,?四边形APQR为平行四边形. ············································ (4分)

②设P?m,m?,

??142??1PQ∥y轴,则Q(m,?1),则PQ?1?m2.

4过P作PG?y轴,垂足为G,在Rt△APG中,

1?1??1?AP?AG2?PG2??m2?1??m2??m2?1??m2?1?PQ.

4?4??4??平行四边形APQR为菱形. ···································································· (6分)

(3)设直线PR为y?kx?b,由OH?CH,得H?22?m??1?,2?,P?m,m2?代入得:

?4??2?m?m?k?b?0,k?,??m1?2?2?直线PR为y?x?m2. · ??···················· (7分) ?1124?km?b?m2.?b??m2.???4?4设直线PR与抛物线的公共点为?x,x2?,代入直线PR关系式得:

??14??12m11?1?x?x?m2?0,(x?m)2?0,解得x?m.得公共点为?m,m2?. 4244?4?所以直线PH与抛物线y?12x只有一个公共点P. 49. (无锡)如图,已知点A从(1,0)出发,以1个单位长度/秒的速度

沿x轴向正方向运动,以O,A为顶点作菱形OABC,使点B,C在第一象限内,且∠AOC=600,;以P(0,3)为圆心,PC为半径作圆.设点A运动了t秒,求:(1)点C的坐标(用含t的代数式表示);(2)当点A在运动过程中,所有使⊙P与菱形OABC的边所在直线相切的t的值. 解:(1)过C作CD?x轴于D, OA?1?t,?OC?1?t,

y C B x ?OD?OCcos60?3(1?t)1?t,DC?OCsin60?,

22P ?1?t3(1?t)??点C的坐标为?··········· (2分) ??2,2?. ·

??(2)①当

,切点为C,此时PC?OC, P与OC相切时(如图1)

O D A 图1 3, ?OC?OPcos30,?1?t?32?t?②当

y C P O 图2 E A x B 33?1. ················· (4分) 2,则切点为O,PC?OP, P与OA,即与x轴相切时(如图2)

1过P作PE?OC于E,则OE?OC, ····················································· (5分)

2?1?t33?OPcos30?,?t?33?1. ··············································· (7分) 22③当

P与AB所在直线相切时(如图3),设切点为F,PF交OC于G,

3(1?t), 2则PF?OC,?FG?CD??PC?PF?OPsin30?3(1?t). ························································ (8分) 2222过C作CH?y轴于H,则PH?CH?PC,

y H C B x P G O A F

??33(1?t)??1?t??3(1?t)???3????, ????????2222??????2化简,得(t?1)?183(t?1)?27?0,

222解得t?1?93?66,

t?93?66?1?0, ?t?93?66?1.

?所求t的值是

10. (辽宁)如图14,在RtΔABC中,∠A=900,AB=AC,BC=42,另有一等腰梯形DEFG

(GF∥DE)的底边DE与BC重合,两腰分别落在AB,AC上,且G,F分别是AB,AC的中点.(1)求等腰梯形DEFG的面积;(2)操作:固定ΔABC,将等腰梯形DEFG以每秒1个单位的速度沿BC方向向右运动,直到点D与点C重合时停止.设运动时间为x秒,运动后的等腰梯形为DEF′G′(如图15).探究1:在运动过程中,四边形BDG′G能否是菱形?若能,请求出此时x的值;若不能,请说明理由.探究2:设在运动过程中ΔABC与等腰梯形DEFG重叠部分的面积为y,求y与x的函数关系式.

解:如图6,(1)过点G作GM?BC于M.

33?1,33?1和93?66?1. 2AB?AC,?BAC?90,BC?42,G为AB中点 ?GM?2.

A

G,F分别为AB,AC的中点 G F

1································ 2分 ?GF?BC?22 2C(E) (D)B 1M 图6 ?S梯形DEFG?(22?42)?2?6

2?等腰梯形DEFG的面积为6. ······································································· 3分

(2)能为菱形 如图7,由BG∥DG?,GG?∥BC ?四边形BDG?G是平行四边形 当BD?BG?A F 1AB?2时,四边形BDG?G为菱形,此时可求得x?2

G?G 2 ?当x?2秒时,四边形BDG?G为菱形.

(3)分两种情况:①当0≤x?22时, 方法一:

B D M

图7

F? C

E

GM?2,?SBDG?G?2x

?重叠部分的面积为:y?6?2x

?当0≤x?22时,y与x的函数关系式为y?6?2x ··································· 10分

②当22≤x≤42时,

设FC与DG?交于点P,则?PDC??PCD?45 G A F G? P D Q 图8

C

F?

E

??CPD?90,PC?PD

作PQ?DC于Q,则PQ?DQ?QC?B 1(42?x) 2?重叠部分的面积为:

1111y?(42?x)?(42?x)?(42?x)2?x2?22x?8

2244

11. 如图14,已知半径为1的⊙O1与x轴交于A,B两点,OM为⊙O1的切线,切点为M,

圆心O1的坐标为(2,0),二次函数y=-x2+bx+c的图象经过A,B两点.(1)求二次函数的解析式;(2)求切线OM的函数解析式;(3)线段OM上是否存在一点P,使得以P,O,A为顶点的三角形与ΔOO1M相似.若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由. 解:(1)圆心O1的坐标为(2,0),O1半径为1,?A(1,0),

········································································································ 1分 B(3,0) ·二次函数y??x?bx?c的图象经过点A,B,

2??1?b?c?0?可得方程组? ·········································································· 2分

?9?3b?c?0?解得:??b?4?二次函数解析式为y??x2?4x?3 ············································ 3分

?c??3(2)过点M作MF?x轴,垂足为F. ···························································· 4分 . OM是O1的切线,M为切点,?O1M?OM(圆的切线垂直于经过切点的半径)在Rt△OO1M中,sin?O1OM?O1M1? OO12y P P2 1O M B x ?O1OM为锐角,??O1OM?30 ····························· 5分 3?OM?OO1cos30?2??3,

2在Rt△MOF中,OF?OMcos30?3?H A F O1 33?. 22MF?OMsin30?3?13?. 22?33??点M坐标为?,? ················································································· 6分

?22?·??设切线OM的函数解析式为y?kx(k?0),由题意可知333?k,?k? ·········· 7分 223?切线OM的函数解析式为y?3x ································································ 8分 3(3)存在. ·································································································· 9分 ①过点A作AP1?x轴,与OM交于点P1.可得Rt△APO1∽Rt△MO1O(两角对应相等两三角形相似)

?33?P,?P········································· 10分 1A?OAtan?AOP1?tan30?1??1,3?? ·3??②过点A作AP2?OM,垂足为P2,过P2点作P2H?OA,垂足为H. 可得Rt△AP2O∽Rt△O1MO(两角对应相等两三角开相似) 在Rt△OP2A中,

OA?1,?OP2?OAcos30?3, 2在Rt△OP2H中,OH?OP2cos?AOP2?333??, 224P2H?OP2sin?AOP2??33?313??,?P2?,? ······································ 11分

??224?44??3??33??符合条件的P点坐标有?1,?,?,?

?3??44?????

12. 如图9,在平面直角坐标系中,以点C(1,1)为圆心,2为半径作圆,

交x轴于A,B两点,开口向下的抛物线经过点A,B,且其顶点P在⊙C上.(1)求∠ACB的大小;(2)写出A,B两点的坐标;(3)试确定此抛物线的解析式;(4)在该抛物线上是否存在一点D,使线段OP与CD互相平分?若存在,求出点D的坐标;若不存在,请说明理由. 解:(1)作CH?x轴,H为垂足,

············································· 1分 CH?1,半径CB?2 ································· 3分 ?BCH?60,??ACB?120 ·(2)

CH?1,半径CB?2

?HB?3,故A(1?3,0), ······································ 5分 B(1?3,0) ······························································· 6分

(3)由圆与抛物线的对称性可知抛物线的顶点P的坐标为(1····························· 7分 ,3) ·设抛物线解析式y?a(x?1)?3 ······································································· 8分

20)代入上式,解得a??1 ·把点B(1?3,···························································· 9分

?y??x2?2x?2 ······················································································· 10分

(4)假设存在点D使线段OP与CD互相平分,则四边形OCPD是平行四边形 ······· 11分

?PC∥OD且PC?OD.

·································································· 12分 PC∥y轴,?点D在y轴上. ·又

PC?2,?OD?2,即D(0,2).

2又D(0,2)满足y??x?2x?2,

?点D在抛物线上 ························································································ 13分

所以存在D(0,2)使线段OP与CD互相平分.

13. (芜湖)如图,已知 A(?4,0),B(0,4),现以A点为位似中心,相似比为9:4,

将OB向右侧放大,B点的对应点为C.(1)求C点坐标及直线BC的解析式;

(2)抛物线经过B、C两点,且顶点落在x轴正半轴上,求该抛物线的解析式并画出函数图象;(3)现将直线BC绕B点旋转与抛物线相交与另一点P,请找出抛物线上所有满足到直线AB距离为32的点P. 解: (1)

过C点向x轴作垂线,垂足为D,由位似图形性质可知: △ABO∽△ACD, ∴

AOBO4??. ADCD9由已知A(?4,0),B(0,4)可知: AO?4,BO?4. ∴AD?CD?9.∴C点坐标为(5,9). ··············· 2分 直线BC的解析是为:

y?4x?0 ?9?45?0化简得: y?x?4 ·········································· 3分 (2)设抛物线解析式为y?ax?bx?c(a?0),由题

24?c??意得:?9?25a?5b?c ,

?b2?4ac?0?1?a??225?4?b??a1?1?25??解得: ?b1??4?c?42?c?4??1?

2∴解得抛物线解析式为y1?x?4x?4或y2?124x?x?4. 255又∵y2?124x?x?4的顶点在x轴负半轴上,不合题意,故舍去. 2552∴满足条件的抛物线解析式为y?x?4x?4 ······················································ 5分 (准确画出函数y?x?4x?4图象) ······························································· 7分

2

(3) 将直线BC绕B点旋转与抛物线相交与另一点P,设P到 直线AB的距离为h, 故P点应在与直线AB平行,且相距32的上下两条平行直线l1和l2上. ·················· 8分 由平行线的性质可得:两条平行直线与y轴的交点到直线BC的距离也为32. 如图,设l1与y轴交于E点,过E作EF⊥BC于F点, 在Rt△BEF中EF?h?32,?EBF??ABO?45,

∴BE?6.∴可以求得直线l1与y轴交点坐标为(0,10) ······································· 10分 同理可求得直线l2与y轴交点坐标为(0,?2) ······················································· 11分 ∴两直线解析式l1:y?x?10;l2:y?x?2.

?y?x2?4x?4?y?x2?4x?4根据题意列出方程组: ⑴?;⑵?

?y?x?10?y?x?2?x1?6?x2??1?x3?2?x4?3

∴解得:?;?;?;?

y?0y?9y?1y?16?2?4?1?3∴满足条件的点P有四个,它们分别是P1(6,16),P2(?1,9),P3(2,0),P4(3,1)

14. (大连)如图24-1,抛物线y=x2的顶点为P,A、B是抛物线上两点,AB∥x轴,四边形

ABCD为矩形,CD边经过点P,AB = 2AD.⑴求矩形ABCD的面积;⑵如图24-2,若将抛物线“y=x2”,改为抛物线“y=x2+bx+c”,其他条件不变,请猜想矩形ABCD的面积;⑶若将抛物线“y=x2+bx+c”改为抛物线“y=ax2+bx+c”,其他条件不变,请猜想矩形ABCD的面积(用a、b、c表示,并直接写出答案).附加题:若将24题中“y=x2”改为“y=ax2+bx+c”,“AB = 2AD”条件不要,其他条件不变,探索矩形ABCD面积为常数时,矩形

ABCD需要满足什么条件?并说明理由.

15. (大连)如图,△ABC的高AD为3,BC为4,直线EF∥BC,交线段AB

于E,交线段AC于F,交AD于G,以EF为斜边作等腰直角三角形PEF(点P与点A在直线EF的异侧),设EF为x,△PEF与四边形BCEF重合部分的面积为y.⑴求线段AG(用x表示);⑵求y与x的函数关系式,并求x的取值范围. 16. (株洲)如图(1),在平面直角坐标系中,点A的坐标为(1,-2),点

B的坐标为(3,-1),二次函数y=-x2的图象为l1. (1)平移抛物线l1,

使平移后的抛物线过点A,但不过点B,写出平移后的抛物线的一个解析式(任写一个即可).(2)平移抛物线l1,使平移后的抛物线过A、B两点,记抛物线为l2,如图(2),求抛物线l2的函数解析式及顶点C的坐标.(3)设P为

y轴上一点,且S△ABC=S△ABP,求点P的坐标.(4)请在图(2)上用尺规作图的方式探究抛物线l2上是否存在点Q,使?QAB为等腰三角形. 若存

在,请判断点Q共有几个可能的位置(保留作图痕迹);若不存在,请说明理由.

(1)y??x2?2x?3或y??x2?4x?5等 (满足条件即可)

2??2??1?b?c(2)设l2的解析式为y??x?bx?c,联立方程组?,

??1??9?3b?c解得:b?9,c??11,则l2的解析式为y??x2?9x?11, ……3

2222分

点C的坐标为(9,?7) ……4

416分

(3)如答图23-1,过点A、B、C三点分别作x轴的垂线,垂足分别为D、E、F,则AD?2,

73CF?,BE?1,DE?2,DF?5,FE?.

1644得:S?ABC?S梯形ABED?S梯形BCFE?S梯形ACFD?15. ……5

16分

延长BA交y轴于点G,直线AB的解析式为y?1x?5,则点G的坐标为(0,?5),

222设点P的坐标为(0,h)

55①当点P位于点G的下方时,连结AP、BP,则S?,PG???h,?S?S???hPBAGPB?GPA?22又S?ABC?S?ABP?15,得h??55,点P的坐标为(0,?55). …… 6

161616分

②当点P位于点G的上方时,PG?5?h,同理h??25,点P的坐标为(0,?25).

21616综上所述所求点P的坐标为(0,?55)或(0,?25) …… 7

1616分

(4) 作图痕迹如答图23-2所示.

由图可知,满足条件的点有Q1、Q2、Q3、Q4,共4个可能的位置. …… 10分

F E

答图23-1

答图23-2

17. (南昌)如图,抛物线y1=-ax2-ax+1经过点P(-

19,),且 与抛28物线y2=ax2-ax-1相交于A,B两点.(1)求a值;(2)设y1=-ax2-ax+1与x轴分别交于M,N两点(点M在点N的左边),y2=ax2-ax-1与x轴分别交于E,F两点(点E在点F的左边),观察M,N,E,F四点的坐标,写出一条正确的结论,并通过计算说明;(3)设A,B两点的横坐标分别记为XA,XB,若在x轴上有一动点Q(x,0),且XA≤x≤XB,过Q作一条垂直于x轴的直线,与两条抛物线分别

交于C,D两点,试问当x为何值时,线段CD有最大值?其最大值为多少? 解:(1)

2点P??,?在抛物线y1??ax?ax?1上,

?19??28?119·················································································· 2分 ??a?a?1?, ·

4281. ································································································· 3分 211111(2)由(1)知a?,?抛物线y1??x2?x?1,y2?x2?x?1. ··········· 5分

2222211y 当?x2?x?1?0时,解得x1??2,x2?1. 22P 解得a?点M在点N的左边,?xM??2,xN?1. ··············· 6分 当

A M E O N F B x 121x?x?1?0时,解得x3??1,x4?2. 22点E在点F的左边,?xE??1,xF?2. ····················································· 7分

xM?xF?0,xN?xE?0,

?点M与点F对称,点N与点E对称. ··························································· 8分

1y (3)a??0.

2P ?抛物线y1开口向下,抛物线y2开口向上. ··················· 9分

根据题意,得CD?y1?y2

A C O Q D x B 11?1??1????x2?x?1???x2?x?1???x2?2. ············································· 11分

22?2??2?xA≤x≤xB,?当x?0时,CD有最大值2.

18. (山西)如图,已知直线l1的解析式为y=3x+6,直线l1与x轴、y轴分别相交于A、B

两点,直线l2经过B、C两点,点C的坐标为(8,0),又已知点P在x轴上从点A向点C移动,点Q在直线l2从点C向点B移动。点P、Q同时出发,且移动的速度都为每秒1个单位长度,设移动时间为t秒(1

试探究:当t为何值时,△PCQ为等腰三角形?

19. (黄冈)已知:如图,在直角梯形COAB中,OC∥AB,以O为原点建立平面直角坐

标系,A,B,C三点的坐标分别为A(8,0),B(8,10),C(0,4),点D为线段BC的中点,动点P从点O出发,以每秒1个单位的速度,沿折线OABD的路线移动,移动的时间为t秒.(1)求直线BC的解析式;(2)若动点P在线段OA上移动,当t为何值时,四边形OPDC的面积是梯形COAB面

积的

2?(3)动点P从点O出7发,沿折线OABD的路线移动

过程中,设ΔOPD的面积为S,请直接写出S与t的函数关系式,并指出自变量t的取值范围;(4)当动点P在线段AB上移动时,能否在线段OA上找到一点Q,使四边形CQPD为矩形?请求出此时动点P的坐标;若不能,请说明理由.

20. (仙桃)如图,直角梯形OABC中,AB∥CD,O为坐标原点,点A在y轴正半轴上,

点C在x轴正半轴上,点B坐标为(2,23),∠BCO= 60°,OH⊥BC于点H.动点P从点H出发,沿线段HO向点O运动,动点Q从点O出发,沿线段OA向点A运动,两点同时出发,速度都为每秒1个单位长度.设点P运动的时间为t秒.(1)求OH的长;(2)若ΔOPQ的面积为S(平方单位). 求S与t之间的函数关系式.并求t为何值时,ΔOPQ的面积最大,最大值是多少?(3)设PQ与OB交于

点M.①当ΔOPM为等腰三角形时,求(2)中S的值. ②探究线段OM长度的最大值是多少,直接写出结论. 解:(1)∵AB∥OC

∴ ?OAB??AOC?900 在Rt?OAB中,AB?2 ,AO?23 ∴OB?4, ?ABO?600

∴?BOC?600 而?BCO?600

∴?BOC为等边三角形 ∴OH?OBcos30?4?3?23…(3分) 2(2)∵OP?OH?PH?23?t

03tt yp?OPsin300?3? 22113t) ∴S??OQ?xp??t?(3?222323t?t (0?t?23)…………………………(6分) =?42333(t?3)2?即S?? 44∴xp?OPcos30?3?0

33………………………………………(7分) 4y (3)①若?OPM为等腰三角形,则:

∴当t?3时,S最大?(i)若OM?PM,?MPO??MOP??POC A ∴PQ∥OC

∴OQ?yp 即t?B H 3?t 2P 23解得:t?

3O x C323232323 8分) ?()???此时S??………………………………(43233y (ii)若OP?OM,?OPM??OMP?750 0B A ∴?OQP?45

过P点作PE?OA,垂足为E,则有: EQ?EP

H Q M13t 即t?(3?t)?3?E22P 解得:t?2 O x C33?22??2?3?3……………………………………(9分) 此时S??42(iii)若OP?PM,?POM??PMO??AOB

∴PQ∥OA

此时Q在AB上,不满足题意.……………………………………………(10分) ②线段OM长的最大值为

Q M3 221. (孝感)锐角ΔABC中,BC=6,SΔABC=12,两动点M,N分别在边AB,AC上滑动,

且MN∥BC,以MN为边向下作正方形MPQN,设其边长为x,正方形MPQN与ΔABC公共部分的面积为y(y>0).(1)ΔABC中边BC上高AD= ((2)当x= 时,PQ恰好落在边BC上(如图1);(3)当PQ在ΔABC外部时(如图2),求y关于x的函数关系式(注明x的取值范围),并求出x为何值时y最大,最大值是多少? 解:(1)AD?4; ·················································································· 2分 (2)x?2.4(或

12); ················································································· 6分 5(3)设BC分别交MP,NQ于E,F,则四边形MEFN为矩形. 设ME?NF?h,AD交MN于G(如图2) GD?NF?h,AG?4?h. MN∥BC,

M G

B

E P D

F Q C A

N

?△AMN∽△ABC. MNAGx4?h,即? ??BCAD642······················································ 8分 ?h??x?4. ·

3?2??y?MNNF?x??x?4?

?3?2········································································· 10分 ??x2?4x(2.4?x?6). ·

32配方得:y??(x?3)2?6. ······································································· 11分

3?当x?3时,y有最大值,最大值是6.

22. (宜昌)如图1,已知四边形OABC中的三个顶点坐标为O(0,0),A(0,n),C(m,0).动

点P从点O出发依次沿线段OA,AB,BC向点C移动,设移动路程为z,△OPC的面积S随着z的变化而变化的图象如图2所示.m,n是常数, m>1,n>0.(1)请你确定n的值和点B的坐标;(2)当动点P是经过点O,C的

抛物线y=ax+bx

211上时,求这时四边形OABC的面积. 5x1 .解:(1) 从图中可知,当P从O向A运动时,△POC的面积S=mz, z由0逐步增

2+c的顶点,且在双曲线y=

大到2,则S由0逐步增大到m,故OA=2,n=2 . (1分) 同理,AB=1,故点B的坐标是(1,2).(2分) (2)解法一:

∵抛物线y=ax+bx+c经过点O(0,0),C(m ,0),∴c=0,b=-am,(3分) ∴抛物线为y=ax-amx,顶点坐标为(

22m1

,- am2).(4分)

42yAB如图1,设经过点O,C,P的抛物线为l.

当P在OA上运动时,O,P都在y轴上, 这时P,O,C三点不可能同在一条抛物线上, ∴这时抛物线l不存在, 故不存在m的值..①

O1Cx(25题图1) 当点P与C重合时,双曲线y=11不可能经过P, 5x故也不存在m的值.②(5分)

(说明:①②任做对一处评1分,两处全对也只评一分) 当P在AB上运动时,即当0

容易求得直线BC的解析式是:y?2x?2m,(7分)

1?m1?m当P在BC上运动,设P的坐标为 (x0,y0),当P是顶点时 x0=

m,2). 2111111m上,可得 m=,∵>2,与 x0=≤1不合,舍去.(6分)5x552m, 222mmmm=,顶点P为(,), x0?1?m1?mm?12m?1m11∵1< x0=2,又∵P在双曲线y=上,

25xmm112于是,×=,化简后得5m-22m+22=0,

2m?15故得y0=解得m1?22?21122?211,m2?,(8分)

101022?211?2,

10211?2,?22?211?20,?m2?与题意2

m

10故由①②③④,满足条件的只有一个值:m?这时四边形OABC的面积=

16?111. (1?m)?2=

52

23. (襄樊)如图15,四边形OABC是矩形,OA=4,OC=8,,将矩

形OABC沿直线AC折叠,使点B落在D处,AD交OC于E.(1)求OE的长;(2)求过O,D,C三点抛物线的解析式;(3)若F为过O,D,C三点抛物线的顶点,一动点P从点A出发,沿射线AB以每秒1个单位长度的速度匀速运动,当运动时间t(秒)

为何值时,直线PF把ΔFAC分成面积之比为1:3的两部分? 解:(1)

四边形OABC是矩形,

··············································· (1分) ??CDE??AOE?90,OA?BC?CD.

············································· (2分) ?CED??OEA,?△CDE≌△AOE. ·?OE?DE. 又

?OE2?OA2?(AD?DE)2,

即OE?4?(8?OE),

解之,得OE?3. ·········································(3分) (2)EC?8?3?5.如图4,过D作DG?EC于G,

···································(4分) ?△DGE≌△CDE. ·

222?DEDGDEEG129,.?DG?,EG?. ??ECCDECDE55?2412?···········································(5分) ?D?,?. ·

?55?因O点为坐标原点,故可设过O,C,D三点抛物线的解析式为y?ax?bx.

25??64a?8b?0,a??,???32???24?2 2412解之,得??b?5.???a?b?.55??5???4y??(3)

525················································································· (7分) x?x. ·

324抛物线的对称轴为x?4,?其顶点坐标为?4,?.

??5?2?1??8k?b?0,?k?,设直线AC的解析式为y?kx?b,则?解之,得?2

b??4.???b??4.?y?1······················································································ (9分) x?4. ·

2??12??设直线FP交直线AC于H?m,m?4?,过H作HM?OA于M.

?△AMH∽△AOC.?HM:OC?AH:AC.

S△FAH:S△FHC?1:3或3:1,

?AH:HC?1:3或3:1,?HM:OC?AH:AC?1:4或3:4. ?HM?2或6,即m?2或6.

?1). ·?H1(2,?3),H2(6,···································································· (10分)

111718x?.当y??4时,x?. 421171954直线FH2的解析式为y??x?.当y??4时,x?.

4271854?当t?秒或秒时,直线FP把△FAC分成面积之比为1:3的两部分

117直线FH1的解析式为y?

24. (兰州)如图19-1,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A

在x轴的正半轴上,点C在y轴的正半轴上,OA=5,OC=4.(1)在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,求D,E两点的坐标;(2)如图19-2,若AE上有一动点P(不与A,E重合)自A点沿AE方向向E点匀速运动,运动的速度为每秒1个单位长度,设运动的时间为t(0

于点M,过点M作AE的平行线交DE于点N.求四边形PMNE的面积S与时间t之间的函数关系式;当t取何值时,S有最大值?最大值是多少?(3)在(2)的条件下,当t为何值时,以A,M,E为顶点的三角形为等腰三角形,并求出相应的时刻点M的坐标. 解:(1)依题意可知,折痕AD是四边形OAED的对称轴, ?在Rt△ABE中,AE?AO?5,AB?4.

?BE?AE2?AB2?52?42?3.?CE?2.

. ··················································································· 2分 ?E点坐标为(2,4)

在Rt△DCE中,DC2?CE2?DE2, 又

DE?OD.

?(4?OD)2?22?OD2 . 解得:CD?5. 2?5?····················································································· 3分 ?D点坐标为?0,? ·2??△APM∽△AED. PM∥ED,?PMAP5,又知AP?t,ED?,AE?5 ??EDAE2t5t?PM???, 又PE?5?t.

522而显然四边形PMNE为矩形.

t15················································· 5分 ?S矩形PMNE?PMPE??(5?t)??t2?t ·

222(2)如图①

?S四边形PMNE51?5?25???t???,又0??5

22?2?82

525时,S矩形PMNE有最大值. ······························································ 6分 28(3)(i)若以AE为等腰三角形的底,则ME?MA(如图①) 在Rt△AED中,ME?MA,PM?AE,?P为AE的中点,

15?t?AP?AE?.

22y 又PM∥ED,?M为AD的中点. E C B 过点M作MF?OA,垂足为F,则MF是△OAD的中位线, N P D 1515?MF?OD?,OF?OA?, M 2422?当t??当t?55??时,?0??5?,△AME为等腰三角形.

22???55??24?O F 图① A x 此时M点坐标为?,?. ·············································································· 8分 (ii)若以AE为等腰三角形的腰,则AM?AE?5(如图②)

5?5?在Rt△AOD中,AD?OD2?AO2????52?5.

22??过点M作MF?OA,垂足为F.

△APM∽△AED. PM∥ED,?2y C N D M O F 图② A x E P B APAM. ?AEADAMAE5?51?t?AP???25,?PM?t?5.

52AD52??MF?MP?5,OF?OA?AF?OA?AP?5?25,

?当t?25时,(0?25?5),此时M点坐标为(5?25,5). ····················· 11分

综合(i)(ii)可知,t?5或t?25时,以A,M,E为顶点的三角形为等腰三角形,2相应M点的坐标为?,?或(5?25,5).

25. (哈尔滨市)在矩形ABCD中,点E是AD边上一点,连接BE,且∠ABE=30°,BE

=DE,连接BD.点P从点E出发沿射线ED运动,过点P作PQ∥BD交直线BE于点

Q.(1) 当点P在线段ED上时(如图1),求证:BE=PD+设PQ长为x,以P、Q、D三

3PQ; (2)若 BC=6,3?55??24?点为顶点所构成的三角形面积为y,求y与 x的函数关系式(不要求写出自变量x的取值范围);(3)在②的条件下,当点P运动到线段ED的中点时,连接QC,过点P作PF⊥QC,垂足为F,PF交对角线BD于点G(如图2),求线段PG的长。 26. (哈尔滨市)如图,在平面直角坐标系中,直线y=x?5与x轴、y轴分别交于A、

B两点,将△ABO绕原点O顺时针旋转得到△A′B′O,并使OA′⊥AB,垂足为D,直线AB与线段A′B′相交于点G.动点E从原点O出发,以1个单位/秒的速度沿x轴正方向运动,设动点E运动的时间为t秒.(1)求点D的坐标;(2)连接DE,当DE与线段OB′相交,交点为F,且四边形DFB′G是平行四边形时,(如图2)求此时线段DE所在的直线的解析式;(3)若以动点为E圆心,以25为半径作⊙E,连接A′E,t为何值时。Tan∠EA′B′=理由。

1?并判断此时直线A′O与⊙E的位置关系,请说明812

本文来源:https://www.bwwdw.com/article/hr2a.html

Top