材料成形原理课后习题解答

更新时间:2024-04-27 00:32:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

材料成型原理

材料成型原理 第一章(第二章的内容) 第一部分:液态金属凝固学

1.1 答:(1)纯金属的液态结构是由原子集团、游离原子、空穴或裂纹组成。原子集团的空穴或

裂纹内分布着排列无规则的游离的原子,这样的结构处于瞬息万变的状态,液体内部存在着能量起伏。

(2)实际的液态合金是由各种成分的原子集团、游离原子、空穴、裂纹、杂质气泡组成的鱼目混珠的“混浊”液体,也就是说,实际的液态合金除了存在能量起伏外,还存在结构起伏。

1.2 答: 液态金属的表面张力是界面张力的一个特例。表面张力对应于液-气的交界面,而

界面张力对应于固-液、液-气、固-固、固-气、液-液、气-气的交界面。 表面张力?和界面张力ρ的关系如(1)ρ=2?/r,因表面张力而长生的曲面为球面时,r为球面的半径;(2)ρ=?(1/r1+1/r2),式中r1、r2分别为曲面的曲率半径。 附加压力是因为液面弯曲后由表面张力引起的。

1.3答: 液态金属的流动性和冲型能力都是影响成形产品质量的因素;不同点:流动性是确

定条件下的冲型能力,它是液态金属本身的流动能力,由液态合金的成分、温度、杂质含量决定,与外界因素无关。而冲型能力首先取决于流动性,同时又与铸件结构、浇注条件及铸型等条件有关。

提高液态金属的冲型能力的措施:

(1)金属性质方面:①改善合金成分;②结晶潜热L要大;③比热、密度、导热系大;

④粘度、表面张力大。

(2)铸型性质方面:①蓄热系数大;②适当提高铸型温度;③提高透气性。 (3)浇注条件方面:①提高浇注温度;②提高浇注压力。

(4)铸件结构方面:①在保证质量的前提下尽可能减小铸件厚度;

②降低结构复杂程度。

1.4 解: 浇注模型如下:

则产生机械粘砂的临界压力 ρ=2?/r

第 1 页 共 1 页

材料成型原理

显然 r=

1×0.1cm=0.05cm 22*1.5=6000Pa

0.5*10-4则 ρ=不产生机械粘砂所允许的压头为

H=ρ/(ρ液*g)=

1.5 解: 由Stokes公式

6000=0.08m

7500*102r2(r1-r)2 上浮速度 v=9r为球形杂质半径,γ1为液态金属重度,γ2为杂质重度,η为液态金属粘度 γ1=g*ρ液=10*7500=75000 γ2=g2*ρMnO=10*5400=54000

22*(0.1*10-3)*(75000-54000)所以上浮速度 v==9.5mm/s

9*0.00493.1解:(1)对于立方形晶核 △G方=-a△Gv+6a?①

令d△G方/da=0 即 -3a△Gv+12a?=0,则

*

2

32

临界晶核尺寸a=4?/△Gv,得?=

a*△Gv,代入① 4△G方=-a△Gv+6 a

**3*2

a*1*2

△Gv= a△Gv

24*

均质形核时a和△G方关系式为:△G方=

**

1*3

a△Gv 2(2)对于球形晶核△G球=-

*

4*3*2

πr△Gv+4πr? 3*

临界晶核半径r=2?/△Gv,则△G球=

*

2*3

πr△Gv 3所以△G球/△G方=

**

1*32*3

πr△Gv/( a△Gv) 32*

将r*=2?/△Gv,a=4?/△Gv代入上式,得

****

△G球/△G方=π/6<1,即△G球<△G方 所以球形晶核较立方形晶核更易形成

第 2 页 共 2 页

材料成型原理

2*2.25*10-5*(1453+273)-9

3-7解: r均=(2?LC/L)*(Tm/△T)=cm=8.59*10m

1870*3196.6*

△G均=

*

16322

π?LC*Tm/(L*△T) 33216(2.25*10-5*104)*(1453+273)-17=π*=6.95*10J

18703(*106)*31926.6

3.2答: 从理论上来说,如果界面与金属液是润湿得,则这样的界面就可以成为异质形核的基底,否则就不行。但润湿角难于测定,可根据夹杂物的晶体结构来确定。当界面两侧夹杂和晶核的原子排列方式相似,原子间距离相近,或在一定范围内成比例,就可以实现界面共格相应。安全共格或部分共格的界面就可以成为异质形核的基底,完全不共格的界面就不能成为异质形核的基底。

3.3 答: 晶核生长的方式由固液界面前方的温度剃度GL决定,当GL>0时,晶体生长以平面方

式生长;如果GL<0,晶体以树枝晶方式生长。

4.1答: 用Chvorinov公式计算凝固时间时,误差来源于铸件的形状、铸件结构、热物理

参数浇注条件等方面。

半径相同的圆柱和球体比较,前者的误差大;大铸件和小铸件比较,后者误差大;金属型和砂型比较,后者误差大,因为后者的热物性参数随温度变化较快。

VR24.2答:铸件凝固时间t=2,R为折算厚度,K为凝固系数,又由于R=,在相同体积的条

AK件下,立方体。等边圆柱和球三者中,球的表面积最小,所以球的折算厚度R最大,

则球形冒口的凝固时间t最大,最有利于补缩。

4.3解: 焊接熔池的特征:

(1)熔池体积小; (2)熔池温度高;

(3)熔池金属处于流动状态;

(4)熔池界面的导热条件好,焊接熔池周围的母材与熔池间没有间隙。 焊接熔池对凝固过程的影响:

(1)母材作为新相晶核的基底,使新相形核所需能量小,出现非均匀形核,产生联生

结晶(外延结晶);

(2)熔池金属是在运动状态凝固的,焊缝的柱状晶总是朝向焊接方向并且向焊缝中心

生长,即对向生长;

(3)焊接熔池的实际凝固过程并不是连续的,柱状晶的生长速度变化不是十分有规

律。

4.4解:溶质再分配:合金凝固时液相内的溶质一部分进入固相,另一部分进入液相,溶质传输

使溶质在固-液界面两侧的固相和液相中进行再分配。影响溶质再分配的因素有热力学条件和动力学条件。 4.5解:设液相线和固相线的斜率分别为mL和mS,

第 3 页 共 3 页

材料成型原理

如上图:

液相线:T-Tm=mL (Cl-0) ① 固相线:T-Tm=mS (Cs-0) ②

*

*

*

*

T*-TmmSCS②÷①得:*=*=1

T-TmmLCL*Cm即 S*=L=k0

mSCL由于mL、mS均为常数,故k0=Const.

4.5解: (1)溶质分配系数 k0=

*CSCsm6.65%===0.171 CLCE33% 当fs=10%时,有

Cs=k0C0(1-fs)*k0-10.171-1=0.171*1%*(1-10%)=0.187%

CL=C0fL*k0-1C0.00187=S==1.09%

k00.171第 4 页 共 4 页

*

材料成型原理

(2)设共晶体所占的比例为fL,则 CL=C0fLk0-1=CE

133?k01则fL=)0.171-1=0.12 ()-1=(5.65à*(1) 沿试棒的长度方向Cu的分布曲线图如下:

5.1答:金属凝固时,完全由热扩散控制,这样的过冷称为热过冷;由固液界面前方溶质再分配

引起的过冷称为成分过冷.

成分过冷的本质:由于固液界面前方溶质富集而引起溶质再分配,界面处溶质含量

最高,离界面越远,溶质含量越低。由结晶相图可知,固液界面前方理论凝固温度降低,实际温度和理论凝固温度之间就产生了一个附加温度差△T,即成分过冷度,这也是凝固的动力。

5.2答: 影响成分过冷的因素有G、v、DL、m、k0、C0,可控制的工艺因素为DL。

过冷对晶体的生长方式的影响:当稍有成分过冷时为胞状生长,随着成分过冷的增大,

晶体由胞状晶变为柱状晶、柱状树枝晶和自由树枝晶,无成分过冷时,以平面方式或树枝晶方式生长。晶体的生长方式除受成分过冷影响外,还受热过冷的影响。 5.3答:影响成分过冷范围的因素有:成分过冷的条件为

GLmLC0(1-k0)<

DLk0v第 5 页 共 5 页

材料成型原理

成分过冷的范围为 △=

mLC0(1-k0)GL-

DLk0v 上式中,mL、C0、k0为不变量,所以影响成分过冷范围的因素只有DL、GL和v。 对于纯金属和一部分单相合金的凝固,凝固的动力主要是热过冷,成分过冷范围

对成形产品没什么大的影响;对于大部分合金的凝固来说,成分过冷范围越宽,得到成型产品性能越好。

5.4 答:(1)纯金属的枝晶间距决定于界面处结晶潜热的散失条件,而一般单相合金与潜热的

扩散和溶质元素在枝晶间的行为有关。

(2)枝晶间距越小,材质的质量越高(因为消除枝晶偏析越容易)。

6.1 答: (1)在普通工业条件下,从热力学考虑,当非共晶成分的合金较快地冷却到两条液

相线地延长线所包围的影线区域时,液相内两相打到饱和,两相具备了同时析出的条件,但一般总是某一相先析出,然后再在其表面析出另一个相,于是便开始了两相竞相析出的共晶凝固过程,最后获得100%的共晶组织。

(2)伪共晶组织如(1)所述,有较高的机械性能;而单相合金固相无扩散,液相混

合均匀凝固产生的共晶组织为离异共晶,即:合金冷却到共晶温度时,仍有少量的液相存在,此时的液相成分接近于共晶成分,这部分剩余的液体将会发生共晶转变,形成共晶组织,但是,由于此时的先共晶相α数量很多,共晶组织中的α相可能依附于先共晶相上长大,形成离异共晶,即β相单独存在于晶界处,给合金的性能带来不良

影响。

第 6 页 共 6 页

材料成型原理

6.2 答: 小面-非小平面生长最大的特点是:有强烈的方向性。变质处理改变了小平面的形

态,使得晶体生长方式发生改变。

6.3 答: S、O等活性元素吸附在旋转孪晶台阶处,显著降低了石墨棱面(1010)与合金液

面间的界面张力,使得(1010)方向的生长速度大于(0001)方向,石墨最终长成片

状。

Mg是反石墨化元素,在它的作用下,石墨最终长成球状。

7.1 答: 当强化相表面与合金液表面相互浸润时,其本身就可以作为异质形核的核心,按异质形核的规律进行结晶,使组织得到细化。当强化相与合金液不浸润时,强化相被排斥于枝晶间或界面上,严重影响着复合材料的性能。

7.2 答: 并不是任何一种共晶合金都能制取自生复合材料,因为制取自生复合材料必须有高强

度、高弹性相作为承载相,而基体应有良好的韧性以保证载体的传递。因此共晶系应具备以下要求:

⑴共晶系中一相应为高强相。

⑵基体应具有较高的断裂韧度,一般以固溶体为宜。 ⑶在单相凝固时能够获得定向排列的规则组织。

8.1 答:铸件的典型凝固组织为:表面细等轴晶区、中间柱状晶区、内部等轴晶区。

表面细等轴晶的形成机理:非均质形核和大量游离晶粒提供了表面细等轴晶区的晶

核,型壁附近产生较大过冷而大量生核,这些晶核迅速长大并且互相接触,从而形成无方向性的表面细等轴晶区。

中间柱状晶的形成机理:柱状晶主要从表面细等轴晶区形成并发展而来,稳定的凝

固壳层一旦形成处在凝固界面前沿的晶粒在垂直于型壁的单向热流的作用下,便转而以枝晶状延伸生长。由于择优生长,在逐渐淘汰掉取向不利的晶体过程中发展成柱状晶组织。

内部等轴晶的形成是由于剩余熔体内部晶核自由生长的结果。 8.2 答: 常用生核剂有以下几类:

1、 直接作为外加晶核的生核剂。

2、 通过与液态金属中的某元素形成较高熔点的稳定化合物。

3、 通过在液相中造成很大的微区富集而造成结晶相通过非均质形核而提前弥散析出的生核

剂。

4、通过在液相中造成很大的微区富集而造成结晶相通过非均质形核而提前弥散析出的生核剂。含强成份过冷的生核剂 作用条件和机理:

1类:这种生核剂通常是与欲细化相具有界面共格对应的高熔点物质或同类金属、

非金属碎粒,他们与欲细化相间具有较小的界面能,润湿角小,直接作为衬底促进自发形核。

2类:生核剂中的元素能与液态金属中的某元素形成较高熔点的稳定化合物,这些

化合物与欲细化相间界面共格关系和较小的界面能,而促进非均质形核。

3类: 如分类时所述。

4类:强成分过冷生核剂通过增加生核率和晶粒数量,降低生长速度而使组织细化。 8.3答: 影响铸件宏观凝固组织的因素:液态金属的成分、铸型的性质、浇注条件、冷却

条件。

第 7 页 共 7 页

材料成型原理

获得细等轴晶的常用方法:

1、 向熔体中加入强生核剂。

控制浇注条件:(1)采用较低的浇注温度;(2)采用合适的浇注工艺。 3、 铸型性质和铸件结构:(1)采用金属型铸造;

(2)减小液态金属与铸型表面的润湿角; (3)提高铸型表面粗糙度。

4、动态下结晶细化等轴晶:振动、搅拌、铸型旋转等方法。

8.4 答: 孕育衰退:大多数孕育剂有效性均与其在液态金属中的存在时间有关,即存在随着时间的延

长,孕育效果减弱甚至消失。

解决办法:在保证孕育剂均匀溶解的前提下,应采用较低的孕育处理温度。

9.1 答:焊接是通过加热或加压,或两者并用,并且用或不用填充材料,使被焊金属的材质达

到原子间结合而形成永久性连接的工艺过程。

焊接的物理本质:使两个独立的工件实现了原子间的结合,对金属而言,实现了金

属键的结合。

焊接工艺措施有两种:加热和加压。

9.2 答: 传统上将焊接方法分成三大类:熔化焊、固态焊和钎焊。将待焊处的母材金属熔化

以形成焊缝的焊接方法称为熔化焊(熔焊)。

9.3 答: 控制焊缝金属组织和性能的措施有:

(1)焊缝合金化和变质处理。采取固溶强化、细晶强化、弥散强化、相变强化等措施保证焊缝金属焊态强度与韧性。加入少量钛、硼、锆、稀土元素等变质处理,可以细化焊缝组织,提高韧性。

(2)工艺措施:调整焊接方法例如振动结晶、焊后热处理等措施提高焊缝性能。

9.4 答: HAZ(Heat Affected Zone)即焊接热影响区。

焊接接头的组成部分:焊缝、热影响区和母材。 10.1 答: 快速凝固是指在比常规工艺过程(冷速不超过102℃/s)快得多的冷速下,如10~

4

10℃/s合金以极快的速度转变为固态的过程。快速凝固分为急冷凝固技术和大过冷

凝固技术。

急冷凝固技术的基本原理:设法减小同一时刻凝固的熔体体积并减小熔体体积与

其散热表面积之比,并设法减小熔体与热传导性能很好的冷却介质的界面热阻以及主要通过传导的方式散热。

大过冷凝固技术的基本原理:要在熔体中形成尽可能接近均质形核的凝固条件,

从而获得大的凝固过冷度。

10.2 答: 定向凝固技术主要有以下几种: (1)发热剂法;(2)功率降低法;(3)快速凝固法;(4)液态金属冷却法。

9

第二部分 连接成形

答案

1 答:焊接时加热,对金属材料而言,可以使结合处达到熔化或塑性状态,接触面的氧化膜被迅速破坏;金属达到较高温度呈塑性状态时,金属变形阻力减小,有利于缩小原子间距;能增加原子的振动能,促进化学反应、扩散、结晶和再结晶过程的进行;熔化部分金属,冷却凝固后形成焊缝。

焊接时,除加热外,可同时或独立施加压力,其目的是破坏接触表面的氧化膜,使结合处有效接触面积增加,达到紧密接触实现焊接。

2 答:焊缝的晶体形态主要是柱状晶和少量的等轴晶。每个柱状晶内还可能有不同的结晶形态,如平面

第 8 页 共 8 页

材料成型原理

晶、胞状晶和树枝晶等。等轴晶内一般都呈现为树枝晶。焊缝金属中晶体的不同形态,与焊接熔池的凝固过程密切相关。

焊缝边界处,界面附近的溶质富聚程度较小,由于温度梯度大,结晶速度小,成分过冷接近于零,有利于平面晶的生长。

当结晶速度和温度梯度一定时,随合金中溶质浓度的提高,则过冷度增加,从而使结晶形态由平面晶变为胞状晶、胞状树枝晶、树枝状晶、等轴晶。

当合金中溶质浓度一定时,结晶速度越快,成分过冷度越大,结晶形态也可由平面晶变为胞状晶、胞状树枝晶、树枝状晶、等轴晶。

当溶质浓度和结晶速度一定时,随液相温度梯度的提高,成分过冷度减小,结晶形态的演变则刚好相反。

3 答:热裂纹具有高温断裂的性质。热裂纹有凝固(结晶)裂纹、液化裂纹、高温失延裂纹等类型。焊接热裂纹可出现在焊缝,也可出现在近缝区或多层焊焊道间的HAZ。

影响热裂纹的因素主要有: 1) 冶金因素

化学成分的影响:

合金元素影响凝固温度区的大小及合金在脆性温度区中的塑性。随着合金元素的增加,凝固温度区增大,同时脆性温度区增大,凝固裂纹的倾向增大。

杂质元素的偏析及偏析产物的形态对热裂纹也有一定影响。如S、P在钢中能形成低熔共晶,即使微量存在,也会使凝固温度区在为增加。

2) 凝固(结晶)组织形态对热裂纹的影响:对于奥氏体钢,凝固后晶粒的大小、

形态和方向、析出的初生相等对抗裂性有较大影响。晶粒越粗大,方向性越明显,则产生热裂纹的敏感性越大。

3) 工艺参数的影响:在焊接工艺中应尽量减少有害元素的偏析及降低应变增长率。

在焊接中、高碳钢以及异种金属焊接时,为减少母材中的有害元素进入焊疑缝,应尽量减小熔合比。不同接头形式对裂纹倾向有不同影响,表面堆焊和熔深较浅的对接缝的抗裂性较高。熔深大的对接和各种角接焊缝的抗裂性较差。

防止措施:主要是控制成分和调整工艺。

1) 焊缝成分的控制:选择合适的焊接材料,限制有害的杂质,严格控制S、P的含量。

2) 调整工艺:限制过热,采用小的焊接电流和小的焊接速度;控制成形系数;减小熔合比;减小拘

束度。

4 答:按最高温度范围及组织变化,将HAZ分为四个区:

熔合区:焊缝与母材相邻的部位,最高温度处于固相线与液相线之间。由于晶界与晶内局部

熔化,成分与组织不均匀分布,过热严重,塑性差,是焊接接头的薄弱环节。

过热区:温度范围处于固相线到1100℃。由于加热温度高,奥氏体晶粒过热,晶粒严重长

大。也称粗晶区。焊后冷却时,奥氏体相产物也因晶粒粗化使塑性、韧性下降。冷却速度较慢时,还会出现魏氏体。

相变重结晶区(正火区):母材已完全奥氏体化,处于1100℃~Ac3之间。由于稀奥氏体晶

粒细小,空冷后得到晶粒细小而均匀的珠光体和铁素体。塑性材和韧性好。

不完全重结晶区:温度范围在Ac1~Ac3,部分母材组织发生相变重结晶,奥氏体晶粒细小,

冷却后转变得到细小的F+P;而未奥氏体化的晶粒受热长大,使该区晶粒大小、组织分布不均匀。 5 答:熔合比:??

ApAp?Ad,Ap为焊缝截面中母材所占的面积;Ad为焊缝截面中填充金属所占的面

第 9 页 共 9 页

材料成型原理

积。

不考虑冶金反应的作用时,焊缝中某合金元素的浓度可通过下式计算:

Co???Cb?(1??)Ce

Co为某元素在焊缝金属中的质量分数;Cb为某元素在母材中的质量分数;Ce为某元素在焊条中的质量分数。

考虑合金元素的损失,则焊缝金属中某合金元素的实际浓度Cw为:

Cw???Cb?(1??)Cd

Cd为熔敷金属中某元素的质量分数。

通过改变熔合比,可以改变焊缝金属的化学成分。 6 答:温度改变导致“热胀冷缩”,非均匀的温度变化(如局部的加热、冷却)导致金属内部的不均匀“热胀冷缩”从而产生应力。工件冷却后保留在工件内部的内应力称为残余应力。局部的固态相变也能产生内应力。

减小或消除应力方法:结构设计、工艺措施、热处理、机械振动、机械加载等。 变形:残余应力的存在必然导致原工件形状的少量改变,也称为残余变形。

有整体变形、局部变形。

影响因素:材料热物理性能、膨胀系数、导热性、工艺因素、焊接热输入、焊接次序等。 防止方法:结构设计、工艺(反变形、刚性固定、预留收缩量)、矫正(机械、火焰)。

第三部分 塑性力学

1 解:?z??u0uzz? ?uz??u0 HzH设长方体长度方向位移量为ux,宽度方向位移量为u,根据位移不变这一条件

y即?x??y??z?0

uxuyu?x??y =+=??z=0

xyH又∵

uxuy=

yxuxuyuz???0 ∴xyz∴

uxuyu1????z?0 xy22Hxyzu0 ,uy=u0 , uz=–u0 2H2HH∴ux=

小应变张量场:

第 10 页 共 10 页

材料成型原理

2 解:

??uxu0x??x?2H, ?=?uy?y=u02H, ??uuyz=z?z=–0H ?uxxy=

??x+?uy?y=0 ??u000??2H?∴小应变张量场为:?u?ij???000??2H? ???00?u?0H???等效应变场:

?ij?2(ex-e2y)+(ey-ez)2+(e23x-ez)2+6(gxy+g2yz+g2zx) =29u22034H2+9u04H2= u0H 1)??(1)z?ln2H0H?ln2 0圆柱体均匀变形 ∴??(1)r???(1)?

∴??(1)(1)r???(1)(1)????z?2??r???(1)z?0???(1)r??1??(1)12z??2ln2???(1)?23(??r???2?)?(??r???z)2?(??z????)2?ln2 (2)??(2)H0z?ln2H??ln2 0如一所求,得 ??(2)1r?????2ln2,以及??(2)?ln2 (3)累积变形

????(1)???(2)11r?????rr??2ln2?2ln2?0

??z???(1)z???(2)z?ln2?(?ln2)?0

第 11 页 共 11 页

( 材料成型原理

????(1)???(2)?2ln2

23 解: 由力平衡方程得: P(Rd?)??4?Rd(?t)sin?d?2?0???RP . 2t ?1??2???, ?3?0 ?? ?

2 ?(?1??2)2?(?2??32)?(?1??32)??1??2R2tP??s ?P??s 2tRdθσθ4 解: (a)O?B

σ2σ1

等效应力 ??2(?1??2)2?(?2??3)2?(?3??1)2?435.9MPa 2又?=200(1+?) ???1.18

?m?

?1??2??33 ?'????m

第 12 页 共 12 页

材料成型原理

??1'?166.7MPa,?2'??33.3MPa,?3'??233.3MPa

又全量应变?i?3?82,??0.13?352?,??i' ??1?1.082?2? 0.9472 (b)解法和(a)相同

O?A?O?B

O?A阶段

??217.9MPa ,???1(1)?0.0891, ?m(1)??16.7MPa

??1(1)'??133.3MPa,?2(1)'?16.7MPa,?3(1)'?116.7MPa ?1(1)??0.0823,?2(1)?0.0103,?3(1)?0.0721 又?(2)????(1),

? A→B过程 ?1(2)?1.0006,?2(2)??0.1249,?3(2)?0.8753

则全过程中全量主应变?i??i(2)??i(2) 即 ?1??0.0823?1.0006?0.9183 ?2?0.010?3?(0.012?4?9) ?3?0.072?1

0.0.08?753 0.5 解:已知?x??60MPa,?y??30MPa,?z?0,?xy?300MPa,?zx??zy?0 则?m??x??y??z3??30MPa

?i'??i??m

??x??30MPa,?y?0MPa,?z?30MPa

'''?ij,又已知d?x???,可得 根据增量形式levy-Mises本构方程:d?ij?d??

p'd?x?x?d?y??d?zy??d?xyz??d?yzxy??d?xzyz??d??xz???? ?3030 ?d?y?d?yz?d?zx?0 , d?z??z?d??30??30??

第 13 页 共 13 页

材料成型原理

d?xy??xy?d??300??30?0.58?

???? 则应变增量张量为: 0.58????0'0.58?000? 0??????ij 塑性功增量密度:dw??ij?则有塑性功增量密度为:

dw??x'?d?x??y'?d?y??z'?d?z?2?xy?d?xy?2?yz?d?yz?2?zx?d?zx?80?

6 解:(1)A:圆柱部分

P??r2P?rP?2rP?r??0, ??? ?r?0, ?z???0

2?r?t2t2tt 则点A屈服时:?1????P?rP?r,?2??z?,?3?0 t2t 有(?1??2)2?(?2??3)2?(?3??1)2?2?s2 ?PA? B:球面部分

P?????(rd?)2?4???rd??tsin?,0 则B点屈服时:?1??2????2t?s 3rd?2Pr 2tP?r,?3?0 2t (?1??2)2?(?2??3)2?(?3??1)2?2?s2 ?PB?2?s

因为PB>PA,所以A点先屈服,即圆筒部分先屈服。 (2)屈服时P?tr2rP?rP?r ?s,且?r?0,?z?,???2tt3t3' 则?m??r?????z?P?rP?rP?r' ??r'? ,?z'?0?,??2t2t2t?ij,得 根据d?ij?d?? d?r??d??,d?z?0, 且d?r?0,d???0 又有等效应变增量:

第 14 页 共 14 页

材料成型原理

d??2(d?z?d??)2?(d???d?r)2?(d?r?d?z)2?? 3392? ?, ?d?r??22 即(d?r)2?(2d?r)2?(d?r)2????? 对应的应变增量张量为:?????

7 解: r方向的静力平衡方程

3?200000?0??0?

?3??2?? ?r?rd??H?(?r?d?r)(r?dr)d??H?2??sin ?d?r?d??dr?H?2?fdr?rd??0 2????rrdr?2?fdr Hdr H 假设轴对称均匀变形 ??r???,d?r???f ?r,?z都为压应力,且?z??r 令?1???r,?3???z 由屈服准则得:

?1??3??z??r???,?d?r?d?z ?d?z??2?fdrr??z??2?f??C HH 边界条件:r?R0时,?r?0,?z??? ?C????2?? ?P?R0r??z?2????? HHR0) Hrd??sin??d?

rsin?1?R02?R002?rdr?z??(??2?8 解:在圆锥面上取单元体,令OA=r,d?? 沿?方向列平衡方程 (???d??)(r?dr)d??t?2?? ?d????(?????)drd?t?sin????r?d??t?0 sin?2dr r第 15 页 共 15 页

材料成型原理

因为??为拉应力,??为压应力,?1???,?3???? 由Mises塑性条件:?1??3?????????

dr???????lnr?C rDD 边界条件:r?0时,???0?C???ln0

22 ∴d?????? ∴?????lnDD0d,则当r?0时,?????ln0

d022r ∴拉深力P??d0t????d0t????ln

D0 d0 第 16 页 共 16 页

材料成型原理

因为??为拉应力,??为压应力,?1???,?3???? 由Mises塑性条件:?1??3?????????

dr???????lnr?C rDD 边界条件:r?0时,???0?C???ln0

22 ∴d?????? ∴?????lnDD0d,则当r?0时,?????ln0

d022r ∴拉深力P??d0t????d0t????ln

D0 d0 第 16 页 共 16 页

本文来源:https://www.bwwdw.com/article/hpup.html

Top