水利水电工程中英文对照外文翻译文献

更新时间:2023-10-24 02:12:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

中英文对照外文翻译文献

(文档含英文原文和中文翻译)

译文:

研究钢弧形闸门的动态稳定性

摘要

由于钢弧形闸门的结构特征和弹力,调查对参数共振的弧形闸门的臂一直是研究领域的热点话题弧形弧形闸门的动力稳定性。在这个论文中,简化空间框架作为分析模型,根据弹性体薄壁结构的扰动方程和梁单元模型和薄壁结构的梁单元模型,动态不稳定区域的弧形闸门可以通过有限元的方法,应用有限元的方法计算动态不稳定性的主要区域的弧形弧形闸门工作。此外,结合物理和数值模型,对识别新方法的参数共振钢弧形闸门提出了调查,本文不仅是重要的改进弧形

闸门的参数振动的计算方法,但也为进一步研究弧形弧形闸门结构的动态稳定性打下了坚实的基础。

简介

低举升力,没有门槽,好流型,和操作方便等优点,使钢弧形闸门已经广泛应用于水工建筑物。弧形闸门的结构特点是液压完全作用于弧形闸门,通过门叶和主大梁,所以弧形闸门臂是主要的组件确保弧形闸门安全操作。如果周期性轴向载荷作用于手臂,手臂的不稳定是在一定条件下可能发生。调查指出:在弧形闸门的20次事故中,除了极特殊的破坏情况下,弧形闸门的破坏的原因是弧形闸门臂的不稳定;此外,明显的动态作用下发生破坏。例如:张山闸,位于中国的江苏省,包括36个弧形闸门。当一个弧形闸门打开放水时,门被破坏了,而其他弧形闸门则关闭,受到静态静水压力仍然是一样的,很明显,一个动态的加载是造成的弧形闸门破坏一个主要因素。因此弧形闸门臂的动态不稳定是造成弧形闸门(特别是低水头的弧形闸门)破坏的主要原是毫无疑问。

基于弧形闸门结构和作用力的特点,研究钢弧形闸门专注于研究弧形闸门臂的动态不稳定。在1980年的,教授闫世武,教授张继光公认的参数振动引起的弧形闸门臂动态不稳定的是原因之一。他们提出了一个简单的分析方法,近年来,在一些文献中广泛地被引用进来调查。然而,这些调查的得到都基于模型,弧形闸门臂被视为平面简单的梁,由于弧形弧形闸门是一个复杂的空间结构,三维效果非常明

显,平面简单的梁的模型无法揭示这个空间效果,并不能精确的体现弧形闸门臂的动态不稳定性,本文提出一种计算方法用于分析弧形闸门的动态不稳定。通过水模型实验,通过物理和数值模型方法的结合,对弧形闸门臂参数共振的预测进行详细描述。

弹性体扰动方程

当结构受到振动荷载时,可能由于轴向的周期性的力而使其动力不稳定。方程(1)被应用于分析结构的动态稳定性。

如果结构是阻尼的,方程可以写成

在方程式(2)中添加了阻尼。[C] 是阻尼矩阵。[M] 是质量矩阵。[K] 是结构独立的弹性刚度矩阵。[Kgs] 和 [Kgt] 是静态和时间相关组件的几何刚度矩阵。θ是振动荷载的频率。这个方程参数振动的控制方程,解这个方程和对结构进行动态稳定性分析比解决方程(1)要复杂得多。

动态不稳定的区域

通过分析的控制方程[2]的特点,我们可以知道,结构不稳定的状态的时间方程周期解为T和2T, T=2π/θ。当方程的周期解与2T时,结构的不稳定性很容易激发。周期解 为2T的区域的主要的动态不稳

定区域,也就是说,θ= 2ωj作为干扰频率,ωj 是j th结构的固有频率, j th主要区域的动态不稳定是可以计算的。主要不稳定区域的边界可以方程(3) 确定。

[Kgs] 和 [Kgt] 可以给定外部负载时确定。因此,θ的范围可以得到。当θ值在这个范围内时结构是不稳定的。通过增加外部负载的值,动态不稳定的区域是可以得到的。当结构在接头处承受垂直载荷时,轴向力也是可以确定的。对于结构来说,在确定几何刚度矩阵之前对结构进行动态分析是很有必要的,[Kgt]和 θ是有关的,但是通过计算表明如果θ的值在一个很小的范围内改变,这个承受垂直荷载结构的动态的轴向力没有显著的变化,例如P0sinθt。这可以归因于结构令人不安的频率和纵向固有振动频率巨大的不同。动态系数没有多大变化,所以可以视为常数。因此, j th的主要动态不稳定的地区可以通过轴向干扰力的频率2ωj来确定。通过以上分析,方程(3)可以通过扰动法来解。

薄壁结构的梁单元模型

观察薄壁结构在约束扭转所引起的弯曲对结构的应变和应力有非常显著影响。为了考虑薄壁梁的翘曲的影响,采用了一个以空间梁

单元分析模型为基础的改进了的位移模型。

如果我们承认两个节点(即在一个元素, 14个变量)定义挠曲形状,我们可以假设这些是由一个立方体给出。

其中?是扭曲,λ是扭曲系数,λ依赖于梁截面形状。 定义的14的常量必须是独特14节点位移,形状函数的表达式可以推导出基于14常量。最后,有关薄壁梁的一个新的刚度矩阵,一个新的静态几何刚度矩阵和一个新的静态几何刚度矩阵酒可以被推导出来,这个适用于任何形状和截面薄壁梁(打开或关闭)。虑薄壁梁的发生变形的可能也被考虑在内了。

总结

在本文中,基于弧形闸门的简化模型,提出一个用于了获取动态不稳定地区方法,该方法考虑到了空间的影响,它还可以考虑到薄壁梁可能发生的变形模式,例如张力或压缩、剪切、弯曲、扭转、翘曲。为了使这个方法可以被应用在实际项目中,应用物理和数值模型,介

绍了一种认识弧形闸门共振参数钢方法。这些调查对于振动对弧形闸门的影响的可靠性评估是十分重要的提高。作为一个在水里的结构,闸门将不可避免地与流体相互作用,对有关流体于结构的相互作用对动力不稳定性的影响以及弧形闸门动力不稳定性理解的提高做进一步研究是十分有必要的。

RESEARCH ON DYNAMIC STABILITY OF STEEL

RADIAL GATES

Abstract

Due to the steel radial gates’ characteristics of structural and acting forces, the investigation on parametric resonance of radial gates’ arms has always been the hot topic in the research field of radial gate’s dynamic stability. In this paper, the simplified space frame is taken as the analytical model, and according to the elastomer perturbation equation and beam element model of thin-walled structure, the dynamic instability region of radial gates can be obtained by the finite element method, then the computational method is applied to calculate the main regions of dynamic instability for a working radial gate. Furthermore,

combing with the physical and numerical models, a new method recognizing the parameter resonance of steel radial gates is proposed. The investigations, in this paper, are not only important improvement

for

the

radial

gates’

parametric

vibration

computational method, but also a solid foundation for further study on the dynamic stability of radial gate structure.

Introduction

For the merits such as low lifting force, without gate slots, good flow pattern, and convenient operation etc, steel radial gates have been widely applied in hydraulic buildings. The structure characteristic of radial gates is that the hydraulic pressure entirely acts on arms of

radial gates through gate leaf and main beams, so arms of radial gates are major components which ensure the radial gates safety operation. If the periodic axial load acts on arms, the instability of the arms is likely to occur under certain condition. The investigation points out: in 20 accidents of radial gates, except the extremely special destruction cases, the reason for the destruction of radial gates is the

instability of the arms; moreover, the destruction occurs under the obvious dynamic action. For example: zhang Shan Sluice, located in Jang Su province of China, consists of 36 radial gates. When it is open and releases discharge, one gate is destroyed, while the others that are closed and subjected to static hydrostatic pressure are still perfect, obviously, a dynamic loading is a primary factor which causes the destruction of radial gates. Therefore dynamic instability of arms is the main reason for the destruction of radial gates (low head radial gates particularly) is to allow of no doubt.

Based on the radial gates’ characteristics of structural and acting forces, research work of steel radial gates is focused on the dynamic instability of arms. In 1980's, Professor Yan Shi wu, Professor Zhang Ji Guang [1] recognized parametric vibration was one of reasons caused dynamic instability of arms and presented a

simple analytical method, in recent years, a series of investigations have been widely seen in some literatures. However, these investigations are obtained based on a model that arm is regarded as a plane simple beam, because the radial gate is a complex space structure, the three-dimensional effect is extremely obvious, the plane simple beam model is unable to reveal this space effect, and can not precisely manifest the rule of the arms’ dynamic instability, this paper presents a computational method which is used to analyze the dynamic instability of radial gates. By a hydroelastic model experiment, a new method combing with the physical and numerical model to predict the parametric resonance of radial gates’ arms is described in detail.

The Elastomer Perturbation Equation

The structure is likely to subject to be dynamic instability because of axially periodic force when the structure is acted on by vibration load. Equation (1) is applied in analyzing dynamic stability of structure.

If the structure is damped, the equation can be written as:

The term of damping is added in Equation (2), where [C] is the damping matrix. [M] is the mass matrix and [K] is the elastic stiffness matrix of the structure respectively; [Kgs] and [Kgt] are the static and time dependent components of the geometric stiffness matrixes; and θ is the frequency of the vibration load. This equation is a governing equation for parameter vibration. To solve the Equation and to analyze the dynamic stability of the structure is more complicated than to solve Equation (l).

The Regions of the Dynamic Instability

By means of a concrete analysis of the character of the governing equation [2], it is known that the condition of structure instability is the equation with periodic solution of periods T and 2T,where T=2π/θ.When there is a periodic solution with Period 2T in the equation, the instability of structure can be excited very easily. The regions with periodic solution of 2T are the main regions of dynamic instability, that is, θ=2ωj is taken as disturbing frequency, where ωj is j the natural frequency of structure, and the main regions of j th dynamic instability can be calculated. The boundaries of a main unstable region

can be determined with Equation (3).

本文来源:https://www.bwwdw.com/article/hoy2.html

Top