Effect of dtmu quasi-nucleus structure on energy levels of the (dtmu)Xee exotic molecule
更新时间:2023-07-18 07:28:01 阅读量: 实用文档 文档下载
- effect推荐度:
- 相关推荐
Precise energies of rovibrational states of the exotic hydrogen-like molecule $(dt\mu)Xee$ are of importance for $dt\mu$ resonant formation, which is a key process in the muon-catalyzed fusion cycle. The effect of the internal structure and motion of the $
E ectofdtµquasi-nucleusstructureonenergylevelsofthe
(dtµ)Xeeexoticmolecule
arXiv:physics/0403116v2 [physics.atom-ph] 31 Mar 2004O.I.Kartavtsev,1A.V.Malykh,1,2andV.P.Permyakov31DzhelepovLaboratoryofNuclearProblems,JointInstituteforNuclearResearch,Dubna,141980,Russia2PhysicsDepartment,NovgorodStateUniversity,NovgorodtheGreat,173003,Russia3BogoliubovLaboratoryofTheoreticalPhysics,JointInstituteforNuclearResearch,Dubna,141980,Russia(Dated:February2,2008)AbstractPreciseenergiesofrovibrationalstatesoftheexotichydrogen-likemolecule(dtµ)Xeeareofimportancefordtµresonantformation,whichisakeyprocessinthemuon-catalyzedfusioncycle.Thee ectoftheinternalstructureandmotionofthedtµquasi-nucleusonenergylevelsisstudiedusingthethree-bodydescriptionofthe(dtµ)Xeemoleculebasedonthehierarchyofscalesandcorrespondingenergiesofitsconstituentsubsystems.Foranumberofrovibrationalstatesof(dtµ)deeand(dtµ)tee,theshiftsandsplittingsofenergylevelsarecalculatedinthesecondorderoftheperturbationtheory.PACSnumbers:36.10.-k,36.10.Dr,33.20.Wr
Precise energies of rovibrational states of the exotic hydrogen-like molecule $(dt\mu)Xee$ are of importance for $dt\mu$ resonant formation, which is a key process in the muon-catalyzed fusion cycle. The effect of the internal structure and motion of the $
I.INTRODUCTION
Itisknownthatonestoppedmuoninadeuterium-tritiummixtureyieldsmorethan100nuclearfusionreactions.Theprocessofmuon-catalyzedfusionhasbeenintensivelystudiedandadetaileddescriptionexistsintheliterature,e.g.,inreviewarticles[1,2,3,4].Oneofthekeyprocessesinthemuon-catalyzedfusioncycleistheformationofthehydrogen-likeexoticmolecule(dtµ)Xee(forthesakeofgeneralityXstandsforeitherisotoped,t,orp),inwhichadtµmesicmoleculesubstitutesforoneofthenucleiinthehydrogenmolecule.ItiswidelyacceptedthattheresonancemechanismproposedbyVesman[5]isresponsibleforthehighrateofthedtµformation.Duetothismechanism,adtµmesicmoleculeinalooselyboundexcitedstatetobeproducedbylow-energycollisionsoftµmesicatomsandDXmoleculesinaresonanceprocess
tµ+DX →(dtµ)Xee
followedbydtµtransitiontothetµgroundstate.Therateoftheresonanceprocessissensitivetothepreciseresonancepositionandanaccuracybettera1meVisnecessarytoobtainreasonabletheoreticalestimatesoftheformationrate[1,2,3,4].
Resonanceformationcantakeplaceiftheenergyreleasedindtµbindingistransferredtotherovibrationalexcitationoftheexoticmolecule(dtµ)Xee.Thisisactuallythecaseasdtµhasalooselyboundexcitedstatewithanangularmomentumλ=1andbindingenergywhichiscomparabletovibrationalquantumofthe(dtµ)Xeemolecule.Inanon-relativisticapproximation,di erentcalculationsdeterminewithagoodaccuracythebindingenergyoftheisolateddtµmesicmolecule[1,2,3,4].Toobtaintheprecisevalueofthebindingenergyonehastocorrectthenon-relativisticenergyforrelativistice ects,hyper nee ects, nitenuclearsize,vacuumpolarization,andothers.Theresonancepositionisdetermined,besidesthebindingenergyofisolateddtµ,bytheenergyoftherovibrationalexcitationofthehydrogen-likemolecule(dtµ)XeewithonenucleusbeingtheparticleXandtheothertheexciteddtµmesicmolecule.Asthe”size”oftheexciteddtµmesicmoleculewithλ=1isoftheorderof0.05a.u.[8],whichismuchsmallerthantheinternucleardistanceinthewholemolecule,therovibrationalspectrumof(dtµ)Xeecanbecalculatedtoagoodapproximationbytreatingdtµasapoint-likechargedparticle[6,7].Nevertheless,toreachanaccuracyoftheorderofatenthofameVoneshouldtakeintoaccounttheenergyshiftwhicharisesduetotheinternalstructureandmotionofadtµmesicmolecule.
Precise energies of rovibrational states of the exotic hydrogen-like molecule $(dt\mu)Xee$ are of importance for $dt\mu$ resonant formation, which is a key process in the muon-catalyzed fusion cycle. The effect of the internal structure and motion of the $
Thee ectofthedtµ nitesizewaspreviouslyinvestigatedinasimpleapproach[8,9,10]wheretheenergyshiftsforthe(dtµ)deewereobtainedbymultiplyingby1.45theshiftcalculatedfortheatom-likesystem(dtµ)einthesecondorderperturbationtheory(PT).Withintheframeworkofthissimpleapproachitisnotpossibletotakeaccountofthemolecularstructure;inparticular,thecalculatedenergyshiftisindependentoftherovibrationalquantumnumbers.Thee ectofthemolecularstructure,i.e.,thedependenceonangularmomentum,wasexplicitlydemonstratedintheelaboratesix-bodycalculation[8]ofthe(dtµ)deeenergyshiftsinthe rstorderoftheperturbationtheory.Note,however,thatthe rst-andsecond-orderPTcontributionstotheenergyshiftarecomparable.Recently,resonancepositionsinthelow-energytµ+D2scatteringhavebeenobtainedintheelaboratethree-bodycalculation[11,12].Onlyfewresonancestateswiththezerototalangularmomentumhavebeenconsideredinthispaper.
Themainaimofthepresentpaperistocalculatetheenergyshiftswhichariseduetotheinternalstructureandmotionofthedtµmesicmoleculeembeddedinthehydrogen-like(dtµ)Xeemolecule.Thecalculationisreducedtosolutionofathree-bodyproblemforheavyparticlestµ,dandX.Thisapproachisbasedonthehierarchyofscalesandcorrespondingenergiesofconstituentsubsystemsofthe(dtµ)Xeethusreliablytakingintoaccountthespeci cfeaturesofthismolecule.Asaresult,theenergyshiftsareobtainedforanumberofvibrationalandrotationalstatesof(dtµ)deeand(dtµ)teeinthesecond-orderPT.II.METHOD
Thestructureoftheexoticmolecule(dtµ)Xeeischaracterizedbyahierarchyofscalesandcorrespondingenergiesofitsconstituentsubsystems.Inthisrespect,atµmesicatomissmallincomparisonwithitsmeanseparationfromadeuteroninthelooselybounddtµmesicmolecule,whichallowstµtobetreatedasapoint-likeneutralparticleinteractingwithadeuteronbytheshort-rangee ectivepotential.ThereisalsointeractionoftµwiththesecondnucleusX;however,thismightbeneglectedduetolargeseparationbetweentheseparticles.Inturn,thesizeofadtµmesicmoleculeissmallincomparisonwiththeamplitudeofvibrationsin(dtµ)Xee;therefore,itmovesasapoint-likequasi-nucleusneartheequilibriumposition.Forthisreason,thee ectofthedtµstructureisconsideredwithintheframeworkoftheperturbationtheory.
Precise energies of rovibrational states of the exotic hydrogen-like molecule $(dt\mu)Xee$ are of importance for $dt\mu$ resonant formation, which is a key process in the muon-catalyzed fusion cycle. The effect of the internal structure and motion of the $
Furthermore,twoelectronsinthehydrogen-likemolecule(dtµ)Xeemovemuchfasterthantheheavyparticlesd,X,andtµ,whichmakesitpossibletousethefamiliarBorn-Oppenheimer(BO)approximation,i.e.,tosolveelectronicproblemwiththe xedchargedparticlesdandXthusobtainingtheBOenergywhichplaysaroleofthee ectivepoten-tialbetweendandX.Theelectronicexcitations,whichrequireaconsiderableamountofenergy[13],arenottakenintoaccountforthelow-energyprocessesunderconsideration.Asaresult,thedescriptionof(dtµ)Xeeisreducedtosolutionofathree-bodyproblemforthreeparticlestµ,dandX.TheinteractionbetweenchargeddandXisdescribedbythewell-knownBOpotentialforthehydrogenmolecule.Inaccordwiththetreatmentofthetµmesicatomasapoint-likeneutralparticle,thepresentcalculationdoesnotexplicitlyusethetµ+de ectivepotential,rathertheresultisexpressedviathelow-energytµ+dscatteringphaseshiftsandcharacteristicsofthetµmesicmoleculeinthelooselyboundexcitedstate.
The(dtµ)Xeestatesareeithertrueboundstatesornarrowresonancesiftheirenergyisbeloworabovethetµ+DXthreshold.Astheenergyshiftsaremainlydeterminedbythecouplingwithclosedchannels,inthepresentcalculationbothresonancesandboundstatesaretreatedonanequalfootingthusneglectingasmallcontributiontotheenergyshiftswhichcomesfromthecouplingwiththeopentµ+DXchannel.
A.Three-bodydescription
Undertheaboveapproximations,theSchr¨odingerequationforthehydrogen-likemolecule(dtµ)Xeereads
1
2µ2 ρ+V1(r)+V2(|ρ βr|)+V(|ρ+αr|) EΨ=0(1)
wheretheJacobicoordinatesrandρarethevectorsfromdtothepoint-likemesicatomtµandfromthesecondnucleusXtothedtµcenterofmass,respectively.Thereducedm1m2m1massesandparametersαandβareµ1=,α=m1+m2+m3
,wherem1,m2andm3arethemassesoftµ,d,andX,respectively.Them1+m2atomicunitsareusedthroughoutthepaperunlessotherisspeci ed.InEq.(1),V(|ρ+αr|)
denotesthewell-knownBOpotentialdescribingtheinteractionbetweenchargeddandXwhiletheshort-rangepotentialsV1(r)andV2(|ρ βr|)describetheinteractionofatµ
Precise energies of rovibrational states of the exotic hydrogen-like molecule $(dt\mu)Xee$ are of importance for $dt\mu$ resonant formation, which is a key process in the muon-catalyzed fusion cycle. The effect of the internal structure and motion of the $
mesicatomwithadeuteronandX,respectively.Inthefollowing,duetolargeinternuclearseparation(ρ r)in(dtµ)Xee,theshort-rangeinteractionV2(|ρ βr|)ofthetµmesicatomwiththesecondnucleusXisnegligibleandwillbeomitted.
Anaturalzeroth-orderapproximationforthecalculationofthe(dtµ)Xeeenergylevelsistotreatthedtµmesicmoleculeasapointquasi-nucleuswiththedtµmassandtheunitcharge.Thecalculationsoftheenergylevelsinthisapproximationarepresentedin[6,7]fordi erentisotopesXofthehydrogen-likemolecule(dtµ)Xee.Clearly,thetreatmentofdtµasapoint-likeparticleisequivalenttothereplacementoftheexactpotentialV(|ρ+αr|)intheSchr¨odingerequation(1)bythepotentialV(ρ)whichdescribestheBOinteractionbetweenXandthepointparticlelocatedatthedtµcenterofmass.Thus,thee ectofthedtµstructure,whichleadstotheshiftofthezeroth-orderenergylevels,originatesfromtheperturbationpotential
Vp=V(|ρ+αr|) V(ρ).(2)
Inthezeroth-orderapproximationVp=0,thesolutionsofEq.(1)withthetotalangularmomentumLanditsprojectionMarewrittenasaproductofthebisphericalharmonicsofnucleiin(dtµ)Xeewiththeangularmomentuml,andtheradialfunctionofrdescribingLM ,r )describingtheangulardependence,theradialfunctionofρdescribingthemotion(ρYlλtheinternalmotioninamesicmoleculewiththeangularmomentumλ.TheunperturbedenergiesEnlandthecorrespondingsquareintegrableradialfunctionsΦnl(ρ)ofthe(dtµ)Xeevibrationalandrotationalstatessatisfytheequation
1
ρ2 ρ +l(l+1)
2µ1 1 r r2
r2 +V1(r) Eφ(r)=0. (4)
HereE= εvλandφ(r)=φvλ(r)fortheboundstatesandE=k2/2µ1andφ(r)=φkλ(r)forthecontinuumstateswiththewavenumberk.Thefunctionsφvλ(r)aresquareintegrableandthefunctionsφkλ(r)arenormalizedbythecondition
∞ 0r2drφ kλ(r)φqλ(r)=δ(k q).
(5)
Precise energies of rovibrational states of the exotic hydrogen-like molecule $(dt\mu)Xee$ are of importance for $dt\mu$ resonant formation, which is a key process in the muon-catalyzed fusion cycle. The effect of the internal structure and motion of the $
IncorrespondencewiththeVesmanmechanism,(dtµ)Xeecontainsadtµmesicmoleculeintheweaklyboundstatewiththebindingenergyε11(v=1,λ=1).Otherdtµstates,whosebindingenergiessigni cantlyexceedallthecharacteristicenergiesoftheproblemunderconsideration,willnotbetakenintoaccountinthecalculationoftheenergyshifts.
B.Perturbationtheory
Thee ectofthedtµstructureissmallduetosmallnessofdtµmesicmoleculeincom-parisonwithacharacteristiclengthofdtµmotioninthemolecularpotentialV(ρ).Inotherwords,theperturbationVpissmallincomparisonwithV(ρ)andcanbeexpandedinpowersofthesmallparameterαr.Correspondingly,thedimensionlessparameteroftheperturba-tiontheoryistheratiooftheaveragedistancebetweenthedeuteronandthedtµcenterofmassα r totheaverageamplitudeofvibrations ρ a inthemolecularpotentialneartheequilibriuminternucleardistancea.
Oneshouldnotethatthelowest-ordertermoftheexpansionVp,whichisproportionaltoαr,doesnotcontributetotheenergyshiftsinthe rst-orderPT;therefore,theenergyshiftoforder(αr)2mustbeobtaineduptothesecond-orderPT.Besides,Vpcouplestherotationalstateswithl=L±1whilethestatewithl=Lremainsuncoupled.Astheseparationoftherotationallevelsiscomparativelysmall,thelevelcouplingcannotbeapriorineglectedandrequiresexplicittreatment.Thus,theenergyshiftswillbedeterminedinthesecond-orderdegeneratePTbysolvingasecularequation
det[Vn+Wn+En E]=0(6)
whereVnandWnarethematriceswiththematrixelementsofthe rst-andsecond-order
nnPTVllandW,respectively,thematrixelementsofEnare(Enl+ε11)δll1,andEisthell11
levelenergy.
The rst-orderPTmatrixelementsare
nVll1= ,r )YlLM ,r )d3rd3ρVp|φ11(r)|2Φnl(ρ)Φnl1(ρ)YlLM(ρ(ρ111 (7)
andthesecond-orderPTmatrixelementsincludeasumandanintegraloverintermediatestatesdescribingsimultaneousexcitationsoftheexoticmoleculewiththequantumnumbersνand andadtµmesicmoleculewiththecontinuum-statewavenumberkandtheangular
Precise energies of rovibrational states of the exotic hydrogen-like molecule $(dt\mu)Xee$ are of importance for $dt\mu$ resonant formation, which is a key process in the muon-catalyzed fusion cycle. The effect of the internal structure and motion of the $
momentumλ
nλλdkZnl,ν (k)Zν ,nl(k)1Wll1= ν λ
ρP1(cosθ)+12
ρ2+ ρ+2 2V V
ρ
α2Q[Unl,nMQL
61l1δll1+Unl,n1l1A2(l1l11)],
Wlln
1= α2UnνDUνnD(l11 λ)Iλ(Eν
ν E+ε11)
where AL1(l1 λ)AL1λ
Iλ( )= ∞[uλ(k)]2dk
ρ2+2
ρ,
UQ
nl,n1l1=2 ρ2dρΦV Vnl(ρ)Φn1l1(ρ) 2ρ
ρ.
andtheangularintegralsALK(lλl1λ1)aregivenintheAppendix.
(11)(12)(16)(18)
Precise energies of rovibrational states of the exotic hydrogen-like molecule $(dt\mu)Xee$ are of importance for $dt\mu$ resonant formation, which is a key process in the muon-catalyzed fusion cycle. The effect of the internal structure and motion of the $
III.
A.RESULTSOFCALCULATIONMatrixelements
Thesimple,thoughprovidingtherequiredaccuracyexpressionsforthemultipolema-trixelements(16),(17),and(18)areobtainedusing
thefollowingreliableapproximations.Firstly,thematrixelementsarecompletelydeterminedbytheBOpotentialforthehydrogenmoleculeV(ρ)whichisfairlywellknownfromthecalculations[6,7,14,15].As(dtµ)Xeeisproducedinlow-energytµ+DXcollisions,onlythelowestvibrationalstatesshouldbetakenintoaccount.ForthesestatesarelocalizedneartheminimumofV(ρ)attheequilibriuminternucleardistancea≈1.4a.u.,itisnaturaltousetheharmonicapproximation
Vh(ρ)=1
2µ2ω2(ρ a)2[1 αM(ρ a)]+V0.(20)
whichtakesintoaccountthenexttermoftheexpansioninρ a.Theapproximation(20)accuratelyreproducestheexactenergiesofthelowestvibrationalstatescalculatedin[6,7].
1)/2µ2a2≈10 4istwoordersofmagnitudesmallerthanthevibrationalenergyω≈10 2.Secondly,therotationalenergyin(3)forthehydrogen-likemoleculel(l+1)/2µ2ρ2≈l(l+Therefore,underausualapproximation,thecentrifugaltermistreatedperturbatively,i.e.,theeigenenergiesaregivenby
Enl=En0+vrl(l+1)(21)
andthewavefunctionsΦnl(ρ)willbetakenindependentoflinthesameapproximation.Indeed,therotationalspectrumcalculatedin[6,7]isingoodagreementwiththeaboveexpression(21)withvr≈1/2µ2a2 10 4.Thus,undertheaboveapproximations,theradialwavefunctionΦnl(ρ)inthepotential(19)coincideswiththeharmonic-oscillatorwavefunctionandthemultipolematrixelements(16),(17),(18)arereducedtol-independentexpressions
DUnν= 2 √n+1δn+1,ν,
MUnn=µ2ω2,QUnn=2µ2ω2.(22)
Precise energies of rovibrational states of the exotic hydrogen-like molecule $(dt\mu)Xee$ are of importance for $dt\mu$ resonant formation, which is a key process in the muon-catalyzed fusion cycle. The effect of the internal structure and motion of the $
TheunharmonictermofthepotentialVu(ρ)leadsonlytomodi cationofthedipolematrixelement
DUnν=
η
3 2 √n+1δn+1,ν (n+1)(n+2)δn,ν 2+(2n+1)δn,ν (23)wheretheunharmoniccorrectionisproportionaltothedimensionlessparameterη=2µ2ω≈0.14.
Calculationofthequasi-nucleusmatrixelements(14,15)isbasedonthesmallnessofthetµsizeincomparisonwiththesizeofthelooselybounddtµstate(v=1,λ=1).Thus,almostinallthecon gurationspacetµanddmoveasfreeparticlesandthebound-statewavefunctionisapproximatedby
11(r)=Ca
whereκ=√1+κr κreκr2(24)
2
r
φk2(r)= ,(25)πk[cosδ2(k)j2(kr)+sinδ2(k)y2(kr)](26)
whereδλ(k)arethetµ+dscatteringphaseshiftsandj2(kr)andy2(kr)arethesphericalBesselfunctions.Thed-wavephaseshiftδ2(k)isactuallyverysmall,whichallowseithercoskrreplacingy2(kr)bytheleadingterm
kr
Q=5
µ1ε11(27)oneobtainsthequadrupolemomentum
andtheexpression
Iλ( )=24Ca
Precise energies of rovibrational states of the exotic hydrogen-like molecule $(dt\mu)Xee$ are of importance for $dt\mu$ resonant formation, which is a key process in the muon-catalyzed fusion cycle. The effect of the internal structure and motion of the $
viathedimensionlessintegrals
J0(z)=∞ 0[sinδ0(k) (k2+3)(k/2)cosδ0(k)]dk2
(k2+1)4(k2+z)
B.Shiftandsplittingofenergylevels.(30)
Energyshiftsareobtainedbysolvingthesecularequation(6)whichisreduced,dueto
theselectionrulesforangularmomentalandl1,toa2×2matrixequationforl,l1=L±1(L=0)andascalarequationforl=l1=L=0.TheenergyshiftswithrespecttotheunperturbedrovibrationalenergiesEnl+ε11aredenotedas 0(n)and ±(nl)forl=Landl=L±1,respectively.NotethatthestatewithL=0andl=l1=1isuncoupled;however,itsenergyshift +(n1)willbedeterminedinthesamemannerasfortheotherL=0states.
nThe rst-orderPTmatrixelementsVllinEq.(6)arecalculatedbysubstitutingthe1
M,QradialintegralsUnn(22),thequadrupolemomentumQ(27),andtheangularintegrals
nAL2(l1l11)(A4)inEq.(11).NotethatVll1appearstobeindependentofthevibrational
quantumnumbernandthisindexwillbeomittedinwhatfollows.Thematrixelementsarescaledbyasingledimensionalparameter
v0=2m1m3ω2Ca
2L+1 1
L(L+1)2 1 inwhichthe rstrowandcolumncorrespondtol,l1=L 1andthesecondonesto
l,l1=L+1.
(33)
Precise energies of rovibrational states of the exotic hydrogen-like molecule $(dt\mu)Xee$ are of importance for $dt\mu$ resonant formation, which is a key process in the muon-catalyzed fusion cycle. The effect of the internal structure and motion of the $
Thesecond-orderPTmatrixelementsWlln
1inEq.(6)arecalculatedbysubstituting
UnνD(22)andIλ( )(28)inEq.(12),whichgivestheexpression
W32ω
lln
1= v0ε11 (34)
viatheenergyscalev0andthedimensionlessfactors.Solvingthesecularequation(6),onecansafelyreplace,uptoanaccuracyofthesecond-orderPT,theeigenvalueEintheargumentofJλbytheunperturbedvalueEnl.Thus,thecalculationoftheenergyshiftsisbasicallyaccomplishedbyderivationofEqs.(32-34).
However,itisreasonabletomakefurthersimpli cationof(34)byneglectingthedi erenceoftherotationalenergiesintheargumentofJλ,whichallowsobtaininganexplicitandsu cientlyaccuratedependenceoftheenergyshiftsonthequantumnumbersnandl.Astherotationalenergyismuchsmallerthanthevibrationalquantumω,onereplacestheenergydi erencesEn±1l EintheargumentofJλbythel-independentvaluesEn±ingtheangularintegralsAL n0=±ω1(l1l1λ)(A5,A6)andintroducingthenotationJ±
λ=Jλ(1±ω/ε11)forintegralsindependentofnandloneobtains
Wlln
1=v0 1+αn(2 β βn,l,l1=L(L=0)n)δll1+(αl,l(35)n 1)Bll1,1=L 1
where
αn=1 16ωJ2+)+n(J
0+1
3πε 5(n+1)(J0++7J
1152) (37)
determinetheexplicitdependenceonthevibrationalquantumnumbern.Asaresult,thesumofVll(32)andWlln
11(35)takesasimpleform
V,l=l1=L(L=0)
ll1+Wlln
1=v0 βn β αnl,l,(38)
nδll1 αnBll1,1=L 1
i.e.,theparameterβndeterminestheconstantshiftv0βnofalllevelenergiesEnlwhereasαing(38)and(21)inthesecularequation(6)oneobtains
0(n)=v0(βn αn),(39) ±(nl)=v0βn vr[2(l 1)+1]±
Precise energies of rovibrational states of the exotic hydrogen-like molecule $(dt\mu)Xee$ are of importance for $dt\mu$ resonant formation, which is a key process in the muon-catalyzed fusion cycle. The effect of the internal structure and motion of the $
Thee ectofcouplingoftherotationalstateswithl=L±1isexplicitlytakenintoaccountinexpression(40).
Generally,
the
e ect
decreases
with
decreasing
ratioofthelevelsplittingv0αntotheenergydi erencebetweentherotationalstates
2(l 1)+1 =v0βn± αn
ε11
Thevibrationalquantumωandtherotational-energyconstantvraredeterminedbytheBOinternuclearpotentialofthehydrogenmoleculenearitsminimumor,equivalently,bythelow-lyingpartofthe(dtµ)Xeevibrational-rotationalspectracalculatedin[6,7].FittingtheBOpotentialneartheequilibriumdistancea=1.401totheharmonic,unharmonic,andMorsepotentialsprovidesconsistentdeterminationofbothωandtheparameterαM.Asthe
.
Precise energies of rovibrational states of the exotic hydrogen-like molecule $(dt\mu)Xee$ are of importance for $dt\mu$ resonant formation, which is a key process in the muon-catalyzed fusion cycle. The effect of the internal structure and motion of the $
BOpotentialisindependentoftheisotopiccomposition,bothµ2ω2andαMareindependentofthemassesofheavyparticlesduetoEq.(20).Theresultofthe tgivesω=321.8meVfor(dtµ)dee(correspondingly,ω=273.1meVfor(dtµ)tee)withafewpercentaccuracyandtheparameterαM=0.7.Fortheseparameters,theenergiesofthelowestvibrationalstatesintheapproximatepotentialareinreasonableagreementwiththeresultsof[6,7].
Therotationalspectracalculatedin[6,7]are ttedtoEq.(21)for1≤l≤10andeach1≤n≤4.Forthelowestvibrationalstaten=1,oneobtainsvr=2.43meVfor(dtµ)deeandvr=1.85meVfor(dtµ)tee.Thesevaluesagreewiththesimpleestimate2µ2vr
determinestheisotopicdependenceofvv≈1/a2thatr.Althoughrslightlydecreasesforthehighervibrationalstates,theabovevalueswillbeusedforn>1,whichleadstoafewpercenterror.
Determinationofthebindingenergyε11ofadtµlooselyboundstatewasasubjectofnumerouselaboratedcalculations.Asaresult,thevalueε11=596meV[1,2,4]isobtainedforthelowesthyper nestatebytakingintoaccountrelativistice ects,hyper nee ects, nitenuclearsize,andvacuumpolarization.TheasymptoticconstantCawasdeterminedinanumberofpapers[9,16,17]byacomparisonoftheasymptoticexpression(24)three-bodywavefunction.Inthefollowing,itisacceptedthevalueCa=0.874/√withthe
(m)m,theparameterv0(31)isindependentofm
isthesameforanyisotopeX1+m.Given2the33,i.e.,it
abovenumericalvaluesoneobtainsv0=1.81meV.
Forthesakeofcompleteness,itisinterestingtoestimatetheenergyscaleforthemolecule(ddµ)Xeetoobyusingthevaluesε11=1975meV,Ca=1.006/√
Precise energies of rovibrational states of the exotic hydrogen-like molecule $(dt\mu)Xee$ are of importance for $dt\mu$ resonant formation, which is a key process in the muon-catalyzed fusion cycle. The effect of the internal structure and motion of the $
tions[9,10,18]wherethel-independentenergyshiftwasobtainedbyscalingtheresultfortheatom-likefour-bodysystem(dtµ)e.Aspointedoutinthispaper,themonopolecon-tributioncalculatedinRef.[8]dependsonthechoiceofthecoordinatesystemthatdoesnotallowacomparison.Forthisreason,onlythequadrupolecontributiontothe rst-orderPTenergyshiftsofRef.[8]willbecomparedwiththepresentresults.ThequadrupolecontributionofRef.[8]isgiveninTableIIofthatpaper,whileinthepresentapproach E(1)
Q=(10/3)v0AL2(l1l1),asfollowsfromEqs.(11),(22),and(27).Thebothresultsareinexcellentagreementwitheachother,asshowninTableI.Notethatinthepresentapproach
lLAL2(l1l1) E(1)(1)
Q EQ[8] v0
TABLEI:Quadrupolecontributions E(1)
Q(inmeV)tothe rst-orderPTenergyshiftsofthe
presentcalculationandthosefromRef.[8]fordi erentlandL.AlsopresentedaretheangularintegralsAL2(l1l1)andtheparameter v0correspondingtotheenergyshiftsofRef.[8].thedependenceonangularmomentaiscompletelydeterminedbythefactorAL2(l1l1)whichisalsopresentedinTableI.Toagoodaccuracy,theresultsofRef.[8]revealthesamedependenceonangularmomentawhichapprovesthedescriptionofenergyshiftsbyasingleparameterv0.Toemphasizethisfact,thequadrupolecorrectioncalculatedinRef.[8]isexpressedintheform E(1)
Q=(10/3) v0AL2(l1l1)withthevariable v0presentedinTableI.
Indeed,v 0ispracticallyindependentoflandLandagreeswithv0=1.81meV.Agreementbetweenthepresentone-parameterresultforthequadrupolecorrectionandtheelaboratesix-bodycalculation[8]isagoodargumentforthevalidityofthepresentapproach.Atlast,oneshouldobtainWlln
1(34),whichrequiresevaluationofJλ 1+Eν
E
Precise energies of rovibrational states of the exotic hydrogen-like molecule $(dt\mu)Xee$ are of importance for $dt\mu$ resonant formation, which is a key process in the muon-catalyzed fusion cycle. The effect of the internal structure and motion of the $
oneobtainsJλ1+thesecalculationsandintegrating(29)and
(30)
in
the
energyinterval0≤k2/2µ1≤10eV, Eν E
lLn=2n=3n=2n=3
TABLEII:Energyshifts(meV)forafewstatesof(dtµ)deeand(dtµ)teewiththevibrationalquantumnumbern,thetotalangularmomentumL,andangularmomentumlofthehydrogen-likemoleculewiththepoint-likedtµquasi-nucleus.
thatapplicabilityoftheharmonicapproximationfortheBOpotentialwascheckedbyusingthemodi eddipolematrixelement(23)inthecalculation,whichgivesanestimateoftheunharmoniccorrectionoftheorderof5%intheenergyshifts.Calculationsrevealthattheenergyshiftsareessentiallydependentontheisotopiccompositionandthemolecularquantumnumbersnandl,whichisbasicallyconnectedwiththecancellationofthe rst-andsecond-orderPTcontributions.Inparticular,theenergyshiftsdecreasewithincreasingnsothat ±becomeverysmallorevennegativeforn=4.Thereasonforthisdependenceisanincreasinginthedipolematrixelement(22)withincreasingn,which,inturn,leads
Precise energies of rovibrational states of the exotic hydrogen-like molecule $(dt\mu)Xee$ are of importance for $dt\mu$ resonant formation, which is a key process in the muon-catalyzed fusion cycle. The effect of the internal structure and motion of the $
toanincreasinginthesecond-orderPTcontribution.Thecancellatione ectwaswidelydiscussed,e.g.,in[9,10,18];nevertheless,thedependenceonthemolecularquantumstatewasbeyondthescopeofthosepaperswhereonlytheatom-likesystem(dtµ)ewascalculated.Ontheotherhand,thecalculation[8]determinedthel-dependenceonlyinthe rst-orderPT.
ThedependenceoftheenergyshiftsonquantumnumbersisillustratedinFigure1forthe(dtµ)deestateswithn=2,3andl=0 4.Inadditiontoadecreasingintheenergy
2
1.6
1.2
0.8
0.401234
l
FIG.1:Energyshifts(meV)of(dtµ)dee.Crosses,squares,andcirclesdenote,respectively, +, ,and 0.Theresultsobtainedbysimpli edformulas(39),(41)aredenotedbythesolid,dashed,anddottedlines,respectively.Threeuppercurvescorrespondtothevibrationalquantumnumbern=2andtheloweroneston=3.
shiftsforhighern,noticetheinverseorderingoflevels,i.e.,thehighestlevelwithL=l 1forn=2becomesthelowestforn=3.Exceptfor +,whosevaluesatsmalll=1,2arequitedi erent,theresultsrevealweakdependenceonlwithsplittingoflevelsoftheorderof0.2meV.
AsdiscussedattheendofSectionIIIB,thedependenceofenergyshiftsandlevelsplittingonquantumnumbersareexpressedtoagoodaccuracybysimpleformulas(39),(41)viafewparameters.Numericalvaluesof16ω
Precise energies of rovibrational states of the exotic hydrogen-like molecule $(dt\mu)Xee$ are of importance for $dt\mu$ resonant formation, which is a key process in the muon-catalyzed fusion cycle. The effect of the internal structure and motion of the $
X16ω
d0.9170.1130.2360.0510.073
t0.7780.1170.2160.0520.069
Precise energies of rovibrational states of the exotic hydrogen-like molecule $(dt\mu)Xee$ are of importance for $dt\mu$ resonant formation, which is a key process in the muon-catalyzed fusion cycle. The effect of the internal structure and motion of the $
PTquadrupolecontributiontotheenergyshiftsisinagreementwiththeelaboratesix-bodycalculation[8],whichisagoodargumentforthevalidityofthepresentapproach.Furthermore,itisshownthatforalltheconsideredstatesthee ectofcouplingoftherotationalstateswithl=L 1andl=L+1isbeyondtheaccuracyofthepresentcalculation.Inaddition,theenergyshiftandsplittingisconvenientlyexpressedbysimpleanalyticaldependence(39),(41)ontherotational-vibrationalquantumnumbersnandl.Itisofinteresttocomparethepresentresultwiththedirectnon-perturbativethree-bodycalculationoftµ+D2scattering[11,12]inwhichthee ectofthedtµstructureisexplicitlytakenintoaccount.Thepositionsofnarrowresonancescalculatedinthispapercorrespondtoenergylevelsof(dtµ)deeforL=0(l=1)andn=3,4.Fortwoapproximationsofthee ectivepotentialbetweentµanddusedin[11,12],energyshiftsare,respectively,1meVand4meVforn=3and2meVand5meVforn=4.Thecauseofthenoticeabledi erence(about3meV)isnotclearsincebothpotentialsallowagooddescriptionofthelow-energypropertiesofthetµ+dsystem.Thedependenceonthechoiceofthee ectivepotentialandalimitationonlybyL=0hindersaquantitativecomparisonofthepresentresultsandthoseof[11,12].Qualitatively,theenergyshiftsobtainedinRef.[11,12]exceedthepresentonesand,contrarytoPTconsiderations,thevalueforn=4ishigherthanforn=3.Thisn-dependenceclearlydeservesfurtherinvestigation.
Finally,itshouldbementionedthatthepresentapproach,whichreliablytakesintoac-countthestructureoftheexoticmolecule,ispromisingforwiderapplications,inparticular,fordeterminationofresonancepositionsandformationratesbeyondPTbysolvingthescat-teringproblem.Tillnow,exceptRefs.[11,12],theformationrateshavebeencalculatedonlyinthe rst-orderPT.Inthisrespect,theresultofRef.[26]showsthatthe rst-orderPTdipoleapproximationisquestionableandoneshoulddomorere nedcalculations.Inaddition,itisofinteresttoapplythepresentapproachtotheproblemoftheresonanceformationofmetastabledtµmesicmolecules[27,28]incollisionsofexcitedtµmesicatomswithD2molecules.
APPENDIXA:ANGULARINTEGRALS
Thefollowingangularintegralsarenecessarytocalculatethematrixelements
ALK(lλl1λ1)= LM , , d (ρr)YlLM(ρr)dρrPK(cosθ)Ylλ1λ1 (A1)
Precise energies of rovibrational states of the exotic hydrogen-like molecule $(dt\mu)Xee$ are of importance for $dt\mu$ resonant formation, which is a key process in the muon-catalyzed fusion cycle. The effect of the internal structure and motion of the $
=ρ/ρ,PK(x)istheLegendrewhereθistheanglebetweentwounitvectors r=r/randρ
polynomial,andthebisphericalharmonicsarede nedas
LM , Ylλ(ρr)= mµ )Yλµ( (lmλµ|LM)Ylm(ρr).(A2)
Evaluatingtheintegral(A1)onecomestotheexpressionintermsoftheClebsh-Gordoncoe cientsand6j-symbols
ALK(lλl1λ1)=( )l1+L
5δlLδl1L+
3(L+2)5(2L+1)δlL 1δl1L 1 L(L+1)
2
1 Lδl,L 1 √15(2l+1)(2l+3),l1=l+1(L l+2)(L l+3)(L+l 2)(L+l 1)
Precise energies of rovibrational states of the exotic hydrogen-like molecule $(dt\mu)Xee$ are of importance for $dt\mu$ resonant formation, which is a key process in the muon-catalyzed fusion cycle. The effect of the internal structure and motion of the $
[7]A.Scrinzi,K.Szalewicz,andH.J.Monkhorst,Phys.Rev.A37,2270(1988).
[8]M.R.Harston,I.Shimamura,andM.Kamimura,Phys.Rev.A45,94(1992).
[9]L.I.Menshikov,Yad.Fiz.42,1449(1985).
[10]A.ScrinziandK.Szalewicz,Phys.Rev.A39,4983(1989).
[11]V.Zeman,E.A.G.Armour,andR.T.Pack,Phys.Rev.A61,052713(2000).
[12]V.ZemanandE.A.G.Armour,Hyper neInteract.138,255(2001).
[13]T.E.Sharp,AtomicData2,119(1971).
[14]W.KolosandL.Wolniewicz,J.Chem.Phys.41,3663(1964).
[15]W.Kolos,K.Szalewicz,andH.J.Monkhorst,J.Chem.Phys.84,3278(1986).
[16]G.Aissing,H.J.Monkhorst,andY.V.Petrov,Phys.Rev.A42,6894(1990).
[17]Y.Kino,M.R.Harston,I.Shimamura,E.A.G.Armour,andM.Kamimura,Phys.Rev.A
52,870(1995).
[18]M.R.Harston,I.Shimamura,andM.Kamimura,Z.Phys.D22,635(1992).
[19]J.S.CohenandM.Struensee,Phys.Rev.A43,3460(1991).
[20]C.Chiccoli,V.I.Korobov,V.S.Melezhik,P.Pasini,L.I.Ponomarev,andJ.Wozniak,Muon
Catal.Fusion7,87(1992).
[21]Y.KinoandM.Kamimura,Hyper neInteract.82,45(1993).
[22]A.Igarashi,N.Toshima,andT.Shirai,Phys.Rev.A50,4951(1994).
[23]A.A.Kvitsinsky,C.-Y.Hu,andJ.S.Cohen,Phys.Rev.A53,255(1996).
[24]D.I.Abramov,V.V.Gusev,andL.I.Ponomarev,Yad.Fiz.64,1442(2001).
[25]M.C.Fujiwara,A.Adamczak,J.M.Bailey,G.A.Beerand,J.L.Beveridgeand,M.P.Faifman,
T.M.Huberand,P.Kammel,S.K.Kim,P.E.Knowles,etal.,Phys.Rev.Lett.85,1642(2000).
[26]Y.V.PetrovandV.Y.Petrov,Phys.Lett.B378,1(1996).
[27]J.WalleniusandP.Froelich,Phys.Rev.A54,1171(1996).
[28]J.Wallenius,S.Jonsell,Y.Kino,andP.Froelich,Hyper neInteract.138,285(2001).
正在阅读:
Effect of dtmu quasi-nucleus structure on energy levels of the (dtmu)Xee exotic molecule07-18
2017-2018学年八年级英语上册:全一册配套习题(含答案)01-25
我愿做一朵桃花作文350字07-03
社会保障信息化建设07-19
2018语文高考任务驱动型作文素材03-08
五年级学生素质报告10-27
兰德华3000EF自动感应巡更棒说明书04-30
易错题Microsoft Word 文档11-01
装药爆炸过程中聚能射流行为模拟04-03
李晓明的生日作文06-21
- 1Size dependent interface energy and its applications
- 2Global Warming and its Effect
- 3grammatical hierachy sentence structure
- 4Size dependent interface energy and its applications
- 5Collective modes of spin, density, phase and amplitude in exotic superconductors
- 6A Combining Method of Quasi-Cyclic LDPC
- 7A Structure for Deoxyribose Nucleic Acid
- 8Energy management systems – Requirements with guidance for use
- 9Fluid–structure interaction between a two-dimensional
- 10Chapter 2 Organization and Structure of the Auditing Profession
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- dtmu
- structure
- molecule
- nucleus
- Effect
- energy
- levels
- exotic
- quasi
- Xee
- 浙江省温州中学2013-2014学年高一上学期期末考试 地理 Word版含答案
- 2008年生物降解塑料领域专利申请动态分析
- 我的暑假生活作文500字
- 影视表演专业考试 小品练习
- 提质增效活动心得体会
- 蚕的生长变化说课稿
- 桥梁工程桩基础施工组织设计方案
- 骑牛比赛教学案例
- RSX301LA-30中文资料
- 支部党员大会3季度会议记录
- 数学建模葡萄酒问题二的分析
- 隐藏可见状态的win7系统100M200M隐藏分区的方法
- 秸秆捆自动抓斗起重机的技术性能要求分析
- 幼小衔接招生活动方案完整版
- 电力建设工程施工机械台班费用定额(2006年版)
- 英语定语从句用法精讲
- 用带无线网卡的笔记本充当路由器组建局域网
- RHEL6.4上ORACLE_10g的安装
- PST1200保护装置操作使用
- 电机与拖动基础 第三章