Constraints on Type Ia Supernova Models from X-ray Spectra of Galaxy Clusters
更新时间:2023-05-26 00:46:01 阅读量: 实用文档 文档下载
- constraints推荐度:
- 相关推荐
We present constraints on theoretical models of Type Ia supernovae using spatially resolved ASCA X-ray spectroscopy of three galaxy clusters: Abell 496, Abell 2199 and Abell 3571. All three clusters have central iron abundance enhancements; an ensemble of
ConstraintsonTypeIaSupernovaModels
fromX-raySpectraofGalaxyClusters
RenatoA.Dupke&RaymondE.WhiteIII
UniversityofAlabama,Tuscaloosa,AL35487-0324
arXiv:astro-ph/9907343v1 25 Jul 1999ABSTRACTWepresentconstraintsontheoreticalmodelsofTypeIasupernovaeusingspatiallyresolvedASCAX-rayspectroscopyofthreegalaxyclusters:Abell496,Abell2199andAbell3571.Allthreeclustershavecentralironabundanceenhancements;anensembleofabundanceratiosareusedtoshowthatmostoftheironinthecentralregionsoftheclusterscomesfromSNIa.TheseobservationsareconsistentwiththesuppressedgalacticwindscenarioproposedbyDupke&White(1999).Atthecenterofeachcluster,simultaneousanalysisofspectrafromallASCAinstrumentsshowsthatthenickeltoironabundanceratio(normalizedbythesolarratio)isNi/Fe≈4.WeusethenickeltoironratioasadiscriminatorbetweenSNIaexplosionmodels:theNi/Feratioofejectafromthe“ConvectiveDe agration”modelW7isconsistentwiththeobservations,whilethoseof“delayeddetonation”modelsarenotconsistentatthe90%con dencelevel.Subjectheadings:galaxies:abundances—galaxies:clusters:individual(Abell496,Abell2199,Abell3571)—X-rays:galaxies—stars:supernovae:general
We present constraints on theoretical models of Type Ia supernovae using spatially resolved ASCA X-ray spectroscopy of three galaxy clusters: Abell 496, Abell 2199 and Abell 3571. All three clusters have central iron abundance enhancements; an ensemble of
1.Introduction
TypeIasupernovaearethoughttobegeneratedbythermonuclearexplosionsofcarbon-oxygenwhitedwarfsundergoingaccretioninstellarbinarysystems(Hoyle&Fowler1960).However,thenatureoftheprogenitorbinarysystems(onewhitedwarfortwo?),themassesofthewhitedwarfs(Chandrasekharorsub-Chandrasekharmass?)andtheexplosionmechanism(s)(e.g.convectivede agration,delayed-detonation,etc.)forSNIaarestillopenquestions(forrecentreviewsseeBranch1998;Branchetal.1995;Niemeyer&Woosley1997;Nomoto,Iwamoto&Kishimoto1997;Ruiz-Lapuenteetal.1997).
TheexplosionofaChandrasekharmassC-Owhitedwarfisthoughttobeinitiatedbycarbonignitionatthecenter,followedbyasubsonicnuclear ame(de agrationwave)propagatingoutwards.Promptdetonationmodels(Arnett1969;Hansen&Wheeler1969),characterizedbysupersonicnuclear ames,arenotviablesincetheydonotproducetheintermediatemasselementswhichareobservedinSNIaspectra(Nomoto,Thielemann,&Yokoi1984;Wheeler&Harkness1990).Amongde agration(subsonicnuclear ame)models,theelementalnucleosynthesisdependsonthecharacteristicsofthe amepropagation,onshockwavesgeneratedbyinstabilitiesatthe amefrontandonthedensityatthetransitionfromde agrationtodetonation(Nomotoetal.1997b;Niemeyer&Hillebrandt1995;Niemeyer&Woosley1997).Intheclassical“W7”de agrationmodel(Nomotoetal.1984;Branchetal.1995;Harkness1991;Thielemann,Nomoto&Yokoi1986),thepropagationspeedofthe amefrontisrelativelyhigh(~15 25%ofthesoundspeed),butremainssubsonic.In“delayeddetonation”models,the amespeedisinitiallymuchlower,(~1 3%ofthesoundspeed),butrisestobecomesupersonic(Livne1993;Arnett&Livne1994a,1994b;Khokhlov1995;Niemeyer&Hillebrandt1995).In“pulsatingdetonation”models,thede agrationfailstounbindthewhitedwarf,causingapulsation,anddetonationoccursuponcontraction(Arnett&Livne1994a,1994b).
DespitetheremainingtheoreticaluncertaintiesinthemorepopularmodelsforSNIa,thereisbetteragreementintheirpredictednucleosyntheticyieldsthanintheyieldsfromvariousmodelsforSNII(Gibson,Loewenstein&Mushotzky1997).Nonetheless,signi cantdiscrepanciesstillexistbetweentheyieldpredictionsofcompetingSNIaexplosionmodels.Forexample,thenickelyieldfromtheW7modelcitedaboveis~3timesgreaterthanthosefromdelayeddetonationmodels.AccuratelydeterminingtheelementalyieldsfromSNIaiscrucialtodeterminingtherelativecontributionofdi erentsupernovaetypestothemetalenrichmentofgalaxiesandintraclustergas.Furthermore,assessingtherelativecontributionofSNIaandIIejectainintraclustergasprovidescrucialinformationfordeterminingwhichenrichmentmechanism(s)weremostdominantincontaminatingintraclustergas.InthispaperweuseX-rayspectroscopicobservationsofintraclustergastodiscriminatebetween
We present constraints on theoretical models of Type Ia supernovae using spatially resolved ASCA X-ray spectroscopy of three galaxy clusters: Abell 496, Abell 2199 and Abell 3571. All three clusters have central iron abundance enhancements; an ensemble of
competingtheoreticalmodelsforSNIa.
Intraclustergastendstobemetal-rich,withabundancesof~0.3 0.4solar.Sinceheavyelementsareproducedinsupernovae,themetalsinintraclustergasmusthavecomefromstars.However,themetalenrichmentmechanism(s)forintraclustergasremainscontroversial.Themostlikelyenrichmentmechanismsarethoughttobeprotogalacticwinds(Larson&Dinerstein1975)andrampressurestripping(Gunn&Gott1972).Theprocessesmaybedistinguishedbytheirchemistry.ProtogalacticwindswouldbeassociatedwithSNIIejecta,whilethemoresecularprocessoframpressurestrippingwouldbeassociatedwithsigni cantsupplementalamountsofSNIaejectawhichaccumulatedintheinterstellarmediumofgalaxies.
EarlyX-rayspectroscopyofintraclustergasindicatedadominanceofSNIIejecta(Canizaresetal.1982;Canizares,Markert&Donahue1988)andmorerecentASCAspectroscopyhasbeeninterpretedsimilarly(Mushotzky&Loewenstein1997;Mushotzkyetal.1996).SuchadominanceofSNIIejectasupportstheprotogalacticwindscenarioforthemetalenrichmentofintraclustergas.Furthersupportcomesfromtheobservationthatthespeci cenergyofintraclustergasisgreaterthanthatofclustergalaxies(White1991).However,theoreticaluncertaintiesintheelementalyieldsfromSNIaandSNIIallowASCAspectroscopytoalsobeinterpretedasshowingthatasmuchas50%oftheironinclusterscomesfromSNIa(Ishimaru&Arimoto1997;Fukazawaetal.1998;Nagataki&Sato1998;Dupke1998;Dupke&White1999).InadetailedstudyofAbell496,Dupke&White(1999)usedanensembleofelementalabundanceratiostoshowthatthefractionalcontributionofSNIaejectais~50%(bymass)inthebulkofthecluster,increasingto~70%inthevicinityofitscentralcDgalaxy.TheyarguedthatrampressurestrippingcouldnothavecausedthecentralabundanceenhancementinAbell496andinsteadproposedthatasecondarySNIa-drivenwind(followingamorevigorousSNII-drivenprotogalacticwind),waspartiallysuppressedinthevicinityofthecD(duetothecDbeingatthebottomofthecluster’sgravitationalpotentialandinthemidstofthehighestambientintraclustergasdensity).Ifthissuggestioniscorrect,highfractionsofSNIaejectashouldalsobefoundinotherclusterswithcentralabundanceenhancements.
InthispaperweshowthatAbell496,Abell2199,andAbell3571havecentralironabundanceenhancements.WeuseanensembleofabundanceratiostodeterminetherelativeproportionofSNIaandSNIIejectaintheircentralregionsand ndthatthemassfractionofSNIaejectarangesfrom~60 70%.Wethenfurtheranalyzethesecentralregions,wherethemetalcontaminationisdominatedbySNIaejecta,todiscriminatebetweencompetingtheoreticalmodelsforSNIa.Inparticular,weshowthattheNi/Feratiosobservedatthecentersoftheseclustersareconsistentwiththe“standard”W7
We present constraints on theoretical models of Type Ia supernovae using spatially resolved ASCA X-ray spectroscopy of three galaxy clusters: Abell 496, Abell 2199 and Abell 3571. All three clusters have central iron abundance enhancements; an ensemble of
model,butareinconsistentwiththoseofvariousdelayed-detonationmodels.
2.ClusterCharacteristics
Abell496isaBautz-MorganTypeIclusterwithanopticalredshiftofz=0.0328.AdoptingaHubbleconstantof50kms 1Mpc 1andq0=0.5,itsluminositydistanceis
1 1′197h 50Mpcand1=57h50kpc.Neithertheprojectedgalaxydistributionnorthegalaxyvelocitydistributionintheclustershowssignsofsigni cantsubstructure,sotheclusterappearstobedynamicallyrelaxed(Bird1993;Zabludo ,Huchra&Geller1990).Nulsenetal.(1982)foundasoftX-raycomponentinEinsteinSSSspectraofthisclusterandestimatedacoolingaccretionrateof~200M⊙yr 1,whichisconsistentwithlateranalyses(Mushotzky1984;Mushotzky&Szymkowiak1988;Canizaresetal.1988;Thomas,Fabian&Nulsen1987;Whiteetal.1994).InthecourseofajointanalysisofEinsteinSSSandGingaLACspectra,Whiteetal.(1994)foundacentralabundanceenhancementinAbell496,whichwaslatercon rmedbyASCAobservations(Dupke&White1999).Dupke&White(1999)alsofoundgradientsinelementalabundanceratios,indicativeofaspatialgradientintheproportionofSNIa/IIejecta.
Abell2199isaBautz-MorganTypeIclusterwithanopticalredshiftz=0.0309.Its
1 1′luminositydistanceis185h 50Mpcand1=54h50kpc.Thisclusterisamongthe10X-ray
brightestgalaxyclusters(Edge&Stewart1991;Siddiqui,Stewart&Johnstone1998).TheclusterX-rayemissioniswellcenteredatitscentralcDgalaxy,NGC6166.Neithertheprojectedgalaxydistributionnorthegalaxyvelocitydistributionshowssignsofsigni cantsubstructure(Buote&Tsai1996).PreviousX-rayanalysesofthisclusterwithEXOSAT(Edge1989),Einstein(Stewartetal.1984;Thomasetal.1987),Ginga/Einstein(Whiteetal.1994),andROSAT(Allen&Fabian1997;Siddiquietal.1998)indicatethepresenceof˙≈80 250M⊙yr 1.Inthecourseofajointacooling owwithanaccretionrateofM
analysisofEinsteinSSSandGingaLACspectra,Whiteetal.(1994)foundweakevidenceforacentralabundanceenhancementinAbell2199.ASCAobservationsoftheexternalregions(>3′)ofAbell2199havebeenpreviouslyanalyzedbyMushotzkyetal.(1996).
Abell3571(SC13444-325)isabright(Lahavetal.1989),moderatelyrich(richnessclass2)Bautz-MorganTypeIclusterwithanopticalredshiftz=0.0397.Itsluminosity
1 1′distanceis238h 50Mpcand1=69h50kpc.Quintana&deSouza(1993)suggestedthat
thegalaxypositionsandvelocitiesindicatethepresenceofseveralsubgroups.However,ASCAobservationsofthisclusterdonotshowsignsofsigni cantsubstructureswithinaradiusupto35′,whichindicatesthatthebulkoftheclustermassisvirialized(Markevitchetal.1998).Abell3571ispossiblyamemberoftheShapley8supercluster,whichisitself
We present constraints on theoretical models of Type Ia supernovae using spatially resolved ASCA X-ray spectroscopy of three galaxy clusters: Abell 496, Abell 2199 and Abell 3571. All three clusters have central iron abundance enhancements; an ensemble of
˙≈100centeredonAbell3558.AnalysisofEXOSATdataindicatedacooling owwithM
M⊙yr 1(Edge,Stewart&Fabian1992).
3.DataReduction&Analysis
TheASCAsatellitehasfourlarge-areaX-raytelescopes,eachcoupledtoitsowndetector:twoGasImagingSpectrometers(GIS)andtwoSolid-StateImagingSpectrometers(SIS).EachGIShasa50′diametercircular eldofviewandausableenergyrangeof0.7–12keV;eachSIShasa22′square eldofviewandausableenergyrangeof0.4–10keV.
BothAbell496andAbell2199wereobservedfor40ksecbyASCAinSeptemberandJulyof1993,respectively.Abell3571wasobservedfor30ksecinAugust1994.Forallthreeclustersweemployedstandardreductionprocedures,selectingdatatakenwithhighandmediumbitrates,withcosmicrayrigidityvalues≥6GeV/c,withelevationanglesfromthebrightEarthof≥20 andfromtheEarth’slimbof≥5 (GIS)or10 (SIS),andweexcludedtimeswhenthesatellitewasa ectedbytheSouthAtlanticAnomaly.RisetimerejectionofparticleeventswasperformedonGISdataandSISdatahadhotand ickeringpixelsremoved.Theresultinge ectiveexposuretimesforeachinstrumentarelistedinTable1.Weestimatedbackgroundsfromblanksky lesprovidedbytheASCAGuestObserverFacility.
WeusedXSPEC10(Arnaud1996)softwaretoanalyzetheASCAspectrafortheseclusters.Spectrawere tusingthemekalandvmekalthermalemissionmodels,whicharebasedontheemissivitycalculationsofMewe&Kaastra(cf.Mewe,Gronenschild&vandenOord1985;Mewe,Lemen&vandenOord1986;Kaastra1992),withFeLcalculationsbyLiedahl,Osterheld&Goldstein(1995).AbundancesaremeasuredrelativetothesolarphotosphericvaluesofAnders&Grevesse(1989),inwhichFe/H=4.68×10 5bynumber.Galacticphotoelectricabsorptionwasincorporatedusingthewabsmodel(Morrison&McCammon1983).Spectralchannelsweregroupedtohaveatleast25counts/channel.Energyrangeswererestrictedto0.8–10keVfortheGISand0.4–10keVfortheSIS.
SpectrafromallfourASCAinstruments(SIS0&1andGIS2&3)were tindividuallyandjointly.Sincetheindividualspectral tsareconsistentwiththejointanalysesofallfourinstruments,wewillonlydescribethejoint ts.Spectrawereextractedfromregionsassmallas2′radiusatseveraldi erentprojectedspatialdistancesfromtheclusterscenter.Thermalemissionmodels(mekal)withvariabletemperatures,overallabundances,normalizationsandabsorbingcolumndensities(wabs)werethenjointly ttoallfourspectrafromeachregion.Thenormalizationsfortheindividualspectrawereallowedto
We present constraints on theoretical models of Type Ia supernovae using spatially resolved ASCA X-ray spectroscopy of three galaxy clusters: Abell 496, Abell 2199 and Abell 3571. All three clusters have central iron abundance enhancements; an ensemble of
varyindependently,tocompensateforsmallcalibrationandspatialextractiondi erencesbetweenthefourdetectors.Sinceeachclusterhasamoderatecooling owatitscenter,wealsoaddedacooling owcomponenttothemekalthermalemissionmodelforthecentralregionofeachcluster,inordertotestthemodel-dependenceofourabundancemeasurements.Thecooling owspectralmodelcflowinXSPECischaracterizedbymaximumandminimumtemperatures,anabundance,aslopewhichparameterizesthetemperaturedistributionofemissionmeasures,andanormalizationwhichissimplythecoolingaccretionrate.Weadoptedtheemissionmeasuretemperaturedistributionthatcorrespondstoisobariccooling ows(zeroslope).Wetiedthemaximumtemperatureofthecooling owtothetemperatureofthethermalcomponent,andwe xedtheminimumtemperatureat0.1keV.Weappliedasingle(butvariable)globalabsorptiontobothspectralcomponentsandassociatedanadditional,intrinsicabsorptioncomponentwiththecooling ow,placingitattheredshiftofthecluster.Theresulting tswereallexcellent,havingreducedχ2ofχ2ν≈1.
4.
4.1.ResultsAbundanceandTemperatureDistributions
We rstusedisothermalmekalmodelstodeterminetheoverallelementalabundance(largelydrivenbyiron)ineachclusterregion.RadialdistributionsoftheseelementalabundancesareshowninFigure1andlistedinTable2;theindicatederrorsare90%con dencelimits.Resultsfortwoprojectedspatialregionsareshown,acentralregionfrom0 2′andanouterregionextendingfrom3 12′.Allthreeclustersshowmild,butsigni cant,abundanceenhancementsatthecenter.ForAbell496,theabundanceis
.04+0.03′0.53+0 0.04solaratthecenter,fallingto0.36 0.03solarintheouter3 12region(Dupke&White1999).InAbell2199,theabundancedeclinesfromacentralvalueof0.49±0.04solarto0.34±0.03solarintheouterparts.InAbell3571,thecentralabundanceis0.37±0.06solar,decliningto0.28±0.03solarintheouterregions.
WealsousedtheF-testtoassessthesigni canceoftheabundancegradientineachclusterbycomparingtheχ2of tswhichassumedtheabundanceswerethesameinthetwoprojectedspatialregions(innerversusouter)to tswhichallowedtheabundancesinthetworegionstovaryindependently.Thedi erencebetweentheχ2ofthesetwo tsmustfollowaχ2distributionwithonedegreeoffreedom(Bevington1969).We ndthatthecentralabundanceenhancementsaresigni cantwith>99.99%con dence.AscanbeseenfromTable2,theadditionofacooling owcomponentinthecentralregionsdoesnotsigni cantlychangetheabundanceestimates.
We present constraints on theoretical models of Type Ia supernovae using spatially resolved ASCA X-ray spectroscopy of three galaxy clusters: Abell 496, Abell 2199 and Abell 3571. All three clusters have central iron abundance enhancements; an ensemble of
BothAbell496andAbell2199havecleartemperaturegradientswhenisothermal
.07′mekalmodelsareused:thetemperatureinAbell496risesfrom3.24+0 0.06keVwithin2
.13′to4.40+0 0.13keVbeyond3;inAbell2199thetemperaturerisesfromacentralvalueof
3.7±0.09keVto4.14±0.06keVbeyond3′.TheseresultsareconsistentwiththoseofMushotzkyetal.(1996).TheaveragetemperatureofthegasinAbell3571is6.75±0.16keV,whichisconsistentwiththeresultsofMarkevitchetal.(1998),andthegradientwithin12′isnotsigni cantatthe90%con dencelevel.Formodelsincludingacooling owcomponentatthecenter,thetemperaturegradientsinTable2appearmuchweakerthandescribedabove,sincewequoteonlythebest- ttinginitial(upper)temperatureofthecoolinggas.
4.2.IndividualElementalAbundancesandAbundanceRatios
WealsodeterminedindividualelementalabundancesinthecentralregionofeachclusterbyusingthevmekalspectralmodelinXSPEC.Inourspectralmodel ts,theheliumabundancewas xedatthesolarvalue,whilecarbonandnitrogenwere xedat0.3solar(sinceASCAisratherinsensitivetocarbonandnitrogenandthederivedabundancesofotherelementsarenota ectedbytheparticularchoiceforcarbonandnitrogenabundances).OurobservedabundancesareshowninTable3.
ItcanbeseenfromTable3thatthebestdeterminedabundancesinallthreeclustersarethoseofiron,siliconandnickel.Argon,calciumandmagnesiumabundancesarepoorlymeasuredandarenotlisted.Oxygen,neonandsulfurabundancesarenotwellconstrainedinAbell3571.Nickelabundancesareabouttwicesolarinallthreeclusters.
ToestimatetheSNIa/IImassfraction,wewillcomparevariousobservedabundanceratiostothetheoreticalpredictionsofspeci cmodelsforSNIaandII.ForSNIaweinitiallyadopttheupdatedW7modelofNomotoetal.(1997b),whileforSNIIweusethecalculationsofNomotoetal.(1997a,1997b),whoadoptaSalpeterinitialmassfunctionoveraSNIIprogenitormassrangeof10-50M⊙.Theabundanceratiosweuseinvolveoxygen,silicon,ironandnickel.VariousobservedratiosarelistedinTable4andcomparedtothetheoreticalratiosfromthemodelsweadopt.
WedonotincludesulfurandneonintheseestimatesbecausetheirtheoreticalyieldsfromSNIIareparticularlyproblematic.IntheiranalysisofASCAspectraoffourclusters,Mushotzkyetal.(1996)observedapersistentunderabundanceofsulfurandanoverabundanceofneoncomparedtoexpectationsfromtheoreticalmodelsofsupernovayields.Dupke&White(1999)andDupke&Arnaud(1999),usingdi erenttheoretical
We present constraints on theoretical models of Type Ia supernovae using spatially resolved ASCA X-ray spectroscopy of three galaxy clusters: Abell 496, Abell 2199 and Abell 3571. All three clusters have central iron abundance enhancements; an ensemble of
modelsforSNIIyields,foundthatthetheoreticalsulfuryieldwouldhavetobereducedbyafactorof~2-4tobeconsistentwithresultsformostotherelementalratiosintheirASCAanalysesofAbell496andPerseus,respectively.Dupke&Arnaud(1999)alsofoundthattheoreticalneonyieldswouldhavetobereducedbyafactorof~2.7tobeconsistentwiththeresultsformostotherelementalratios.Therefore,toestimatetheSNIaironmassfraction,weuseonlyabundanceratiosinvolvingthebetterconstrained(observationallyandtheoretically)abundancesofiron,silicon,nickelandoxygen.
VariousabundanceratiosinthecentralregionsofAbell496,Abell2199,andAbell3571areshowninTable4,alongwiththetheoreticalexpectationsforSNIaandSNIIejecta;theerrorsassociatedwiththeobservedabundanceratiosarethepropagated1σerrors.InTable5welistthebest-constrainedabundanceratiosforeachclusteralongwiththeassociatedestimatesfortheSNIaironmassfractions;theindividualSNIaironmassfractionestimatesareconsistentwithoneanother,withintheirerrors.TheensembleaverageoftheseindividualestimatesoftheSNIaironmassfraction(weightedbytheirerrors)isalsoindicatedatthebottomofTable5foreachcluster.(InAbell3571,theoxygenabundanceisnotwellconstrained,sowehavenotincludeditinthecalculationoftheensembleaverage.)Evidently,thecentralregionsofallthreeclustersaresubstantiallyenrichedbySNIaejecta,withSNIaironmassfractionsof73±5%,74±7%and58±17%inAbell496,Abell2199andAbell3571,respectively.
parisontoAlternativeModelsforSNIa
IntheprevioussectionweshowedthatAbell496,Abell2199andAbell3571havesigni cantcentralabundanceenhancementswhicharecomprisedmostlyofSNIaejecta.AvarietyofabundanceratiosprovidemutuallyconsistentestimatesofthecentralSNIaironmassfraction,givenouradoptedmodelsfortheoreticalyieldsfromSNIaandII.ThismutualconsistencyencouragesustotestalternativetheoreticalmodelsforSNIa(alternativeSNIImodelswillbeexploredinWhite1999).Inparticular,wewillcomparetheW7“de agration”modeladoptedaboveto“delayeddetonation”modelswhichhavebeenexploredinresponsetoconcernsaboutthephysicalityoftheexplosionintheW7model(Khokhlov1991).Delayeddetonationmodelsarecharacterizedby(initially)slower amespeeds(afewpercentofthesoundspeed)thantheW7model.
WeconsiderthedelayeddetonationmodelsofNomotoetal.(1997b),whocalculateyieldsforasequenceofmodelsdistinguishedbyavarietyofdensitiesaheadofthede agrationfront,whichmodulatestheonsetofdetonation.We ndthattheelementalyieldsoftheirmodelsWDD1,WDD2andWDD3donotprovidethesameconsistency
We present constraints on theoretical models of Type Ia supernovae using spatially resolved ASCA X-ray spectroscopy of three galaxy clusters: Abell 496, Abell 2199 and Abell 3571. All three clusters have central iron abundance enhancements; an ensemble of
asfoundwithmodelW7inestimatingtheSNIa/IIfraction.Table6comparestheestimatesofSNIaironmassfractionsderivedfromthethreedelayeddetonationmodelsdescribedabove.TheadoptedSNIIyieldsareagainthoseofNomotoetal.(1997a,1997b).ComparisonofTables5and6showsthattheW7modelprovidesmoresatisfactoryresultsinthreedi erentways:1)moreabundanceratiosfallwithinthetheoreticalboundsofSNIaandSNII,astheyshould,whenW7isadopted(observedratioswhichareoutsidethetheoreticalboundsforSNIaandIIejecta,thereforepreventingmassfractionestimates,areindicatedbydashes);2)thedispersionintheaverageofthe(remaining)individualSNIaironmassfractionestimatestendstobesmallerwhentheW7modelisadopted;3)themutualconsistencyoftheSNIaironmassfractionestimatesderivedfromindividualabundanceratiosforagivenclusterisbestwhentheW7modelisadopted.
Concentratingonthenickelyieldinparticular,we ndthatourclusterobservationsfurtherdiscriminateagainstthedelayeddetonationmodelscitedabove.Theobservationallybestdeterminedabundanceratioinvolvingnickelisthenickeltoironratio.RecallfromTable4thattheindividualNi/FeratiosareconsistentwiththeotherindicatedratiosinestimatingthefractionalSNIacontamination.Figure2comparestheNi/FeratioobservedinthethreeclustersanalyzedinthisworktothepredictedNi/FeratiofromtheW7de agrationmodel,aswellasfromthethreedelayeddetonationmodelsdescribedabove;theindicatedobservationalerrorsarethepropagated90%con dencelimits.Evidently,theobservedNi/Feratiosareinconsistentwithanyofthesedelayeddetonationmodelsatbetterthan90%con dence.TheobservedNi/FeratioisfullyconsistentwiththeW7model,however.Thus,theelementalyieldsoftheW7modelaremoreconsistentwithX-rayspectroscopicobservationsofintraclustergasthanthoseofdelayeddetonationmodels.
6.Summary
TheintraclustergasinAbell2199,Abell3571andAbell496showsigni cantcentralmetalabundanceenhancements.InAbell2199theabundancedeclinesfrom0.49±0.04solaratthecenterto0.34±0.03solarintheouterparts(>3′).ThecentralabundanceenhancementinAbell3571isweaker,butstillsigni cant:theabundanceis0.37±0.06solaratthecenteranddeclinesto0.28±0.03solarbeyond3′.TheabundanceinAbell496declinesfrom0.53±0.04solarnearthecenterto0.36±0.03solarbeyond>3′(Dupke&White1999).
ThecentralregionsofAbell2199,Abell3571andAbell496aresigni cantlyenrichedbySNIaejecta.AvarietyofabundanceratioswereusedtoshowthattheSNIaironmassfractionsneartheircentersare74±7%,58±17%73±5%,respectively.
We present constraints on theoretical models of Type Ia supernovae using spatially resolved ASCA X-ray spectroscopy of three galaxy clusters: Abell 496, Abell 2199 and Abell 3571. All three clusters have central iron abundance enhancements; an ensemble of
TheNi/FeratiosobservedinallthreeclustersareinconsistentwiththepredictedvaluesfromtheNomotoetal.(1997b)delayeddetonationmodelsforSNIa,atgreaterthanthe90%con dencelevel.However,thepredictedNi/FeratiooftheupdatedW7de agrationmodel(Nomotoetal.1997b)isconsistentwiththeobservedvalues.TheseresultsillustratethepowerofX-rayclusterspectroscopytoconstraintheoreticalmodelsofsupernovae.ForthcomingobservationswithChandra,XMMandAstro-Eshouldprovidehigherqualityconstraintsusingtheseandadditionalabundanceratios.
ThisworkwaspartiallysupportedbytheNSFandtheStateofAlabamathroughEPSCoRgrantEHR-9108761.REWalsoacknowledgespartialsupportfromNASAgrantNAG5-2574.ThisresearchmadeuseoftheHEASARCASCAdatabaseandNED.WewouldliketothankDr.K.Arnaudforhelpfuldiscussions.
We present constraints on theoretical models of Type Ia supernovae using spatially resolved ASCA X-ray spectroscopy of three galaxy clusters: Abell 496, Abell 2199 and Abell 3571. All three clusters have central iron abundance enhancements; an ensemble of
REFERENCES
Allen,S.W.,&FabianA.C.1997MNRAS,286,583
Anders,E.,&GrevesseN.1989,GeochimicaetCosmochimicaActa,53,197
Arnaud,K.A.1996,inAstronomicalDataAnalysisSoftwareandSystemsV,ASPConf.
Seriesvolume101,eds.Jacoby,G.,&Barnes,J.,p.17
Arnett,W.D.1969,Ap&SS,5,280
Arnett,W.D.&Livne,E.1994a,ApJ,427,315
Arnett,W.D.&Livne,E.1994b,ApJ,427,330
Bevington,P.R.1969,DataReductionandErrorAnalysisforthePhysicalSciences(New
York:McGraw-Hill),p.200
Bird,C.M.1993,PhDthesis
Branch,D.1998,ARA&A,36,17
Branch,D.,Livio,M.,Yungelson,L.R.,Bo ,F.R.,&Baron,E.1995,PASP,107,1019Buote,D,&Tsai,J.C.1996,ApJ,458,27
Canizares,C.R.,Clark,G.W.,Jernigan,&J.G.,Markert,T.H.1982,ApJ,262,33
Canizares,C.R.,Markert,T.H.,&Donahue,M.E.1988,inCooling owsinclustersand
galaxies,ed.A.C.Fabian(Dordrecht:Kluwer),p.63
Dupke,R.A.1998,PhDThesis,UniversityofAlabama
Dupke,R.A.,&Arnaud,K.A.1999,submittedtoApJ
Dupke,R.A.,&White,R.E.III1999,submittedtoApJ
Edge,A.C.1989,PhDThesis,UniversityofLeicester.
Edge,A.C.,&Stewart,G.C.1991,MNRAS,252,414
Edge,A.C.,Stewart,G.C.&Fabian,A.C.1992,MNRAS,258,177
Fukazawa,Y.,Makishima,K.,Tamura,T.,Xu,H.,Ikebe,Y.,Kikuchi,K,&Ohashi,T.,
1998,PASJ,50,187
Gibson,B.K.,Loewenstein,M.&Mushotzky,R.F.1997,MNRAS,290,623
Gunn,J.E.,&Gott,J.R.III1972,ApJ,176,1
Hansen,C.J.,&Wheeler,J.C.1969,Ap&SS,3,464
Harkness,R.,1991,inTenthSantaCruzWorkshopinAstronomyandAstrophysics,Ed.S.
E.Woosley;Springer-Verlag,NewYorkP.454
We present constraints on theoretical models of Type Ia supernovae using spatially resolved ASCA X-ray spectroscopy of three galaxy clusters: Abell 496, Abell 2199 and Abell 3571. All three clusters have central iron abundance enhancements; an ensemble of
Hoyle,F.,&Fowler,W.A.1960,ApJ,132,565
Ishimaru,Y.,&Arimoto,N.1997,PASJ,49,1
Kaastra,J.S.1992,AnX-RaySpectralCodeforOpticallyThinPlasmas,(Internal
SRON-LeidenReport,updatedversion2.0)
Khokhlov,A.M.1991,A&A,245,114
Khokhlov,A.M.1995,ApJ,449,695
Lahav,O.,Edge,A.C.,Fabian,A.C.,&Putney,A.1989,MNRAS,238,881
Larson,R.B.,&Dinerstein,H.L.1975,PASP,87,911
Liedahl,D.A.,Osterheld,A.L.&Goldstein,W.H.1995,ApJ,438,L115
Livne,E.1993,ApJ,406,L17
Markevitch,M.,Forman,W.,Sarazin,C.L.,&Vikhlinin,A.1998,ApJ,503,77
Mewe,R.,Gronenschild,E.H.B.M.,&VandenOord,G.H.J.1985,A&AS,62,197Mewe,R.,Lemen,J.R.,&VandenOord,G.H.J.1986,A&AS,65,511
Morrison,R.,&McCammon,D.1983,ApJ,270,119
Mushotzky,R.F.1984,Phys.Scr,T7,157
Mushotzky,R.F.,&Loewenstein,M.1997,ApJ,481,L63
Mushotzky,R.F.,Loewenstein,M.,Arnaud,K.A.,Tamura,T.,Fukazawa,Y.,Matsushita,
K.,Kikuchi,K.,&Hatsukade,I.1996,ApJ,466,686
Mushotzky,R.F.,&Szymkowiak,A.E.1988,inCooling owsinclustersandgalaxies,ed.
A.C.Fabian(Dordrecht:Kluwer),p.53-62
Nagataki,S.,&Sato,K.,1998,ApJ,504,629
Niemeyer,J.C.,&Hillebrandt,W.1995,ApJ,452,779
Niemeyer,J.C.,&Woosley,S.T.1997,ApJ,475,740
Nomoto,K.,Thielemann,F.-K.,&Yokoi,K.,1984,ApJ,286,644
Nomoto,K.,Hashimoto,M.,Tsujimoto,T.,Thielemann,F.-K.,Kishimoto,N.,&Kubo,Y.
1997a,NuclearPhysicsA,Vol.A616,79
Nomoto,K.,Iwamoto,K.,Nakasato,N.,Thielemann,F.-K.,Brachwitz,F.,Tsujimoto,T.,
Kubo,Y.,&Kishimoto,N.1997b,NuclearPhysicsA,Vol.A621,467c
Nomoto,K.,Iwamoto,K.,&Kishimoto,N.1997,Science,276,1378
Nulsen,P.E.J.,Stewart,G.C.,Fabian,A.C.,Mushotzky,R.F.,Holt,S.S.,Ku,W.H.-M.
&Malin,D.F.1982,MNRAS,199,1089
We present constraints on theoretical models of Type Ia supernovae using spatially resolved ASCA X-ray spectroscopy of three galaxy clusters: Abell 496, Abell 2199 and Abell 3571. All three clusters have central iron abundance enhancements; an ensemble of
Quintana,H.,&deSouza,R.1993,A&AS,101,475
Ruiz-Lapuente,P.,Canal,P.,&Burkert,A.1997,inThermonuclearSupernovae,eds.
Ruiz-Lapuente,P.,Canal,P.,&Isern,J.,(Dordrecht:Kluwer)p.205
Siddiqui,S.,Stewart,G.C.,&Johnstone,R.M.1998,A&A,334,71
Stewart,G.C.,Fabian,A.C.,Jones,C.,&Forman,W.1984,ApJ,285,1
Thielemann,F.-K.,Nomoto,K.,&Yokoi,K.1986,A&A,158,17
Thomas,P.A.,Fabian,A.C.&Nulsen,P.E.J.1987,MNRAS,228,973
Wheeler,J.C.&Harkness,R.P.1990,Rep.Prog.Phys.,53,1467
White,R.E.III1991,ApJ,367,69
White,R.E.III1999,inpreparation
White,R.E.III,Day,C.S.R.,Hatsukade,I.,&Hughes,J.P.1994,ApJ,433,583Zabludo ,A.,Huchra,J.P.,&Geller,M.J.1990,ApJS,74,1
We present constraints on theoretical models of Type Ia supernovae using spatially resolved ASCA X-ray spectroscopy of three galaxy clusters: Abell 496, Abell 2199 and Abell 3571. All three clusters have central iron abundance enhancements; an ensemble of
FigureCaptions
Fig.1.—RadialdistributionsofoverallelementalabundancesinAbell496,Abell2199andAbell3571,insolarunits;theabundanceerrorsare90%con dencelimits;theradial“errors”indicatethesizeofthespectralextractionregions.
Fig.2.—ComparisonoftheNi/Feabundanceratiosintheinnerprojectedregions(0 2′)ofAbell496,Abell2199andAbell3571.Theoreticalpredictionsfordi erentSNIamodels,W7(thickline)anddelayeddetonationmodelsWDD1,WDD2andWDD3(thinlines),arealsoshown.
We present constraints on theoretical models of Type Ia supernovae using spatially resolved ASCA X-ray spectroscopy of three galaxy clusters: Abell 496, Abell 2199 and Abell 3571. All three clusters have central iron abundance enhancements; an ensemble of
Table1.E ectiveExposureTimes
SpectrometerExposureTime(ksec)
Abell496Abell2199Abell3571
We present constraints on theoretical models of Type Ia supernovae using spatially resolved ASCA X-ray spectroscopy of three galaxy clusters: Abell 496, Abell 2199 and Abell 3571. All three clusters have central iron abundance enhancements; an ensemble of
Table2.SpectralFitsa,b
ClusterRegionc
(arcmin)kT(keV)Abundance(solar)χ2ν
aErrorsare90%con dencelimits
ttingsofSIS0&1,GIS2&3bSimultaneous
cDistance
samefromtheX-raycenterasabovebutwithanextracooling ow
component
We present constraints on theoretical models of Type Ia supernovae using spatially resolved ASCA X-ray spectroscopy of three galaxy clusters: Abell 496, Abell 2199 and Abell 3571. All three clusters have central iron abundance enhancements; an ensemble of
Table3.IndividualElementalAbundancesfortheInnerRegions
Cluster
Abell2199aElementAbell496Abell3571
aErrorsare90%con dencelimits
We present constraints on theoretical models of Type Ia supernovae using spatially resolved ASCA X-ray spectroscopy of three galaxy clusters: Abell 496, Abell 2199 and Abell 3571. All three clusters have central iron abundance enhancements; an ensemble of
Table4.ElementalAbundanceRatiosa
Element
RatioCentralRegionAbell496Abell2199Abell3571SNIaTheorybW7WDD2SNIIaErrors
bSNarepropagated1σerrorsIa:Nomotoetal(1997a);SNII:Nomotoetal(1997b)
We present constraints on theoretical models of Type Ia supernovae using spatially resolved ASCA X-ray spectroscopy of three galaxy clusters: Abell 496, Abell 2199 and Abell 3571. All three clusters have central iron abundance enhancements; an ensemble of
Table5.FeMassFractionfromDi erentRatiosa
Element
RatioSNIaIronMassFractionAbell496Abell2199Abell3571
aErrors
bSNarepropagated1σerrorsIa:Nomotoetal(1997a);SNII:Nomotoet
al(1997b)
We present constraints on theoretical models of Type Ia supernovae using spatially resolved ASCA X-ray spectroscopy of three galaxy clusters: Abell 496, Abell 2199 and Abell 3571. All three clusters have central iron abundance enhancements; an ensemble of
Table6.IronMassFractionfromDi erentDelayedDetonationModelsa
ClusterElement
RatioSNIaIronMassFractionbWDD1WDD2WDD3
A2199
′′
′′
′′
′′
′′O/FeSi/FeNi/FeO/SiSi/NiWA.180.72+0 0.21——≤0.83—.180.72+0 0.21.220.66+0 0.21.100.93+0 0.10—≤0.86—0.88±0.09.220.62+0 0.22.100.78+0 0.09—≤0.89≥0.960.75±0.09
aErrors
bSNarepropagated1σerrorsIa:Nomotoetal(1997a);SNII:Nomotoetal
(1997b)
cWeightedAverage
We present constraints on theoretical models of Type Ia supernovae using spatially resolved ASCA X-ray spectroscopy of three galaxy clusters: Abell 496, Abell 2199 and Abell 3571. All three clusters have central iron abundance enhancements; an ensemble of
$%81'$1&( 6RODU
5$',86 DUFPLQ
正在阅读:
Constraints on Type Ia Supernova Models from X-ray Spectra of Galaxy Clusters05-26
两化融合项目验收报告05-22
办公室文员辞职信12-11
上海市质量技术监督局关于印发《2018年度板式热交换器质量监督抽 -11-14
采煤工作面放炮安全技术措施11-23
小学数学二年级上册集体备课全部 - 图文06-26
2022-2022学年 河南省郑州市 高一上学期期末考试英语 Word版04-11
会计实习日记【优秀7篇】03-23
北疆定子吊装作业指导书05-29
高中数学教师2023年度个人工作计划范文03-22
- 1Synthesis of ZnO nanoparticles from microemulsions in a flow type microreactor
- 2Lensed CMB power spectra from all-sky correlation functions
- 3Lensed CMB power spectra from all-sky correlation functions
- 4Constraints on Omega_B, Omega_m and h from MAXIMA and BOOMERANG
- 5Constraints on Omega_B, Omega_m and h from MAXIMA and BOOMERANG
- 6On the Flexibility of Constraint Programming Models From Single to Multiple Time Windows fo
- 7Two-Higgs doublet models from TeV-scale supersymmetric extra
- 8Closing in on a Short-Hard Burst Progenitor Constraints from Early-Time Optical Imaging and
- 9Closing in on a Short-Hard Burst Progenitor Constraints from Early-Time Optical Imaging and
- 10Discovery of a Radio Supernova Remnant and Non-thermal X-rays Coincident with the TeV Sourc
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- Constraints
- Supernova
- Clusters
- Spectra
- Models
- Galaxy
- Type
- ray
- Ia
- 重庆市劳务派遣行政许可办事指南相关附件
- 职业形象设计基础
- 西晋中国行政区划图
- 论马克思异化劳动理论及人的主体性
- 仙之侠道苍云传1.3装备掉落合成简表
- 河南省小学信息技术(豫科版)五年级上册教案第1课 初识Windows XP操作系统
- 2012年公民道德建设月活动总结
- 2016年高考试题(数学理科)浙江卷(Word版,含答案解析)
- 创建自己的Excel函数 体验强大功能
- 社区老龄工作总结及2012年工作思路汇总
- 设置软件服务外包高职专业的探索研究
- 瑜伽教练教你7日瑜伽净食
- 物业管理服务费收取通知书
- 办理天津蓝印户口注意事项
- 三菱各型电梯维修调试资料
- 世界历史九年级上册期末模拟试卷
- 社会存在和社会意识的辩证
- 如何成为卓越的销售经理
- 回归生活世界的学校教育
- 福特翼搏六方位加FAB介绍法