2007—2011历年湖南数学理工类高考试题 - 图文
更新时间:2024-06-06 17:31:01 阅读量: 综合文库 文档下载
- 2007年湖南数学高考题推荐度:
- 相关推荐
2007年普通高等学校招生全国统一考试(湖南卷)
数 学(理工农医类)
一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有一项是符合题目要求的。 ?2i?1.复数??等于( )
?1+i?2A.4i B.?4i C.2i D.?2i 2.不等式
x?2x?1≤0的解集是( )
A.(??,?1)?(?1,2]
B.[?1,2]
C.(??,?1)?[2,??)
D.(?1,2]
3.设M,N是两个集合,则“M?N??”是“M?N??”的( )
A.充分不必要条件 B.必要不充分条件 C.充分必要条件
D.既不充分又不必要条件
4.设a,b是非零向量,若函数f(x)?(xa?b)?(a?xb)的图象是一条直线,则必有
A.a⊥b B.a∥b
C.|a|?|b|
D.|a|?|b|
5.设随机变量?服从标准正态分布N(0,1),已知?(?1.96)?0.025,则P(|?|?1.96)=
A.0.025 B.0.050 C.0.950 D.0.975
?4x?4, x≤1,6.函数f(x)??2的图象和函数g(x)?log2x的图象的交点个数是
?x?4x?3,x?1
A.4 B.3 C.2 D.1
7.下列四个命题中,不正确的是( ) ...
A.若函数f(x)在x?x0处连续,则limf(x)?limf(x)
x→x0?x→x0?B.函数f(x)?x?2x?42的不连续点是x?2和x??2
C.若函数f(x),g(x)满足lim[f(x)?g(x)]?0,则limf(x)?limg(x)
x→?x→?x→?D.limx→1x?1x?1?12
8.棱长为1的正方体ABCD?A1B1C1D1的8个顶点都在球O的表面上,E,F分别是棱
AA1,DD1的中点,则直线EF被球O截得的线段长为( )
A.
22
B.1
C.1?22
D.2 22229.设F1,F2分别是椭圆
xa?yb?1(a?b?0)的左、右焦点,若在其右准线上存在P,使线段PF1的中垂线过点F2,则椭圆离心率的取值范围是( )
?2?A.?0,?
?2?????3?? 3?B.?0,C.???,1? ??2?2D.???,1? ??3?3?,Sk都是M的含两个元素的子集,且满足:对10.设集合M?{1,2,3,4,5,6}, S1,S2,任意的Si?{ai,bi},Sj?{aj,bj}(i?j,i、j?{1,2,3,?,k}),都有
?ab?min?i,i??min?biai???ajbj??,则k的最大值?,?(min{x,y}表示两个数x,y中的较小者)
??bjaj??是( )
A.10 B.11 C.12 D.13
二、填空题:本大题共5小题,每小题5分,共25分.把答案填在横线上。 11.圆心为(1,1)且与直线x?y?4相切的圆的方程是 。
12.在△ABC中,角A,B,C所对的边分别为a,b,c,若a?1,b=7,c?则B? 。
13.函数f(x)?12x?x3在区间[?3,3]上的最小值是 。
3,
14.设集合A???x,y?y???1?x?2?,B?2???x,y?y??x?b?,A?B??,
(1)b的取值范围是 ;
(2)若(x,y)?A?B,且x?2y的最大值为9,则b的值是 。
15.将杨辉三角中的奇数换成1,偶数换成0,得到如图1所示的0-1三角数表.从上往下数,第1次全行的数都为1的是第1行,第2次全行的数都为1的是第3行,?,第n次全
行的数都为1的是第 行;第61行中1的个数是 。
三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤。
16.(本小题满分12分)
已知函数f(x)?cos2?x???1π?g(x)?1?sin2x。 ,?212?(I)设x?x0是函数y?f(x)图象的一条对称轴,求g(x0)的值; (II)求函数h(x)?f(x)?g(x)的单调递增区间。
17.(本小题满分12分)
某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力,每名下
岗人员可以选择参加一项培训、参加两项培训或不参加培训,已知参加过财会培训的有60%,
参加过计算机培训的有75%,假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响。
(I)任选1名下岗人员,求该人参加过培训的概率;
(II)任选3名下岗人员,记?为3人中参加过培训的人数,求?的分布列和期望。
18.(本小题满分12分)
如图2,E,F分别是矩形ABCD的边AB,CD的中点,G是EF上的一点,将
△GAB,△GCD分别沿AB,CD翻折成△G1AB,△G2CD,并连结G1G2,使得平面
G1AB⊥平面ABCD,G1G2∥AD,且G1G2?AD。连结BG2,如图3。
(I)证明:平面G1AB⊥平面G1ADG2;
(II)当AB?12,BC?25,EG?8时,求直线BG2和平面G1ADG2所成的角。
19.(本小题满分12分)
如图4,某地为了开发旅游资源,欲修建一条连接风景点P和居民区O的公路,点P所
??在的山坡面与山脚所在水平面?所成的二面角为?(0???90),且sin??25,点P到
平面?的距离PH?0.4(km)沿山脚原有一段笔直的公路AB可供利用。从点O到山脚修路的造价为a万元/km,原有公路改建费用为
a2万元/km.当山坡上公路长度为lkm
2(1≤l≤2)时,其造价为(l?1)a万元。已知OA⊥AB,PB⊥AB,AB?1.5(km),
OA?3(km)。
(I)在AB上求一点D,使沿折线PDAO修建公路的总造价最小;
(II) 对于(I)中得到的点D,在DA上求一点E,使沿折线PDEO修建公路的总造价最小;
(III)在AB上是否存在两个不同的点D?,E?,使沿折线PD?E?O修建公路的总造价小于(II)中得到的最小总造价,证明你的结论。
20.(本小题满分12分)
已知双曲线x2?y2?2的左、右焦点分别为F1,F2,过点F2的动直线与双曲线相交于A,B两点。
?????????????????(I)若动点M满足F1M?F1A?F1B?F1O(其中O为坐标原点),求点M的轨迹方
程;
????????(II)在x轴上是否存在定点C,使CA·CB为常数?若存在,求出点C的坐标;若
不存在,请说明理由。
21.(本小题满分13分)
x已知An(an,bn)(n?N*)是曲线y?e上的点,a1?a,Sn是数列{an}的前n项
2223,,4?。 和,且满足Sn?3nan?Sn?1,an?0,n?2,?bn?2?(I)证明:数列??(n≤2)是常数数列;
?bn?(II)确定a的取值集合M,使a?M时,数列{an}是单调递增数列; (III)证明:当a?M时,弦AnAn?1(n?N*)的斜率随n单调递增。
绝密★启用前
2008年普通高等学校招生全国统一考试(湖南卷)
数 学(理工农医类)
一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有
一项是符合题目要求的. 1.复数(i?)3等于
i1A.8 B.-8 C.8i D.-8i
2.“|x-1|<2成立”是“x(x-3)<0成立”的
A.充分而不必要条件
B.必要不充分条件
C.充分必要条件 D.既不充分也不必要条件 ?x?1,?3.已知变量x、y满足条件?x?y?0,则x+y的最大值是
?x?2y?9?0,?A.2 B.5 C.6 D.8
4.设随机变量?服从正态分布N(2,9) ,若P (?>c+1)=P(?<c-1?,则c=
A.1
B.2
C.3
D.4
5.设有直线m、n和平面?、?。下列四个命题中,正确的是
A.若m∥?,n∥?,则m∥n
B.若m??,n??,m∥?,n∥?,则?∥? C.若???,m??,则m??
D.若???,m??,m??,则m∥? 6.函数f(x)=sin2x+3sinxcosx在区间?1?23
????,?上的最大值是 ?42?32A.1
B. C. D.1+3
????????????????7.设D、E、F分别是△ABC的三边BC、CA、AB上的点,且DC?2BD, CE?2EA,
????????????????????????AF?2FB, 则AD?BE?CF与BC
A.反向平行 C.互相垂直 8.若双曲线
xa22
B.同向平行
D.既不平行也不垂直
3a2
?yb22上横坐标为?1(a>0,b>0)
的点到右焦点的距离大于它到左准线的
距离,则双曲线离心率的取值范围是
A.(1,2)
B.(2,+?)
C.(1,5)
D. (5,+?)
9.长方体ABCD-A1B1C1D1的8个顶点在同一球面上,且AB=2, AD=3, AA1=1, 则顶点A、B间的球面距离是
A. 22?
B.
2?
C.
2?254 D.
2?4
10.设[x]表示不超过x的最大整数(如[2]=2, [
2]=1),对于给定的n?N*,定义
2Cn?n(n?1)?(n??x??1),x??1,???,则当x??,3?时,函数Cn的值域是
x(x?1)?(x??x??1)?2??16??3?A.?,28? ?3?C.?4,??
B.??16?,56? ?3???16??28? ?,28???3??3?28????28,56? 3?
D.?4,
二、填空题:本大题共5小题,每小题5分,共25分。把答案填在对应题号后的横线上。 11.limx?1x?3x?42x?1?_____ 12.已知椭圆
xa22?yb22?1(a>b>0)的右焦点为F,右准线为l,离心率e=55.过顶点A(0,b)
作AM?l,垂足为M,则直线FM的斜率等于____
13.设函数y=f (x)存在反函数y= f(x),且函数y = x-f (x)的图象过点(1,2),则函数 y=f-1(x)-x的图象一定过点 . 14.已知函数f(x)=3?axa?1(a?1).
-1
(1)若a>0,则f(x)的定义域是____
(2)若f(x)在区间?0,1?上是减函数,则实数a的取值范围是________ 15. 对有n (n≥4)个元素的总体{1,2,3,?,n}进行抽样,先将总体分成两个子总体{1,2,?,m}和{m+1,m+2,?,n}(m是给定的正整数,且2≤m≤n-2),再从每个子总体中各随机抽取2个元素组成样本,用Pij表示元素i和j同时出现在样本中的概率,则P1n=________;所有Pif(1≤i<j≤n?的和等于 ______. 三、解答题:本大题共6小题,共75分。解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分)
甲、乙、丙三人参加了一家公司的招聘面试,面试合格者可正式签约,甲表示只要面试合格就签约。乙、丙则约定:两人面试都合格就一同签约,否则两人都不签约。设每人面试合格的概率都是
12,且面试是否合格互不影响。求:
(Ⅰ)至少有1人面试合格的概率; (Ⅱ)签约人数?的分布列和数学期望.
17.(本小题满分12分)
如图所示,四棱锥P-ABCD的底面ABCD是边长为1的菱形,∠BCD=60°,E是
CD的中点,PA⊥底面ABCD,PA=2.
(Ⅰ)证明:平面PBE⊥平面PAB;
(Ⅱ)求平面PAD和平面PBE所成二面角(锐角)的大小. 18.(本小题满分12分)
数列?an?满足a1?1,a2?2,an?2?(1?cos2n?2)an?sin2n?2,n?1,2,3,?.
(Ⅰ)求a3,a4,并求数列?an?的通项公式; (Ⅱ)设bn?
a2n?1a2nSn?2?,Sn?b1?b2???bn.证明:当n?6时,1n.
19.(本小题满分13分)
在一个特定时段内,以点E为中心的7海里以内海域被设为警戒水域.。点E正北55海里处有一个雷达观测站A。.某时刻测得一艘匀速直线行驶的船只位于点A北偏东45?且与点A相距40
2海里的位置B,经过40分钟又测得该船已
2626行驶到点A北偏东45?+?(其中sin?=,0????90?)且与点A相
距1013海里的位置C.
(I)求该船的行驶速度(单位:海里/小时);
(II)若该船不改变航行方向继续行驶,判断它是否会进入警戒水域,并说明理由. 解 (I)如图,AB=402,AC=1013,?BAC??,sin??2626.
由于0?<90?,所以cos?=1?(222626)?252626.
由余弦定理得BC=AB?AC?2AB?AC?cos??105. 105?155(海里/小时). 23所以船的行驶速度为
(II)解法一 如图所示,以A为原点建立平面直角坐标系,设点B、C的坐标分别是 B(x1,y1), C(x2,y2),BC与x轴的交点为D. 由题设有,x1=y1=
22AB=40,
?x2?ACcos?CAD?1013cos(45??)?30,
y2?ACsin?CAD?1013sin(45??)?20
?所以过点B、C的直线l的斜率k=直线l的方程为y=2x-40.
2010?2,
又点E(0,-55)到直线l的距离d=
20.(本小题满分13分)
若A、B是抛物线y=4x上的不同两点,弦AB(不平行于y轴)的垂直平分线与x轴相交于点P,则称弦AB是点P的一条“相关弦”.已知当x>2时,点P(x,0)存在无穷多条“相关弦”.给定x0>2.
(Ⅰ)证明:点P(x0,0)的所有“相关弦”的中点的横坐标相同;
(Ⅱ)试问:点P(x0,0)的“相关弦”的弦长中是否存在最大值?若存在,求其最大值(用
2
x0表示):若不存在,请说明理由. 21.(本小题满分13分) 已知函数f(x)=ln(1+x)-
2
x21?x.
(Ⅰ)求函数f(x) 的单调区间; (Ⅱ)若不等式(1?求?的最大值.
1n)n?a?e对任意的n?N*都成立(其中e是自然对数的底数).
2009年普通高等学校招生全国统一考试(湖南卷) 理科数学
一、选择题:本大题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.若log2a?0,()?1,则【 】 21bA.a?1,b?0 B.a?1,b?0 C. 0?a?1, b?0 D. 0?a?1, b?0 ???????2.对于非零向量a,b,“a?b?0”是“a//b”的【 】 A.充分不必要条件 B. 必要不充分条件 C.充分必要条件 D. 既不充分也不必要条件 ?y?sin(x?)的3.将函数y?sinx的图象向左平移个单位后,得到函数?(0???2?)..6图象,则?等于【 】
A.
?6 B.
5?6 C.
x1??x7?6 D.
11?6 4.如图1,当参数???1,?2时,连续函数y?(x?0) 的
yc2c1图像分别对应曲线C1和C2 , 则【 】 A .0??1??2 B .0??2??1
o图1xC .?1??2?0 D .?2??1?0 5.从10名大学生毕业生中选3个人担任村长助理,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数为【 】 A. 85 B. 56 C .49 D .28 6.已知D是由不等式组?长为【 】
A.
?4?x?2y?0,?x?3y?0所确定的平面区域,则圆x2?y2?4在区域D内的弧
B.
?2 C.
3?4 D.
3?2 7.正方体ABCD?A1B1C1D1的棱上到异面直线AB,CC1的距离相等的点的个数为【 】
A.2 B.3 C. 4 D.5 8.设函数y?f(x)在(??,??)内有定义.对于给定的正数K,定义函
A1DD1B1CC1?f(x),f(x)?K,数fK(x)??取函数f(x)?2?x?e?x。若对任意的
f(x)?K.?K,ABx?(??,??),恒有fK(x)?f(x),则【 】
A.K的最大值为2 B.K的最小值为2 C.K的最大值为1 D.K的最小值为1 二、填空题:本大题共7小题,每小题5分,共35分,把答案填在答题卡中对应题号后的...横线上 9.某班共30人,其中15人喜爱篮球运动,10人喜爱兵乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为_ _ _. 310.在(1?x)?(1?x)?(1?33x)的展开式中,x的系数为___(用数字作答). 311.若x?(0,?2),则2tanx?tan(?2?x)的最小值为 . ?12.已知以双曲线C的两个焦点及虚轴的两个端点为顶点的四边形中有一个内角为60,则
双曲线C的离心率为 13.一个总体分为A,B两层,其个体数之比为4:1,用分层抽样方法从总体中抽取一个容量为10的样本.已知B层中甲、乙都被抽到的概率为
128,则总体中的个体数为 。 14.在半径为13的球面上有A , B, C 三点,AB=6,BC=8,CA=10,则
(1)球心到平面ABC的距离为 ;
(2)过A,B两点的大圆面与平面ABC所成二面角(锐角)的正切值为 . 15.将正?ABC分割成n2(n?2,n?N*)个全等的小正三角形(图2,图3分别给出了n=2,3的情形),在每个三角形的顶点各放置一个数,使位于⊿ABC的三边及平行于某边的任一直线上的数(当数的个数不少于3时)都分别依次成等差数列.若顶点A ,B ,C处的三个数互不相同且和为1,记所有顶点上的数之和为f(n),则有f(2)?2,f(3)? ,? ,f(n)? . A图2A图3BCBC 三.解答题:本大题共6小题,共75分。解答应写出文字说明、证明过程或演算步骤。 16.(本小题满分12分) ????????在?ABC中,已知2AB?AC?????????????23AB?AC?3BC,求角A,B,C的大小 17.(本小题满分12分) 为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类.这三类工程所含项目的个数分别占总数的从中任选一个项目参与建设。 (I)求他们选择的项目所属类别互不相同的概率; (II)记?为3人中选择的项目属于基础设施工程或产业建设工程的人数,求?的分布列及数学期望。 18.(本小题满分12分) 如图4,在正三棱柱ABC?A1B1C1中,AB?点D是A1B1的中点,点E在A1C1上,且DE?AE 2AA1,
12,
13,
16.现在3名工人独立地
A1EDC1B1ABC(I)证明:平面ADE?平面ACC1A1; (II)求直线AD和平面ABC所成角的正弦值。
19.(本小题满分13分)
某地建一座桥,两端的桥墩已建好,这两墩相距m米,余下工程只需建两端桥墩之间的桥面和桥墩.经测算,一个桥墩的工程费用为256万元,距离为x米的相邻两墩之间的桥面工程费用为(2?x)x万元。假设桥墩等距离分布,所有桥墩都视为点,且不考虑其它因
素.记余下工程的费用为y万元。
(Ⅰ)试写出y关于x的函数关系式;
(Ⅱ)当m=640米时,需新建多少个桥墩才能使y最小?
20.(本小题满分13分)
在平面直角坐标系xOy中,点P到点F(3,0)的距离的4倍与它到直线x=2的距离的3倍之和记为d. 当点P运动时,d恒等于点P的横坐标与18之和 (Ⅰ)求点P的轨迹C;
(Ⅱ)设过点F的直线l与轨迹C相交于M,N两点,求线段MN长度的最大值。
21.(本小题满分13分)
对于数列{un},若存在常数M>0,对任意的n?N,恒有
un?1?un?un?un?1???u2?u1?M,
*则称数列{un}为B?数列.
(Ⅰ)首项为1,公比为q(q?1)的等比数列是否为B-数列?请说明理由;
请以其中一组的一个论断条件,另一组中的一个论断为结论组成一个命题 判断所给命题的真假,并证明你的结论;
(Ⅱ)设Sn是数列?xn?的前n项和,给出下列两组论断;
A组:①数列?xn?是B-数列, ②数列?xn?不是B-数列; B组:③数列?Sn?是B-数列, ④数列?Sn?不是B-数列.
请以其中一组中的一个论断为条件,另一组中的一个论断为结论 组成一个命题。判断所给命题的真假,并证明你的结论;
(Ⅲ)若数列?an?,?bn?都是B?数列,证明:数列?anbn?也是B?数列。
2010年普通高等学校招生全国统一考试(湖南卷)
数学(理工农医类)
一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
[来源:Z#xx#k.Com]
1.已知集合M??1,2,3?,N??2,3,4?,则 A.M?N B.N?M C.M?N??2,3? D.M?N??1,4? 2.下列命题中的假命题是 ...
A.?x?R,2x?1>0 B.?x?N?,?x?1?>0C.?x?R,lgx<1 D.?x?R,tanx?2
?x??1?t,3.极坐标方程??cos?和参数方程?(t为参数)所表示的图形分别是
y?2?3t?2[来源:Z&xx&k.Com]
A.圆、直线 B.直线、圆
[来源:学+科+网]
C.圆、圆 D.直线、直线
????????4.在Rt?ABC中,?C?90,AC?4,则AB?AC等于
?A.?16 B.?8 C.8 D.16 5.?421xdx等于
A.?2ln2 B.2ln2 C.?ln2 D.ln2
?6.在?ABC中,角A,B,C所对的边长分别为a,b,c.若?C?120,c?2a,则
[来源:学_A.a>b B.a<b
C.a=b D.a与b的大小关系不能确定
7.在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为
A.10 B.11 C.12 D.15
8.用min?a,b?表示a,b两数中的最小值.若函数f(x)?min?x,x?t?的图像关于直线
x??12对称,则t的值为
A.?2 B.2 C.?1 D.1
二、填空题:本大题共7小题,每小题5分,共35分.把答案填在答题卡中对应题号后的...横线上.
9.已知一种材料的最佳加入量在110g到210g之间.若用0.618法安排实验,则第一次试点的加入量可以是 g. 10.如图1所示,过?O外一点P作一条直线与?O交于A,B两点.已知PA=2,点P到?O的切线长PT=4,则弦AB的长为 .
11.在区间??1,2?上随机取一个数x,则x?1的概率为 .
12.图2是求12?22?32?…+1002的值的程序框图,则正整数n? .
313.图3中的三个直角三角形是一个体积为20cm的几何体的三视图,则h? cm.
开始 i?1,s?0 i?i?1 s?s?ii?n? 2是 否 输出s 结束
图2
14.过抛物线x2?2py(p>0)的焦点作斜率为1的直线与该抛物线交于A,B两点,A,B在x轴上的正射影分别为D,C.若梯形ABCD的面积为122,则p? .
15.若数列?an?满足:对任意的n?N,只有有限个正整数m使得am<n成立,记这样的
?m的个数为(an),则得到一个新数列?(an)??.例如,若数列?an?是1,2,3…,n,…,则
?2??数列?(an)??是0,1,2,…,n?1,….已知对任意的n?N,an?n,则(a5)? ,
((an))? .
??
三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分) 已知函数f(x)?3sin2x?2sinx.
2(Ⅰ)求函数f(x)的最大值;
(Ⅱ)求函数f(x)的零点的集合. 17.(本小题满分12分)
图4是某城市通过抽样得到的居民某年的月均用水量(单位:吨)的频率分布直方图.(Ⅰ)求直方图中x的值.
(Ⅱ)若将频率视为概率,从这个城市随机抽取3位居民(看作有放回的抽样),求月均用水量在3至4吨的居民数X的分布列和数学期望. 18.(本小题满分12分)
如图5所示,在正方体ABCD?A1B1C1D1中,E是棱DD1的中点. (Ⅰ)求直线BE的平面ABB1A1所成的角的正弦值;
(Ⅱ)在棱C1D1上是否存在一点F,使B1F∥平面A1BE?证明你的结论.
19.(本小题满分13分)
为了考察冰川的融化状况,一支科考队在某冰川上相距8km的A,B两点各建一个考察基地.视冰川面为平面形,以过A,B两点的直线为x轴,线段AB的垂直平分线为y轴建立平面直角坐标系(图6).在直线x?2的右侧,考察范围为到点B的距离不超过在直线x?2的左侧,考察范围为到A,B两点的距离之和不超过45km的区域. (Ⅰ)求考察区域边界曲线的方程;
(Ⅱ)如图6所示,设线段P1P2,P2P3是冰川的部分边界线(不考虑其他边界),当冰川融化时,边界线沿与其垂直的方向朝考察区域平行移动,第一年移动0.2km,以后每年移动的距离为前一
年的2倍,求冰川边界线移动到考察区域所需的最短时间.
655[来源:学.科.网]
km的区域;
20.(本小题满分13分)
已知函数f(x)?x2?bx?c(b,c?R),对任意的x?R,恒有f'(x)?f(x). (Ⅰ)证明:当x?0时,f(x)?(x?c)2;
(Ⅱ)若对满足题设条件的任意b,c,不等式f(c)?f(b)?M(c2?b2)恒成立,求M的最小值. 21.(本小题满分13分)
数列?an?(n?N)中,a1?a,an?1是函数fn(x)?*13x?312(3an?n)x?3nanx的极
222小值点.
(Ⅰ)当a?0时,求通项an;
(Ⅱ)是否存在a,使数列?an?是等比数列?若存在,求a的取值范围;若不存在,请说明理由.
2011年普通高等学校招生全国统一考试(湖南卷)
数学(理工农医类)
本试题卷包括选择题、填空题和解答题三部分,共6页,时量120分钟,满分150分。
参考公式:(1)P(BA)?P(AB)P(A),其中A,B为两个事件,且P(A)?0,
(2)柱体体积公式V?Sh,其中S为底面面积,h为高。 (3)球的体积公式V?43?R,其中R为求的半径。
3一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若a,b?R,i为虚数单位,且(a?i)i?b?i则
A.a?1,b?1 B. a??1,b?1 C.a??1,b??1 D. a?1,b??1 2.设集合M??1,2?,N??a2?,则 “a?1”是“N?M”的 A.充分不必要条件 B.必要不充分条件
C. 充分必要条件 D. 既不充分又不必要条件 3.设图1是某几何体的三视图,则该几何体的体积为
A. 92??12 B. 92??18
C. 9??42 D. 36??18
4.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:
由k2?n?ad?bc?2?a?b??c?d??a?c??b?d?算得,k2?110??40?30?20?20?260?50?60?50?7.8.
参照附表,得到的正确结论是
A. 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”
B. 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”
C. 有99%以上的把握认为“爱好该项运动与性别有关” D. 有99%以上的把握认为“爱好该项运动与性别无关” 225.设双曲线
xa2?y9?1?a?0?的渐近线方程为3x?2y?0,则a的值为
A.4 B.3 C.2 D.1 6.由直线x??A.
12?3,x??3,y?0与曲线y?cosx所围成的封闭图形的面积为
B.1 C.
32 D. 3
?y?x?7.设m>1,在约束条件?y?mx下,目标函数Z=x+my的最大值小于2,则
?x?y?1?m 的取值范围为
A.(1,1?2) B.(1?2,??) C.(1,3 ) D.(3,??) 8.设直线x=t 与函数f(x)?x2,g(x)?lnx 的图像分别交于点M,N,则当
MN达到最小时t的值为
12A.1 B.
C. 52 D. 22
填空题:本大题共8小题,考生作答7小题,每小题5分,共35分,把答案填在答题卡中对应号后的横线上。 ...
(一)选做题(请考生在9、10、11三题中任选一题作答,如果全做,则按前两题记分)
9.在直角坐标系xOy中,曲线C1的参数方程为??x?cos?,?y?1?sin?(?为参数)在
极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,曲线C2的方程为??cos??sin???1?0,则C1与C2的交点个数为
10.设x,y?R,则(x2?1y)(21x2?4y)的最小值为 。
211.如图2,A,E是半圆周上的两个三等分点,直径BC=4, AD⊥BC,垂足为D,BE与AD相交与点F,则AF的长为 。
(二)必做题(12~16题)
12.设Sn是等差数列{an}(n?N?),的前n项和,且a1?1,a4?7,则S9= . 13.若执行如图3所示的框图,输入x1?1,x2?2,x3??3,x?2,则输出的数等于 。
14.在边长为1的正三角形ABC中, 设BC?2BD,CA?3CE,则AD?BE =__________________.
15.如图4,EFGH 是以O 为圆心,半径为1的圆的内接正方形。将一颗豆子随机地扔到该圆内,用A表示事件“豆子落在正方形EFGH内”, B表示事件“豆子落在扇形OHE(阴C影部分)内”,则
(1)P(A)= _____________; (2)P(B|A)= . 16.对于n?N? ,将n 表示n?a0?2k?a1?2k?1?a2?2k?2?...?ak?1?21?ak?20 ,当i?0时,ai?1,当1?i?k时, ai为0或1.记I(n)为上述表示中ai为0的个数(例如:I?1?20,4?1?22?0?21?0?20),故I(1)?0, I(4)?2),则
127?????????????????????????(1)I(12)?________________;(2) ?2I(n)________________;
n?1三、解答题:本大题共6小题,东75分,解答应写出文字说明、证明过程或验
算步骤。
17.(本小题满分12分)
在△ABC中,角A,B,C所对的边分别为a,b,c,且满足csinA=acosC. (Ⅰ)求角C的大小; (Ⅱ)求3sinA-cos (B+?4)的最大值,并求取得最大值时角A、B的大小。
18. (本小题满分12分)
某商店试销某种商品20天,获得如下数据:
日销售量(件) 0 频数 1 1 5 2 9 3 5 试销结束后(假设该商品的日销售量的分布规律不变),设某天开始营业时有该商品3件,当天营业结束后检查存货,若发现存货少于2件,则当天进货补充至..3件,否则不进货,将频率视为概率。 ...(Ⅰ)求当天商品不进货的概率; ...
(Ⅱ)记X为第二天开始营业时该商品的件数,求X的分布列和数学期望。
19.(本小题满分12分)
如图5,在圆锥PO中,已知PO=2,⊙O的直径AB?2,C是的中点,D为AC的中点.
(Ⅰ)证明:平面POD ?平面PAC; (Ⅱ)求二面角B?PA?C的余弦值。
20.(本小题满分13分)
如图6,长方形物体E在雨中沿面P(面积为S)的垂直方向作匀速移动,速度为v(v>0),雨速沿E移动方向的分速度为c(c?R)。E移动时单位时间内的淋....雨量包括两部分:(1)P或P的平行面(只有一个面淋雨)的淋雨量,假设其值与v?c×S成正比,比例系数为
110;(2)其它面的淋雨量之和,其值为
3212,记y
为E移动过程中的总淋雨量,当移动距离d=100,面积S=(Ⅰ)写出y的表达式
时。
(Ⅱ)设0<v≤10,0<c≤5,试根据c的不同取值范围,确定移动速度v,使总淋雨量y最少。
21.(本小题满分13分) 如图7,椭圆C1:xy22
?yb22?1(a?b?0)的离心率为
32,x轴被曲线C2:y?x2?b
截得的线段长等于C1的长半轴长。 (Ⅰ)求C1,C2的方程;
(Ⅱ)设C2与y轴的焦点为M,过坐标原点O的直线l与C2相交于点A,B,直线MA,MB分别与C1相交与D,E. (i)证明:MD⊥ME;
(ii)记△MAB,△MDE的面积分别是s1,s2.问:是否存在直线l,使得请说明理由。
22.(本小题满分13分)
已知函数f(x) =x3,g (x)=x+x。
(Ⅰ)求函数h (x)=f(x)?g (x)的零点个数。并说明理由;
(Ⅱ)设数列{ an}(n?N?)满足a1?a(a?0),f(an?1)?g(an),证明:存在常数M,使得对于任意的n?N*,都有an≤ M.
S1S2?1732?
2007年普通高等学校招生全国统一考试(湖南卷)
数 学(理工农医类)
参考答案
一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.C 2.D 3.B 4.A 5.C 6.B 7.C 8.D 9.D 10.B
二、填空题:本大题共5小题,每小题5分,共25分.把答案填在横线上。
11.(x?1)2?(y?1)2?2
5π612.
13.?16
14.(1)[1,??)(2)
92
15.2n?1,32
三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤。 16.(本小题满分12分)
解:(I)由题设知f(x)?12[1?cos(2x?π6)]
π6因为x?x0是函数y?f(x)图象的一条对称轴,所以2x0?即2x0?kπ? π6?kπ,
(k?Z)。
1212π6所以g(x0)?1?sin2x0?1?sin(kπ?)
当k为偶数时,g(x0)?1?113?π?sin????1??, 244?6?当k为奇数时,g(x0)?1?12sinπ6?1?14?54
(II)h(x)?f(x)?g(x)?1?π?1?cos2x???2?6?1???1?sin2x ??2????31?π??31?31?cos2x??sin2x??cos2x?sin2x? ????????2?6?2??22?2?2?1π?3?sin?2x??? 23?2?π2π3π25π12π12当2kπ?≤2x?≤2kπ?,即kπ?≤x≤kπ?(k?Z)时,
函数h(x)?1π?3?sin?2x???是增函数, 23?2?故函数h(x)的单调递增区间是?kπ???5π12,kπ?π?(k?Z) ?12?
17.(本小题满分12分)
解:任选1名下岗人员,记“该人参加过财会培训”为事件A,“该人参加过计算机培训”为事件B,由题设知,事件A与B相互独立,且P(A)?0.6,P(B)?0.75.
(I)解法一:任选1名下岗人员,该人没有参加过培训的概率是 P1?P(A?B)?P(A)?P(B)?0.4?0.25?0.1
所以该人参加过培训的概率是P2?1?P1?1?0.1?0.9 解法二:任选1名下岗人员,该人只参加过一项培训的概率是 P3?P(A?B)?P(A?B)?0.6?0.25?0.4?0.75?0.45
该人参加过两项培训的概率是P4?P(A?B)?0.6?0.75?0.45 所以该人参加过培训的概率是P5?P3?P4?0.45?0.45?0.9
(II)因为每个人的选择是相互独立的,所以3人中参加过培训的人数?服从二项分布
B(3,0.9),P(??k)?C3?0.9?0.1kk3?k1,,23,即?的分布列是 ,k?0,? P 0 0.001 1 0.027 2 0. 243 3 0.729 ?的期望是E??1?0.027?2?0.243?3?0.729?2.7
(或?的期望是E??3?0.9?2.7)
18.(本小题满分12分)
解:解法一:(I)因为平面G1AB⊥平面ABCD,平面G1AB?平面ABCD?AB,
AD⊥AB,AD?平面ABCD,所以AD⊥平面G1AB,又AD?平面G1ADG2,
所以平面G1AB⊥平面G1ADG2
(II)过点B作BH⊥AG1于点H,连结G2H 由(I)的结论可知,BH⊥平面G1ADG2, 所以?BG2H是BG2和平面G1ADG2所成的角
因为平面G1AB⊥平面ABCD,平面G1AB?平面ABCD?AB,G1E⊥AB,
G1E?平面G1AB,所以G1E⊥平面ABCD,故G1E⊥EF
因为G1G2?AD,AD?EF,所以可在EF上取一点O,使EO?G1G2,又因为
G1G2∥AD∥EO,所以四边形G1EOG2是矩形
由题设AB?12,BC?25,EG?8,则GF?17所以G2O?G1E?8,G2F?17,
OF?17?8?15,G1G2?EO?10
22因为AD⊥平面G1AB,G1G2∥AD,所以G1G2⊥平面G1AB,从而G1G2⊥G1B 故BG22?BE2?EG12?G1G22?62?82?102?200,BG2?102 又AG1?6?8?10,由BH?AG1?G1E?AB得BH?228?1210?485
故sin?BG2H?BHBG2?485?1102?12225
即直线BG2与平面G1ADG2所成的角是arcsin解法二:
12225
(I)因为平面G1AB⊥平面ABCD,平面G1AB?平面ABCD?AB,G1E⊥AB,
G1E?平面G1AB,所以G1E⊥平面ABCD,从而G1E⊥AD.又AB⊥AD,所
以AD⊥平面G1AB.因为AD?平面G1ADG2,所以平面G1AB⊥平面G1ADG2. (II)由(I)可知,G1E⊥平面ABCD.故可以E为原点,分别以直线EB,EF,EG1 为x轴、y轴、z轴建立空间直角坐标系(如图),
由题设AB?12,BC?25,EG?8,则EB?6,
EF?25,EG1?8,相关各点的坐标分别是A(?6,0,0),
0,8),B(6,D(?6,25,0),G1(0,0,0)
?????????所以AD?(0,25,0),AG1?(6,0,8)
?设n?(x,y,z)是平面G1ADG2的一个法向量,
????????n?AD?0,?25y?0,由??????得?故可取n?(4,0,?3) ?6x?8z?0??n?AG1?0.?过点G2作G2O⊥平面ABCD于点O,因为G2C?G2D,所以OC?OD,于是点O在y轴上
因为G1G2∥AD,所以G1G2∥EF,G2O?G1E?8
8)(0?m?25)设G2(0,m,,由172?82?(25?m)2,解得m?10,
?????所以BG2?(0,10,8)?(6,0,0)?(?6,10,8)
设BG2和平面G1ADG2所成的角是?,则
??????BG2?nsin?????????BG2?n|?24?24|6?10?8?4?322222?12225
故直线BG2与平面G1ADG2所成的角是arcsin
19.(本小题满分12分)
12225
解:(I)如图,
PH⊥?,HB??,PB⊥AB,
由三垂线定理逆定理知,AB⊥HB,所以?PBH是 山坡与?所成二面角的平面角,则?PBH??,
PB?PHsin??1
设BD?x(km),0≤x≤1.5.则
PD?x?PB?22x?1?[1,2]
2记总造价为f1(x)万元, 据题设有f1(x)?(PD?1?2212AD?AO)a?(x?212x?114?3)a
1???43??x??a???416????3?a ?(km)时,总造价f1(x)最小
54当x?14,即BD?14(II)设AE?y(km),0≤y≤,总造价为f2(y)万元,根据题设有
?2f2(y)??PD?1??y?3?21?31?????ya?????2?24???y?3?2y?43a?a ?2?16??则f2?y?????1???a,由f2?(y)?0,得y?1 2y?32??y当y?(0,1)时,f2?(y)?0,f2(y)在(0,1)内是减函数;
??5?4???5?4?当y??1,?时,f2?(y)?0,f2(y)在?1,?内是增函数
6716故当y?1,即AE?1(km)时总造价f2(y)最小,且最小总造价为(III)解法一:不存在这样的点D?,E?
a万元
事实上,在AB上任取不同的两点D?,E?为使总造价最小,E显然不能位于D? 与
B之间,故可设E?位于D?与A之间,且BD?=x1(km),AE??y1(km),
0≤x1?y2≤32,总造价为S万元,则S??x12??x12116y12?x12?y1?3?2y12?11?、 ?a.类似于(I)
4?14(II)讨论知,x12?≥?,y12?3?≥1432,当且仅当x1?,y1?1同时成
立时,上述两个不等式等号同时成立,此时BD??6716(km),AE?1(km),S取得最小值
a,点D?,E?分别与点D,E重合,所以不存在这样的点 D?,E?,使沿折线PD?E?O修建公路的总造价小于(II)中得到的最小总造价.
解法二:同解法一得
?2xS??x1?1?2?2y1?3?2y12?11??a 4?1?1???x1??a??3?4?4??≥146716?23(2?y1?3?y1?2??432y1?3?y1?a?a
??16?y1?3?y1)(y1?3?y1)?a?24316a
?a
1414当且仅当x1?得最小值
6716且3(y1?3?y1)(y1?3?y1),即x1?22S取,y1?1同时成立时,
a,以上同解法一。
20.(本小题满分12分)
0),F2(2,0),设A(x1,y1),B(x2,y2). 解:由条件知F1(?2,解法一:
?????????(I)设M(x,y),则则F1M?(x?2,y),F1A?(x1?2,y1), ?????????????????????????F1B?(x2?2,y2),F1O?(2,0),由F1M?F1A?F1B?F1O得
?x?2?x1?x2?6,?x1?x2?x?4,即? ?y?y?yy?y?y?12?12?x?4y,22??? ?于是AB的中点坐标为?y当AB不与x轴垂直时,
y1?y2x1?x2?2x?42??2yx?8,即y1?y2?yx?8(x1?x2)
22又因为A,B两点在双曲线上,所以x12?y12?2,x2?y2?2,两式相减得
(x1?x2)(x1?x2)?(y1?y2)(y1?y2),即(x1?x2)(x?4)?(y1?y2)y
yx?822将y1?y2?(x1?x2)代入上式,化简得(x?6)?y?4
当AB与x轴垂直时,x1?x2?2,求得M(8,0),也满足上述方程 所以点M的轨迹方程是(x?6)2?y2?4
????????(II)假设在x轴上存在定点C(m,0),使CA?CB为常数
当AB不与x轴垂直时,设直线AB的方程是y?k(x?2)(k??1)
代入x?y?2有(1?k)x?4kx?(4k?2)?0
222222则x1,x2是上述方程的两个实根,所以x1?x2?4k22k?1,x1x2?4k?2k?122,
????????2于是CA?CB?(x1?m)(x2?m)?k(x1?2)(x2?2)
?(k?1)x1x2?(2k?m)(x1?x2)?4k?m
2222?(k?1)(4k?2)k?1222?4k(2k?m)k?1222?4k?m
22?2(1?2m)k?2k?122?m?2(1?2m)?24?4mk?122?m
????????????????因为CA?CB是与k无关的常数,所以4?4m?0,即m?1,此时CA?CB=?1
当AB与x轴垂直时,点A,B的坐标可分别设为(2,2),(2,?????????2),
此时CA?CB?(1,2)?(1,?2)??1
????????故在x轴上存在定点C(1,0),使CA?CB为常数
解法二:
?x1?x2?x?4,(I)同解法一的(I)有?
?y1?y2?y当AB不与x轴垂直时,设直线AB的方程是y?k(x?2)(k??1)
代入x2?y2?2有(1?k2)x2?4k2x?(4k2?2)?0
则x1,x2是上述方程的两个实根,所以x1?x2?4k22k?1
?4k2?4ky1?y2?k(x1?x2?4)?k??4??2
k?1k?1??4k22由①②③得x?4?k?1???????????????????④
y?4kk?12??????????????????????????⑤
当k?0时,y?0,由④⑤得,
x?4y?k,将其代入⑤有
4?y?x?4y22(x?4)y??14y(x?4)(x?4)?y22.整理得(x?6)?y?4。
22当k?0时,点M的坐标为(4,0),满足上述方程
当AB与x轴垂直时,x1?x2?2,求得M(8,0),也满足上述方程。 故点M的轨迹方程是(x?6)2?y2?4。
????????(II)假设在x轴上存在定点点C(m,0),使CA?CB为常数,
当AB不与x轴垂直时,由(I)有x1?x2?以上同解法一的(II)。
21.(本小题满分13分)
4kk22?1,x1x2?4k?2k?122。
222解:(I)当n≥2时,由已知得Sn?Sn?1?3nan
2因为an?Sn?Sn?1?0,所以Sn?Sn?1?3n ??①
2于是Sn?1?Sn?3(n?1) ??②
由②-①得an?1?an?6n?3 ??③ 于是an?2?an?1?6n?9 ??④ 由④-③得an?2?an?6, ?? ⑤
an?2an所以
bn?2bn?ee?ean?2?an?bn?2??e,即数列??(n≥2)是常数数列
b?n?6(II)由①有S2?S1?12,所以a2?12?2a.由③有a3?a2?15,a4?a3?21,所以a3?3?2a,a4?18?2a
而 ⑤表明:数列{a2k}和{a2k?1}分别是以a2,a3为首项,6为公差的等差数列,
所以a2k?a2?6(k?1),a2k?1?a3?6(k?1),a2k?2?a4?6(k?1)(k?N*), 数列{an}是单调递增数列?a1?a2且a2k?a2k?1?a2k?2对任意的k?N*成立。
?a1?a2且a2?6(k?1)?a3?6(k?1)?a4?6(k?1)
94154?a1?a2?a3?a4?a?12?2a?3?2a?18?2a??a?
即所求a的取值集合是M??a??94?a?15?? 4?bn?1?bnan?1?anx(III)解法一:弦AnAn?1的斜率为kn??ean?1?eanan?1?anx
任取x0,设函数f(x)?e?exx0x?x0x0,则f(x)?e(x?x0)?(e?e0)(x?x0)2x
xxxxxx记g(x)?e(x?x0)?(e?e),则g?(x)?e(x?x0)?e?e?e(x?x0),
??)上为增函数, 当x?x0时,g?(x)?0,g(x)在(x0,当x?x0时,g?(x)?0,g(x)在(??,x0)上为减函数,
??)g(x)?g(x0)?0,所以x?x0时,从而f?`(x)?0,所以f(x)在(??,x0)和(x0,上都是增函数
由(II)知,a?M时,数列{an}单调递增,
ean?1取x0?an,因为an?an?1?an?2,所以kn??eanan?1?anan?1?ean?2?eanan?2?anan
取x0?an?2,因为an?an?1?an?2,所以kn?1?e?ean?2an?1?an?2?e?ean?2an?an?2
所以kn?kn?1,即弦AnAn?1(n?N*)的斜率随n单调递增
解法二:设函数f(x)?都是增函数,所以:
eane?exan?1x?an?1,同解法一得,f(x)在(??,an?1)和(an?1,??)上
kn??ean?1an?an?1?lim?n→an?1e?exan?1x?an?1?ean?1,kn?1?ean?2?ean?1an?2?an?1?lim?e?exan?1n→an?1x?an?1?ean?1
故kn?kn?1,即弦AnAn?1(n?N*)的斜率随n单调递增。
绝密★启用前
2008年普通高等学校招生全国统一考试(湖南卷)
数 学(理工农医类)
参考答案
二、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有
一项是符合题目要求的. 1.(D) 2.(B) 3. (C) 4. (B) 5.(D) 6. (C) 7. (A) 8. (B) 9. (C) 10. (D)
二、填空题:本大题共5小题,每小题5分,共25分。把答案填在对应题号后的横线上。 11.. 15
12. 13.
12.
(-1,2) . 14.已知函数f(x)=??3?; ?a?3?axa?1(a?1).
(1)???,(2) ???,0???1,3?. 15.
4m(n?m); 6 .
三、解答题:本大题共6小题,共75分。解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分)
解 用A,B,C分别表示事件甲、乙、丙面试合格。由题意知A,B,C相互独立,且 P(A)=P(B)=P(C)=
12.
(Ⅰ)至少有1人面试合格的概率是
1371?P(ABC)?1?P(A)P(B)P(C)?1?()?.
28(Ⅱ)?的可能取值为0,1,2,3. P(??0)?P(ABC)?P(ABC)?P(A B)C =P(A)P(B)P(C)?P(A)P(B)P(C)?P(A)P(B)P(C) =()?()?()?22213121338.
P(A B)C)? P(??1)?P(ABC)?P(ABC =P(A)P(B)P(C)?P(A)P(B)P(C)?P(A)P(B)P(C) =()?()?()?22213131338.
18..C) P(??2)?P(ABC)?P(A)P(B)P(?C) P(??3)?P(ABC)?P(A)P(B)P(?81所以, ?的分布列是
? 0 38381 3838?2?182 1818?1.
3 18P ?1? ?3? ?的期望E??0?17.(本小题满分12分)
解 解法一(Ⅰ)如图所示,连结BD,由ABCD是菱形且∠BCD=60°知,△BCD是等边三角形。因为E是CD的中点,所以BE⊥CD,又AB∥CD,所以BE⊥AB。又因为PA⊥平面ABCD,BE?平面ABCD,所以PA⊥BE。而PA?AB=A,因此BE⊥平面PAB. 又BE?平面PBE,所以平面PBE⊥平面PAB.
(Ⅱ)
解法二 如图所示,以A为原点,建立空间直角坐标系。则相关各点的坐标分别是 A(0,0,0),B(1,0,0),C(,33,0),(,2213D,0),22P(0,0,2),E(1,
32,0)
(Ⅰ)因为BE?(0,32,0),平面PAB的一个法向量是n0?(0,1,0),所以BE和n0共线.
从而BE⊥平面PAB.
又因为BE?平面PBE,故平面PBE⊥平面PAB.
????????(Ⅱ)易知PB?(1,0,?2),BE?(0,????????13,0),,0) PA?(0,0,?2),AD?(,2223??????????n1?PB?0, 设n1?(x1,y1,z1)是平面PBE的一个法向量,则由???得 ???????n1?BE?0?x1?0?y1?2z1?0,???所以y1?0,x1?2z1.故可取n1?(2,0,1). ?3y1?0?z1?0.?0?x1??2????????????n2?PA?0, 设n2?(x2,y2,z2)是平面PAD的一个法向量,则由???得 ???????n2?AD?0?0?x2?0?y2?2z2?0,????所以z2?0,x2??3y2.故可取n2?(3,?1,0). ?13y2?0?z2?0.?x2??22????????????n1?n22315 于是,cos?n1,n2?????. ?????55?2n1?n2155 故平面PAD和平面PBE所成二面角(锐角)的大小是arccos18.(本小题满分12分)
解 (Ⅰ)因为a1?1,a2?2,所以a3?(1?cosan?(1?cos?)a2?sin??2a2?4.
22.
2?2)a1?sin2?2?a1?1?2,
一般地,当n?2k?1(k?N*)时,a2k?1?[1?cos=a2k?1?1,即a2k?1?a2k?1?1.
2(2k?1)?2]a2k?1?sin22k?12?
所以数列?a2k?1?是首项为1、公差为1的等差数列,因此a2k?1?k.
*当n?2k(k?N)时,a2k?2?(1?cos22k?2)a2k?sin22k?2?2a2k.
k所以数列?a2k?是首项为2、公比为2的等比数列,因此a2k?2.
?n?1*,n?2k?1(k?N),?2故数列?an?的通项公式为a2??
n?2*?2,n?2k(k?N).(Ⅱ)由(Ⅰ)知,bn?12a2n?1a2n?222?n2323n,
n2nSn?????, ①
正在阅读:
2007—2011历年湖南数学理工类高考试题 - 图文06-06
2012年属虎人运程07-24
朋友生日祝福语简短独特精选 好朋友生日祝福语短句唯美02-22
2014台湾省数据库入门入门03-20
浅淡空分制氧装置冷箱扒砂作业要点11-02
弃土弃碴场设置标准(已审核)11-17
生物化学习题集11-22
四川省岳池县第一中学2014-2015学年高中地理 2.3大气污染及其防治导学案 新人教版选修610-28
食品添加剂对食品安全的影响08-19
编译原理 第2讲(第三章).07-19
- 多层物业服务方案
- (审判实务)习惯法与少数民族地区民间纠纷解决问题(孙 潋)
- 人教版新课标六年级下册语文全册教案
- 词语打卡
- photoshop实习报告
- 钢结构设计原理综合测试2
- 2014年期末练习题
- 高中数学中的逆向思维解题方法探讨
- 名师原创 全国通用2014-2015学年高二寒假作业 政治(一)Word版
- 北航《建筑结构检测鉴定与加固》在线作业三
- XX县卫生监督所工程建设项目可行性研究报告
- 小学四年级观察作文经典评语
- 浅谈110KV变电站电气一次设计-程泉焱(1)
- 安全员考试题库
- 国家电网公司变电运维管理规定(试行)
- 义务教育课程标准稿征求意见提纲
- 教学秘书面试技巧
- 钢结构工程施工组织设计
- 水利工程概论论文
- 09届九年级数学第四次模拟试卷
- 湖南
- 高考试题
- 历年
- 理工
- 数学
- 图文
- 2007
- 2011
- 电工初级工理论试题
- 建筑废弃物的减量、分类、运输、污染防治措施
- 创新业务模式的3A能力
- Word文档中插入图片
- 购物分享社区走红“人人逛街”时代来临本文转自腾讯由亿买风尚购
- 重庆某桥梁检测、评估方案
- 信息技术部各岗位职责细分量化考核标准
- 嘉兴富利嘉 - 图文
- 二次函数y=a(x-h)2+k(a≠0)图象与性质
- 市政道路工程施工总结报告
- 一年级看图写话图片(三)
- *堪舆入门基础-来龙入首
- 长螺旋成孔压灌桩施工记录表
- 部编版七年级道德与法制上册教案第七课 亲情之爱
- 大学计算机选择题(10套)
- 2018高级语言程序设计C++随堂练习答案
- 2018年秋九年级化学上册全一册随堂练习(打包32套)(新版)新人教版
- 平高东芝252kV隔离开关,接地开关说明书
- 校长在广播体操上的讲话
- 2010年环评工程师考试《环境影响评价相关法律法规》预测试题(2)-