新型干法水泥窑低温余热锅炉介绍 - 图文

更新时间:2024-05-25 14:13:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

新型干法水泥窑低温余热锅炉介绍

?

作者:袁克 单位:南通万达锅炉股份有限公司总工程师 [2009-7-22]

关键字:余热发电

? 摘要:

常用的余热发电热力系统

常用的有单压、闪蒸、双压余热发电三种方式;

单压系统指窑头余热锅炉和窑尾余热锅炉产生相近参数的主蒸汽,混合后进入汽轮机;窑头余热锅炉生产的热水供窑头余热锅炉蒸汽段和窑尾余热锅炉;

闪蒸系统指锅炉产生一定压力的主蒸汽和热水,主蒸汽进入汽轮机高压进汽口,热水经过闪蒸,生产低压的饱和蒸汽,补入补汽式汽轮机的低压进汽口。

双压系统指余热锅炉生产较高压力和较低压力的蒸汽,分别进入汽轮机的高、低压进汽口。

余热发电热力系统的比较

选择的依据:水泥窑自身特点决定的烟气量和烟气温度,以及烟气用于物料烘干温度的高低。

锅炉吸热量的高低,取决于锅炉排烟温度的高低、锅炉散热量、锅炉漏风量。 吸热量:双压系统高于闪蒸系统,闪蒸系统高于单压系统。 发电量:双压系统高于闪蒸系统,闪蒸系统高于单压系统。 单压发电系统

可靠,投资成本低,但有明显的适用范围。 换热窄点。

总供水量=AQC产汽量+SP产汽量+锅炉的排污量。

在通常情况下,受限的总供水量不能使AQC的排烟温度降到100℃以下,则不能最大限度的利用余热。

闪蒸、双压系统是更好的选择。闪蒸较适合于余热锅炉与汽机房距离较远的场合。 单压AQC锅炉

单压SP锅炉

双压AQC锅炉

双压SP锅炉

卧式布置SP锅炉

SP(卧式)锅炉结构特点

采用辅助循环结构,特殊的水循环结构设计保证了锅炉的安全运行;

过热器、蒸发器采用蛇形光管受热面,整体模块出厂,每个模块有各自独立的包装运输框架,现场安装时利用锅炉厂提供的专用翻转架安装就位;

受热面管与集箱采用特殊的连接结构,减轻了机械振动的冲击。采用较低烟速,减轻磨损,降低烟气侧阻力,减少锅炉自身的动力消耗;

采用机械振打清灰方式,卧式结构清灰更方便,连续清灰模式对系统运行影响小,与其它清灰方式相比更加节能;

布置密封式刮板出灰机,大大降低锅炉尾部灰浓度。 窑尾卧式与立式的比较

卧式清灰效果较好。换热管垂直布置,不存在累积搭桥现象,且采用吊挂形式,振打效果好。

卧式炉占地面积较大,当窑尾设计排烟温度取值较低(采用闪蒸、双压)时,结构布置

较为困难。

卧式炉烟气为水平流动,锅炉烟道入口要采取针对性设计,以保证烟气直角拐弯后的流场均匀。

卧式采用错列管束布置,换热效果较好。而立式一般采用顺利管束布置。

卧式炉采用带有节流孔板的辅助循环设计,立式炉为自然循环,因此,卧式炉的水质控制更为重要。

锅炉管束下端没有排污口,对锅炉的运行操作增加不便,不太适合用于高寒冷地区。 热水循环泵工作要求高,检修工作量大。 易世达新能源发展股份有限公司双压系统特点

本工程为利用水泥窑的窑头、窑尾废气余热进行发电。为充分利用窑头冷却机排放的废气余热,设置独立的ASH窑头低温过热器,AQC窑头余热锅炉,SP窑尾余热锅炉。 ASH过热器在系统中的作用

水泥窑熟料冷却机废气经ASH低温余热过热器后再进窑头AQC锅炉。ASH的作用是将AQC炉、SP炉生产的2.5Mpa饱和蒸汽过热为380℃过热蒸汽以供汽轮机发电用。由于布置与热效率要求,结构上采用立式布置,过热器出口废气温度控制范围为300℃~340℃左右。设计时应考虑水泥窑熟料冷却机废气对余热过热器的严重磨损特性,同时注意漏风、防磨、防堵等措施。 ASH过热器

AQC锅炉 在系统中的作用

水泥窑熟料冷却机废气经AQC低温余热锅炉后进窑头收尘。AQC锅炉的作用为生产2.5Mpa饱和蒸汽经过热器过热后供汽轮机发电用;生产0.25MPa饱和蒸汽用于锅炉给水除氧及汽机补汽;生产的热水进入除氧器除氧(同时作为0.25MPa蒸汽段的给水),除氧后的水由锅炉给水泵为SP炉、AQC炉2.5MPa蒸汽段供水。由于占地面积与锅炉热效率

要求,结构上采用模块立式布置,锅炉出口废气温度控制范围为90℃~100℃左右。锅炉设计时应考虑水泥窑熟料冷却机废气对余热锅炉的严重磨损特性,同时注意漏风、防磨、防堵等措施。

SP锅炉在系统中的作用

水泥窑窑尾废气经SP低温余热锅炉后进窑尾收尘。SP锅炉的作用为生产2.5Mpa饱和蒸汽经窑头熟料冷却机低温余热过热器过热后供汽轮机发电用。由于占地面积与锅炉热效率要求,结构上采用立式布置,锅炉出口废气温度控制范围为195℃~210℃左右。锅炉设计时应考虑水泥窑余热锅炉的特性,注意漏风、防磨、防堵等措施。

对于随季节变化,要求的烘干温度差异比较大的地区,可考虑锅炉增设低压段调节,以最大限度的利用余热。 窑头余热锅炉设计要点

窑头烟气中灰颗粒硬,受热面的防磨问题; 锅炉设计时要考虑窑头烟气变化大的问题; 可以接受的积灰保证有效换热;

可靠的密封结构,尽可能减少漏风,减少热损失,减轻对水泥窑生产的影响; 合适的烟气侧阻力,可接受的动力消耗。 AQC锅炉结构特点

立式自然循环,从上而下布置2.5MPa段蒸发管、 2.5MPa段省煤器;0.25MPa段蒸发管;热水器。

蒸发管、省煤器、热水器均与框架一起组成各自独立管箱,组装出厂。 受热面管采用螺旋绕翅管。 锅炉内护板密封结构减少漏风。 绕翅管的设计结构

翅片节距、翅片高度、翅片厚度与防磨性能。

翅片节距、翅片高度、翅片厚度与扩展面积、传热效果和经济性。

蒸发器绕翅管规格为Φ51X3.5,翅片节距为6.25mm,高度为24mm,厚度为1.2mm 。 其它部件绕翅管规格为Φ38X3.5,翅片节距为6.25mm,高度为21mm,厚度为1.2mm。 管材采用20/GB3087;翅片采用08AL。 防磨设计

锅炉AQC锅炉的防靡设计是关鍵; 设计时,选取较低烟气流速,低于5m/s; 烟气进口变径烟道,设有烟气均流装置; 采用小螺距高绕翅片管;

管组内设有隔板、导流板,减少烟气流动不均匀; 管箱内集箱、管组弯头处均设有防磨装置; 密封设计

水泥窑余热锅炉的运行工况对锅炉的密封设计提出更高要求; 负压高,要采取可靠结构密封; 漏风量大会造成水泥窑运行不稳定; 漏风量大会造成余热锅炉效率降低; 采用管箱组装出厂,优良的制造质量保证;

采用内护板密封,所有密封焊在厂内进行密封试验检查; 集箱采用内置式; 确保漏风率低于1%。 保温设计

水泥窑余热锅炉要充分利用余热,对锅炉的保温设计提出更高要求; 采用轻型护板炉墙; 材料采用硅酸铝纤维板; 保温层厚度为160mm;

在环境温度为25℃时,护板外表面温度低于40℃ 。 窑尾余热锅炉设计要点

窑尾烟气中灰尘浓度大,可靠防积灰措施;

负压大,必须采用可靠的密封结构,尽可能减少漏风,减少热损失,减轻对水泥窑生产的影响;

合适的烟气侧阻力,可接受的动力消耗; 锅炉结构特点

立式自然循环,从上而下布置蒸发管、省煤器。 蒸发管、省煤器均采用悬吊结构。 光管蛇形管组的结构解决了管束受热膨胀。 锅炉内护板密封结构减少漏风。

采用内置式集箱,大大减少了穿墙管。 采用机械振打,一种节能、连续清灰方式。 密封设计

水泥窑余热锅炉的运行工况对锅炉的密封设计提出更高要求; 负压更高,要采取可靠结构密封; 漏风量大会造成水泥窑运行不稳定; 漏风量大会造成余热锅炉效率降低; 采用内置式集管,大大减少了穿墙管的漏风; 通风梁、管箱等采用金属膨胀节密封; 机械掁打穿墙处采用柔性密封; 确保漏风率低于2%。 立式窑尾锅炉水动力特性

立式窑尾锅炉采用自然循环水平蒸发受热面的结构形式 ;

对所有参数均进行水动力计算,考虑锅炉钢耗、占用空间、锅炉基础投资等经济指标,确保循环高度提供足够的自然水循环动力;

根据合理的含汽率和质量流速确定水平蒸发管的管径和安全可靠的循环倍率,高循环倍率可强化传热;

同等的受热面根据布置空间尽量增加管圈数,可减少沿程管子总长和质量含汽率降低流阻;

最低循环高度处蒸发管采用倾斜布置,防止蒸发面发生传热危机和汽水分层,强化传热提高热效率;

采用大口径下降管、引出管,降低自身流阻,下降管总截面fxj、引出管总截面fyc与蒸发管总截面fs比值大于0.4。

蒸发管循环流速满足带走管内污垢的流速Wo>0.4m/s,确保锅炉的安全可靠。 ASH过热器设计要点

窑头烟气中灰颗粒硬,受热面的防磨问题; 锅炉设计时要考虑窑头烟气变化大的问题; 可以接受的积灰保证有效换热;

可靠的密封结构,尽可能减少漏风,减少热损失,减轻对水泥窑生产的影响; 合适的烟气侧阻力,可接受的动力消耗; ASH过热器的结构特点

ASH过热器采用立式布置。 受热面采用合金螺旋翅片管。

管子弯头、集箱布置在烟道外,不会磨损。 整体组装出厂。 漏风的影响

理论上漏风率由2%增加到3%,锅炉蒸发量下降0.8%左右。

实际在锅炉投运后,由于漏风点位置、漏风集中等原因,当漏风率由2%增加到3%,锅炉蒸发量下降远远大于0.8%。 灰浓度对锅炉蒸发量的影响

灰浓度高易使受热面积灰,影响传热效果,锅炉投运后,表现在蒸发量下降,排烟温度上升。

灰浓度高,灰所带进的热量也高。

对于窑尾锅炉,采用了机械振打清灰,减轻了高灰对传热的影响,灰浓度每增加20g/Nm3,锅炉蒸发量增加0.9%~1% 。 锅炉运行时压力参数变化的影响

对于额定蒸汽压力2.45MPa的余热锅炉,如按2.0MPa压力运行,产汽量将上升2%左右,过热蒸汽温度将下降约1~2%,同时过热器和省煤器中介质平均流速都有较大幅度提高。

为适应运行时压力参数的变化,受热面布置应遵循“上多下少”的原则,即:①充足的过热器(过热蒸汽温度应比额定温度高1~2%);②适当的蒸发器;③较少的省煤器或不布置省煤器。

温度参数变化对部件设计的影响

水泥窑头烟气温度上下变化幅度很大,也很频繁,当烟气温度升高时,余热锅炉产汽量随之上升,为控制汽水阻力在一个合理的水平,在布置过热器和省煤器时应考虑比较低的介质平均流速(这样考虑对锅炉降压运行也有好处)。 采用大直径汽包,增加水容量,减轻水位的波动。

按可能的最高进口烟气温度选用合适的材质,按可能的最大蒸发量确定锅炉安全阀等。 系统设计压力的比较

目前水泥窑纯低温余热锅炉代表性的设计压力有2.45MPa、1.25MPa、0.8MPa三种,以1.25MPa最为普遍。

不同设计压力的余热锅炉,在结构上并没有显著的差异,但由于窄点高低不一,在蒸汽段省煤器的布置上有所不同:2.45MPa锅炉布置较多省煤器;1.25MPa锅炉布置较少或不布置省煤器;0.8MPa锅炉基本不布置省煤器。

不同设计压力的余热锅炉每蒸吨钢耗率有差别,压力高则钢耗也略高。

对于进出口烟气条件相同余热锅炉,配置不同的设计压力,主蒸汽焓值相差不大。但压力越高,从热力学角度看,做功效率会有所提高,如果要确定合理的蒸汽压力参数,还需考虑到系统配置、投资成本等方面。 易世达水泥余热发电系统特点 采用最高发电量的双压发电系统;

窑头取风口开在较高温度区域,系统采用2.45MPa压力参数,锅炉吸热量大,发电效率高;

对水泥窑余热条件的变化的适用性好; 采用独立的过热器,方便调整过热汽温。 锅炉的设计计算

在多年的试验和理论研究基础上,并结合多年设计及锅炉运行经验,提出了自己的一套适合于水泥窑余热锅炉的设计计算方法,开发了单压、闪蒸、双压系统的热力计算程序,在多台锅炉上的实际应用表明,锅炉的运行参数和设计参数符合很好。

优化纯低温余热锅炉设计为提高吨熟料发电量创造

必要条件

?

作者:程立春,盛同安 单位:盐城市锅炉制造有限公司 [2009-7-20]

关键字:余热发电

? 摘要:

前言

在不影响水泥窑正常生产工艺、不增加电耗和热耗的前提下,如何提高水泥窑吨熟料发电量,一直是广大水泥生产企业所关心的问题,同时也是致力于纯低温余热发电事业的广大工程技术人员研究的课题。影响水泥窑吨熟料发电量的因素和环节较多,通过水泥窑纯低温余热锅炉的优化设计,提高余热锅炉的产汽量是提高吨熟料发电量必要的前提条件。

本文着重探讨如何进行水泥窑纯低温余热锅炉的优化设计,以提高余热锅炉的使用性能、提高余热锅炉的产汽量。

1 准确的传热计算、合理的各部件受热面配置

余热锅炉的热力计算,尤其是低温翅片管传热计算,目前没有相应的热力计算国家标准。盐城市锅炉制造有限公司结合二十多年的余热锅炉设计经验,通过引进和自主研发相结合,形成了自成一体、科学合理的余热锅炉热力计算方法。能够准确配置过热器、蒸发器、省煤器和热水段各部件的受热面,这一点对于双压系统的余热锅炉尤为重要,因为双压系统余热锅炉分窑头、窑尾,高参数、低参数,过热器、蒸发器、省煤器和热水段十几个部件,各部件的受热面配置必须准确合理,否则就会影响锅炉的产汽量和蒸汽参数。

在准确计算各部件受热面的基础上,不同部件的受热面还须设计一定的裕度,考虑水泥窑实际运行工况,窑头烟气量和烟气温度波动大的特点,ASH过热器、AQC锅炉过热器受热面预留的6%~7%裕度,这样AQC锅炉的产汽量受烟气波动的影响较小。SP锅炉受热面设计预留3%~4%裕度,这样即使SP锅炉运行时受热面有轻度积灰,也不会影响锅炉的产汽量。

2 注意ASH过热器的防堵、AQC锅炉的防磨

ASH过热器的堵灰是近年发现的新问题,其原因是进入ASH过热器的烟气温度波动幅度较大,达到650℃以上时,烟尘软化熔融堵塞在ASH过热器的螺旋翅片管受热面上,设计时在烟气进口段采用不易积灰的膜片管,可有效的解决此问题。

AQC锅炉烟气中含有较多的坚硬的熟料颗粒,如处理不当,受热面就会产生严重的磨损,影响磨损的因素很多,如烟气流速、含尘量、管外径等,可以用以下关系式来表示:

ΔG=KW3.52C0.642d0.92t

ΔG—磨损量,g;K—实验系数;W—烟气速度,m/s;C—含尘量,g/m3;d—管外径,mm;t—时间,s。

由上式可以看出,烟气速度对磨损的影响最大,因此设计时选取适当的、较低的烟气速度。同时设计时要组织好烟气的动力场,设置导流和均流装置,避免偏流和涡流,防止局部磨损,并在蛇形管弯头处采用特制的盖板遮盖。

另外,烟尘颗粒越大,磨损速度也越快,因此在ASH过热器和AQC锅炉之前设置沉降室,可以把大颗粒的熟料沉降下来,减轻磨损。

3 SP锅炉采取有效的清灰措施,可提高锅炉的产汽量

由于进入窑尾SP锅炉的烟气含尘浓度在60~120g/Nm3左右,含尘量大,粒径小,平均粉尘粒径1~30μm,特别容易引起受热面积灰,甚至堵塞。

在设计SP锅炉时,首先适当的增大受热面补偿积灰造成的影响,其次是选用清灰周期短、效果好的锤式机械振打清灰,这两者有机结合,前者可以降低清灰振打频率,减轻蛇形管焊口的疲劳,后者可以提高锅炉产汽量。

4 采取有效的锅炉密封措施,避免漏入冷风影响锅炉的产汽量

AQC锅炉和SP锅炉都有一定的负压,尤其窑尾SP余热锅炉烟气侧负压很大,一般都在负5000Pa以上,如果密封措施做不好,大量冷空气漏入炉内,会影响到水泥窑的正常运行,降低锅炉的产汽量。

设计时,锅炉受热面采用整体内挂式结构,锅炉整体采用钢板全焊接密封,并采用特殊的管子穿墙密封装置及专用炉门装置,振打装置穿墙采用油浸盘根和特殊的橡胶圈密封措施。

5借鉴国外标准,合理设计每个细微结构

盐城市锅炉制造有限公司今年采用美国ASME标准和印度IBR标准为印度设计制作了BVC5100t/d、SCW4500 t/d、CCW+BCW4400 t/d、CCW+BCW2×1000 t/d五条水泥窑生产线的全套纯低温余热锅炉,使盐城市锅炉制造有限公司的设计制作水平上了一个新的台阶。在国内产品的设计中,执行中国标准的同时,也借鉴国际标准中优于国内标准的合理之处,优化锅炉的每个细微结构,比如焊接节点形式。这样设计出来的锅炉性能更优、寿命更长、产汽量更高。

6 应用情况

盐城市锅炉制造有限公司根据每一个客户实际要求,结合多年来设计与制造余热锅炉所积累的丰富经验及水泥工艺自身的特点,不断优化水泥窑纯低温余热锅炉的设计,已设计制作了华新金猫苏州水泥有限公司、枣庄榴园水泥有限公司、浙江绍兴兆山建材有限公司、兆山新星集团有限公司、印度博拉水泥公司等五十几条水泥窑生产线的纯低温余热锅炉,分别配套1000t/d~5100t/d水泥窑生产线,锅炉的运行良好,产汽量高,为提高吨熟料发电量创造了必要的前提条件。以兆山新星集团水泥窑纯低温余热锅炉发电系统为例,吨熟料发电量正常维持在45kwh左右。

加强低质粉煤灰综合利用,降低水泥熟料生产能耗

(兼谈对余热发电的影响)

?

作者:杜春亮,付洪岩,胡永森 单位:山水集团潍坊山水水泥公司 [2009-7-17]

关键字:粉煤灰-余热发电

? 摘要:

1.概述

粉煤灰是火力发电厂排出的工业废渣,主要产物是电厂旋风式煤粉炉燃烧后残留的煤灰,煤灰的理化性质与所用煤的品质(细度、水分、发热量),所采用煤粉炉特性有关,对于优质煤粉燃烧形成的粉煤灰或普通品质燃煤在特性优良的燃烧炉形成的粉煤灰,由于燃烧比较充分,烧失量较低,颗粒也较细小,这部分灰经分选后作为Ⅰ级灰或Ⅱ级灰被广泛用作水泥混合材料用于水泥生产,但是对于较差煤种或特性较差的燃烧炉所形成的粉煤灰,因其机械燃烧不完全,大多是细度较粗、烧失量较高,这种灰作为混合材用于水泥生产比较困难,但利用其化学成分的校正特性和残余可燃物发热特性,将其用于水泥配料可大大降低熟料生产能耗。山水集团潍坊山水水泥公司从2008年开始使用昌乐热电厂排出的低品质粉煤灰进行水泥配料生产,取得了吨熟料标准煤耗下降5.1kg标煤,吨熟料发电量提高2.51kWh的技术效果,为公司和社会创出了显著的经济效益和社会效益。为表明使用低品质粉煤灰配料前后节能效果,现从原料使用、物料配料、熟料烧成以及余热电站运行情况变化来加以说明。 2.原燃料的使用及成分分析

在使用低品质粉煤灰配料前后,潍坊山水水泥公司所使用的主要原燃料石灰石、砂岩、铁尾矿、烧成用煤化学成分等特性变化不大,变化较大是粉煤灰。在使用低品质粉煤灰配料之前生料制备采用石灰石、砂岩、铁尾矿、优质粉煤灰四组分配料;在使用低品质粉煤灰配料之后,生料配料改用石灰石、砂岩、铁尾矿、低质粉煤灰四组分配料。原燃料成分分析情况如下:

2.1原料化学成分

在使用低品质粉煤灰配料前后物料化学成分见下表1。

表1.原料化学成分

物料名称 石灰石 砂岩 铁尾矿 优粉煤灰 劣粉煤灰 Loss 40.09 1.93 -0.70 4.22 16.21 SiO2 6.54 85.72 58.07 51.57 45.21 Al2O3 1.62 6.81 1.00 31.34 27.35 Fe2O3 0.96 1.46 33.64 7.32 6.96 CaO 48.73 0.26 1.85 1.94 1.68 MgO 1.21 0.43 2.25 0.97 0.85 ∑ 99.16 96.61 96.11 97.36 98.26 从表中看到:劣粉煤灰烧失量较高,内含大量的固定碳,说明具有一定的发热能力,根据分析,低品质粉煤灰发热量为3350~4200kJ/kg,平均为3770 kJ/kg。另外劣粉煤灰在校正Al2O3同时可提供SiO2量和Fe2O3量,相应减少砂岩用量和铁尾矿用量,这对于合理使用原料和提高磨机能力具有一定积极作用。 2.1.2煤工业分析

在使用低品质粉煤灰配料前后烧成用煤工业分析见下表2。

表2.煤的工业分析

阶段 使用前 使用后 Ma (%) 10.00 10.00 Mad(%) 3.85 4.57 Vad(%) 30.75 30.91 Aad(%) 16.66 14.96 FCad(%) 48.74 49.56 Qnet,ad(kJ/kg) 25017 25359 2. 2物料配比

因使用低品质粉煤灰配料后,低品质粉煤灰的烧失量和化学成分变化较大,因此物料配比发生了变化,其使用低品质粉煤灰前后配比变化情况见下表3所示。

表3.使用低品质粉煤灰前后物料配比

阶段 使用前 使用后 石灰石(%) 88.2 87.6 砂岩(%) 5.4 5.4 铁尾矿(%) 2.5 2.4 优粉煤灰(%) 3.9 0.0 劣粉煤灰(%) 0.0 4.6 从表中看到:劣质粉煤灰使用量要比优质粉煤灰高4.6-3.9=0.7百分点,相对提高18%,说明改用劣粉煤灰后其综合利用废渣能力得到增强。另外,应用低质粉煤灰配料后,每生产1t熟料所需生料中可多带入212.0MJ/t,相当于带入7.2kg标煤/t热量。 3.熟料产量及煤耗变化

根据生产统计,应用低质粉煤灰后窑系统工作正常,没发生因配料改变出现结圈、结大块、预热器结皮、堵塞等不正常现象,应用低质粉煤灰配料期间熟料产量没有发生改变,说明低质粉煤灰对熟料生产没有不良影响。但是低质粉煤灰带入的可燃组分进入预分解系统后,先与预热器中过剩O2氧化燃烧放热,用以提高废气温度进而提高生料预热程度,然后再进入分解炉继续燃烧用以碳酸盐分解。由于低质粉煤灰中可燃物质燃烧替代了部分燃料,因此应用低质粉煤灰配料后熟料烧成标准煤耗由应用前的117.14kg标煤/t降至应用后的112kg标煤/t,烧成煤耗下降5.1kg标煤/t,占低质粉煤灰带入热量的71.0%。其余热量用于加热废气,然后被废气带走,这部分热量占低质粉煤灰带入热量的29.0%。 4.水泥窑余热发电能力变化

使用劣质粉煤灰后,所带入的29.0%热量即约2.1kg标煤/t用于加热废气。理论计算该部分热量可使2500t/d水泥窑废气温度升高15~25℃。实际过程要比我们想像得复杂,因为不仅熟料烧成热耗下降值有波动,而且粉煤灰烧失量稳定度、化学成分的稳定度也有波动,再加上C1筒效率、预热器漏风率、表面散热等因素,因此实际窑尾C1A/C1B出口温升值要比理论计算值低一些,这可从实际运行的中控操作画面上看到:使用前C1A/C1B出口废气温度为(310~316)℃/(316~324)℃,使用后C1A/C1B出口废气温度为(323~329)℃/(327~336)℃,平均温升约为10~15℃。

因废气温度升高引起的发电量增加可通过余热电站发电量修正计算公式进行计算,对于2500t/d水泥窑,当废气温度升高10~15℃时,每小时可产生:23kWh/℃×(10~15)℃=230kWh~345kWh发电量,平均为288kWh。 5.经济效益分析

应用劣质粉煤灰替代优质粉煤灰进行水泥配料后,由于配比改变、熟料烧成煤耗降低、发电能力提高,水泥熟料生产成本也将发生改变,其变化情况见下表4所示:

表4.采用劣质粉煤灰替代优质粉煤灰后水泥熟料生产成本变化

应用前 序号 项目 定额 (t/t) 1 1.1 1.2 1.3 1.4 2 3 4 原料成本 石灰石 砂岩 铁尾矿 粉煤灰 燃料(原煤) 1.5329 1.3520 0.0828 0.0383 0.0598 0.1367 单价 (元/t) 16.49 34.50 35.00 35.04 600.00 0.50 成本 (元/t) 28.59 22.29 2.86 1.34 2.09 82.00 20.00 90.58 定额 (t/t) 1.5461 1.3544 0.0835 0.0371 0.0711 0.1307 42.5135 应用后 单价 (元/t) 16.49 34.50 35.00 33.33 600.00 0.50 成本 (元/t) 28.88 22.33 2.88 1.30 2.37 78.40 21.26 86.03 前后变化 (元/t) 0.30 -3.60 1.26 -4.56 核减发电(kWh/t) 40.0000 合计 潍坊山水水泥公司利用其化学成分的校正特性和残余可燃物发热特性用于水泥配料全年可综合利用工业废渣:0.0711t/t×88万t=6.3万t,节约煤炭:(0.1307 t/t -0.1367 t/t)×880000t=5277t,多发电:(42.5135 kWh/t -40.0000 kWh/t)×88万t=221万kWh,吨熟料生产成本下降4.56元,全年可为公司节约成本费用401万元。 6.结论

我国热电厂分布较广,装机一般较小,机械燃烧不完全问题比较突出,根据测定热电厂所排粉煤灰热含量高达3350~4200kJ/kg,潍坊山水水泥公司利用其化学成分的校正特性和残余可燃物发热特性用于水泥配料取得综合利用工业废渣和降低熟料生产成本的双重效益,为劣质粉煤灰在水泥窑中应用开辟了新的途径。

篦冷机循环鼓风技术在水泥窑余热发电中应用

?

作者:1张亮,2董寿连 单位:1山水集团安丘山水水泥公司,2大连易世达新能源发展股分有限

公司 [2009-7-17] 关键字:余热发电

? 摘要:

1.概述

篦冷机循环鼓风技术是大连易世达新能源发展股份有限公司的一项专利技术。主要技术要点是:在窑头排风机出口提取小于或等于窑头AQC余热锅炉通风量的70~90℃温空气,通过专用管道与冷却机中温室鼓风机串联,然后鼓入冷却机中,从而构成热风从篦冷机→沉降室→AQC锅炉→窑头收尘器→窑头排风机→专用管道→冷却机鼓风机→篦冷机的循环。在循环过程中,空气是循环纽带,热量是循环携带对象。首先温空气进入冷却机与熟料进行热交换获得热量成为热空气,然后热空气进入AQC锅炉再将所获得的热量全部传递给工质,由于该循环过程中热损失量很少,因此大大提高了余热锅炉的余热利用率。

过去由于担心温空气会导致熟料质量下降、会对篦冷机运行安全带来不利影响,因此该项技术一直未敢采用,直到去年下半年山水集团受到世界性金融危机冲击后,集团领导为寻求更大的经济效益,决定在安丘山水水泥公司的2# 5000t/d水泥窑余热电站上进行篦冷机循环鼓风技术应用试点,试用成功后向集团所有电站推广。

安丘山水2#窑篦冷机循环风技术改造由大连易世达新能源发展股份有限公司负责设计,于3月15日改造完成并投入使用,通过试运行发现进AQC锅炉温度提高57.2℃,单窑发电功率平均提高823kW,未出现温空气影响熟料质量和冷却机运行安全问题,试用喜获成功。为使大家全面了解篦冷机循环风技术和篦冷机循环风技术带来的技术效果,现就安丘山水2#窑篦冷机循环风技术改造设计、安装、操作等进行介绍。 2.篦冷机循环鼓风系统设计 2.1篦冷机循环风量的确定

篦冷机循环风服务对象是AQC余热锅炉,因此篦冷机循环风量应由AQC余热锅炉通风量来确定,为获取最大的余热利用效率,应尽可能地提高篦冷机循环风量,因此篦冷机循环风量QC设计按AQC余热锅炉通风量QAQC进行设计。

QC=QAQC……………………………………………………………………(1) 式中:QC—篦冷机循环风量,Nm3/h; QAQC—AQC余热锅炉通风量,Nm3/h; 2.2篦冷机循环风管道的设计 (1) 篦冷机主循环风管径的确定 ①篦冷机A侧主循环风管径的确定

DA=(QGCA/2826ω)0.5…………………………………………………(2)

式中:DA—篦冷机主循环风管径,m;

QGCA—篦冷机A侧主循环风管工况风量,m3/h; ω—主循环风管风速,m/s; ②篦冷机B侧主循环风管径的确定 同①B侧主循环风管径

DB=(QGCB/2826ω)0.5……………………………………………………(3) (2)篦冷机循环风管保温设计

由于篦冷机循环风管道直径较大,长度较长,为防止循环风散热降温,在篦冷机循环风管道施加体外保温措施,具体做法是在循环风管道外侧用200厚岩棉毡包裹,然后用0.6~0.8mm镀锌铁皮保护,通过采取体外保温措施,使篦冷机循环风管道温降控制在5℃以内。 (3)篦冷机循环风管布置及阀门控制

为降低循环风管道阻力,管道布置应尽量取直,避免转弯,距离尽量缩短,为便于布置本公司篦冷机主循环风管布置在篦冷机两侧的鼓风机上方,通过三通与风机入口相联。为防止循环风温度有可能偏高导致熟料冷却操作恶化,同时也为满足在掉篦板或结大蛋时需要快速冷却,在每侧主循环风管上设调节阀门,在与风机入口相联三通管道上设冷风阀门。主循环风管调节阀门和三通管冷风阀门由水泥窑中控员根据熟料冷却要求进行控制,以防止循环风对水泥窑操作带来的不利影响。 (4)篦冷机循环风改造投资

本项目改造比较简单,除需增加几个调节阀门外,其它为板材、型钢和保温材料等,安丘山水2#窑的篦冷机循环风改造投资为20.9万元。 3.篦冷机循环风应用效果

我公司篦冷机循环风改造是在正常生产过程中完成主体安装,利用停窑检修时间完成与窑头烟筒和篦冷机鼓风机的对接,单窑工期计划为10天。安丘山水2#窑篦冷机循环风是利用煤磨换减速机的停检时间完成对接,并于2009年3月15日投入使用。安丘山水1#窑篦冷机循环风主体安装已完成,但未完成对接使用,计划在4月底月检中实现对接,将于2009年5月投入使用。考虑1#窑篦冷机循环风未投入使用,因此仅介绍2#窑篦冷机循环风投入后使用效果。

3.1入AQC温度及发电能力

2#窑篦冷机循环风投入使用后,中温风品质出现了明显变化,为说明篦冷机循环风投入前用后的变化情况,今通过对相同工艺条件下2009年3月15~30日篦冷机使用循环风时入AQC温度和2008年12月16~31日不使用循环风时入AQC温度,通过统计两时段入AQC温度变化来说明篦冷机使用循环风的效果,统计结果见下表1和表2。

表1.2008年12月16~31日篦冷机不使用循环风时入AQC温度等参数

熟料产量 t/d 5604 5676 5700 5832 5688 5592 5496 5460 5760 5820 5820 熟料产量 t/d 5808 5700 5724 5772 5697 烧煤量 t/h 32.7 33.1 33.3 34.0 33.2 32.6 32.1 31.9 33.6 34.0 34.0 烧煤量 t/h 33.9 33.3 33.4 33.7 33.2 SP入口温度 ℃ 286.0 285.0 286.0 281.0 279.0 284.0 290.0 287.0 279.0 281.0 284.0 SP入口温度 ℃ 285.0 286.0 281.0 287.0 284.1 AQC入口温度 ℃ 313.0 286.0 282.0 304.0 305.0 297.0 311.0 323.0 324.0 324.0 321.0 AQC入口温度 ℃ 313.0 317.0 307.0 304.0 308.7 日发电量 kWh 162620 153409 150074 152784 162399 150345 169735 176491 173027 173607 176680 日发电量 kWh 168835 170249 167298 165660 164881 平均发电功率 kW 6776 6392 6253 6366 6767 6264 7072 7354 7209 7234 7362 平均发电功率 kW 7035 7094 6971 6903 6870 日期 12月16日 12月17日 12月18日 12月19日 12月20日 12月21日 12月22日 12月23日 12月24日 12月25日 12月26日 日期 12月27日 12月28日 12月29日 12月30日 平均 表2.2009年3月15~30日篦冷机使用循环风时入AQC温度等参数

熟料产量 t/d 5676 5580 5724 5844 5700 5616 5568 5400 5820 5880 5760 5820 5700 5760 烧煤量 t/h 33.1 32.6 33.4 34.1 33.3 32.8 32.5 31.5 34.0 34.3 33.6 34.0 33.3 33.6 SP入口温度 ℃ 282.0 279.0 277.5 282.0 287.0 281.5 279.0 280.0 283.5 286.0 281.0 282.5 285.5 280.5 AQC入口温度 ℃ 373.5 358.5 386.0 365.0 360.0 371.5 364.5 368.5 358.5 358.5 366.5 365.5 373.0 363.0 日发电量 kWh 178750 183193 179699 184353 185924 188953 178535 185491 188303 189504 186594 188567 191216 181172 平均发电功率 kW 7448 7633 7487 7681 7747 7873 7439 7729 7846 7896 7775 7857 7967 7549 日期 3月15日 3月16日 3月17日 3月18日 3月19日 3月20日 3月21日 3月22日 3月23日 3月24日 3月25日 3月26日 3月27日 3月28日 3月29日 平均 5676 5702 33.1 33.3 286.5 282.2 356.5 365.9 179274 184635 7470 7693 表1与表2是两个不同时段却具有相同熟料产量、相同烧煤量、相同C1出口(SP入口)温度的统计数据,表1篦冷机没有使用循环风,表2篦冷机使用了循环风。从表1与表2看出篦冷机使用循环风后,AQC入口温度平均提高365.9℃-308.7℃=57.2℃,发电功率平均提高823kW,技术效果明显。 3.2鼓风机风门开度、阻力、电流变化

篦冷机使用循环风后,由于鼓风温度提高了50~70℃,因此风机特性发生改变,鼓风量减少,为保持熟料冷却效果不变,要求在操作上适当增大篦下鼓风压力控制,相应要求鼓风机适当增大风机转速,适当增大鼓风机轴功率控制。下表3是篦冷机使用循环风前后,篦下风机控制参数和调节参数的变化情况。

表3.篦冷机使用循环风前后各控制、调节参数的变化

阶 参数内容 段 无 循 环 风 有 循 环 风 进风温度 篦下控制压力 篦速 风门开度 风机电流 ℃ Pa r/m % A 77 105 75 168 70~90 6900 70~90 6000 70~90 6500 470 77 81 75 190 75 185 75 105 70~90 5800 70~90 5800 20 4000 606 76 127 20 3700 进风温度 篦下控制压力 篦速 风门开度 风机电流 ℃ Pa r/m % A 67 96 66 153 单位 57.18 20 6600 二段篦床下鼓风机 57.19 20 5500 57.20 20 6200 470 66 69 66 169 67 168 66 87 57.21 20 5500 三段篦床下鼓风机 57.22 20 4500 57.23 20 3500 606 66 113 57.24 20 3300 3.3熟料冷却效果

篦冷机使用循环风后,出中段篦床的熟料温度略有升高,但由于在操作上增大了三段篦床的冷却风量,因此出冷却机熟料温度变化并不是很大,这也可从熟料破碎拨气管表面温度来判断,手摸拨气管表面温度稍有升高,说明出冷却机熟料温度变化并不是很大。 3.4入窑二次风、入炉三次风及熟料产量

篦冷机使用循环风后,入窑二次风、入炉三次风温略微有些升高,但变化并不明显。篦

冷机使用循环风后,熟料产量与篦冷机使用循环风前基本相同,没有变化,说明篦冷机使用循环风后,对熟料生产没有影响。 4.效益分析

篦冷机使用循环风后,2#窑余热发电能力提高823kW,吨熟料发电量平均提高:823kW/237.5t/h=3.47kWh/t,因使用循环风后鼓风电耗增加0.68kWh/t,吨熟料净增发电量为:3.47kWh/t-0.68kWh/t=2.79kWh/t。若水泥窑以年生产水泥熟料5700t/d×320d=1824000t计,全年可产生508万元经济效益,而项目改造投资仅用20.9万元,投资回报率相当可观。 5.热点问题探讨

由于我公司篦冷机使用循环风时间较短,数据和资料积累十分有限,因此还不能肯定循环风技术完全成熟,诸如循环风对篦冷机篦板寿命的影响,循环风对篦床传动系统的影响,循环风对熟料强度的影响,循环风对熟料冷却电耗影响,电收尘效率对循环风管道的影响等尚需在长时期观察和不断地完善后才能得出客观正确的结论。但是根据我们经验,我们认为循环风对篦冷机的影响十分有限,有些影响在采取相应措施后是可以克服的。

首先,关于篦板寿命,我们认为影响不大,一是篦板材料耐温较高,二是循环风温度并不高,三是篦板所接触的物料温度较低,因此循环风对篦冷机篦板寿命影响不大; 第二、关于篦床传动,我们认为循环风对篦床传动系统是有影响的,但这种影响在调整润滑油牌号后,即由现有的锂基质调整为耐高温抗乳化的二硫化钼润滑油完全能够克服,因此这一问题并不是主要问题;

第三,关于熟料强度,我们都知道篦冷机高温段熟料冷却对熟料强度影响较大,而中温段和低温段熟料冷却则影响较小或没有影响,而循环风主要影响的是篦冷机中温段和低温段,因此我们说篦冷机循环风对熟料质量影响十分有限,这种影响可从物理检验:熟料R3>30MPa,R28>60MPa熟料质量未降低得到证明。

第四、关于循环风管道积灰问题,该问题提出主要基于以下情况,一是点火时初期电收尘器一般不送电;二是电收尘器故障送不上电;第一种情况浓度大但时间短,可通过关团循环风来解决,第二种情况浓度不大但持续时间长,可通过人工定期吹扫的办法加以克服。因此这一问题并不是个严重问题。 6.结论

篦冷机循环鼓风技术是大连易世达新能源发展股份有限公司的一项专利技术。通过在山水集团安丘水泥公司2#水泥窑的篦冷机上应用,取得净增吨熟料发电量2.79kWh/t,投资回报率2430%显著技术经济效果,尽管应用时间比较短,一些优势和问题还有待进一步研究,但是从目前运行情况来看,篦冷机循环鼓风技术是成熟的、可靠的,并且随着技术应用的不断深入,篦冷机循环鼓风技术将为循环经济发展做出突出的贡献。

大补气式低温余热气轮机的设计、运行及对余热发电

技术发展的影响

?

作者:潘世明 单位:青岛捷能汽轮机集团股份有限公司 [2009-7-17]

关键字:余热发电

? 摘要:

一、公司简介

青岛捷能汽轮机集团股份有限公司是由原青岛汽轮机厂改制而成,始建于1950年,1958年开始生产汽轮机,以生产“捷能牌”汽轮机为主导产品,具有现代化生产规模,享有自营进出口权。现有净资产6.5亿元,员工2300余人,其中工程技术人员300余人。拥有关键设备1500余台,其中数控、加工中心等精密大型设备500多台,基本实现数显数控加工,具有很强的综合加工能力。

公司目前主要生产150MW以下各类型号汽轮机,现有十大系列600余个品种,能够满足发电、石油、化工、印染、纺织、水泥、造纸、制糖、钢铁、煤炭、垃圾处理、燃气-蒸汽联合循环、城市集中供热等行业,产品遍布31个省、市、自治区,并远销印度、印尼、巴基斯坦、孟加拉等国家。

公司现具有年生产汽轮机500万千瓦/400台的能力,是目前国内中小型汽轮机系列最全、品种最多、能力最强的设计制造供应商。现在已生产的各类汽轮机达4000多台,在3MW~60MW中小型汽轮机的市场占有率达52%。

公司自70年代末即研制低品位余热利用汽轮机,目前已为国内外水泥公司提供了200多台余热利用汽轮机,在设计、制造、运行经验等方面均处于国内领先水平。

公司大力实施名牌战略,坚持实施自主开发与引进技术相结合的高起点发展战略,大力推进主导产品结构调整和升级换代,曾获得全国汽轮机行业质量标兵称号和全国五一劳动奖章。1980年获得中国汽轮机发展史上第一块国家质量奖牌,多个产品被评为国家级新产品,所生产的“捷能牌”汽轮机2006年获得“中国名牌产品”称号。

二、纯低温余热发电技术发展回顾

水泥窑纯低温余热发电技术就是水泥窑工艺流程排出的大量废气余热进行热交换回收,产生蒸汽通过汽轮机实现由热能向机械能转换最终拖动发电机发电的技术。

1.纯低温余热汽轮机的技术来源

我公司是国内纯低温余热发电技术---纯低温余热汽轮机设计、制造、运行的开拓者和领路人。在上世纪70年代末至90年代初,我公司为西藏羊八井地热电厂共制造了7台3MW

补汽式地热机组(进汽为0.17Mpa饱和蒸汽、补汽为0.05Mpa饱和蒸汽,并获得国家科技进步三等奖)。二十多年来西藏羊八井地热机组的成功运行为我国纯低温余热发电技术发展,特别是为上世纪90年代末水泥窑纯低温余热发电技术发展起到非常关键作用。

2.纯低温余热汽轮机开始进入水泥行业

1997年~2004年是水泥窑纯低温余热发电技术导入期。这期间,水泥窑余热利用主要采用补燃技术、无补汽纯低温发电技术以及小补汽技术(10%补汽量)。由于对水泥窑生产的波动性,所产生各能级的余热(压力、温度、流量)变化范围大这一特点没有充分认识,结果造成水泥行业应用的所有补汽式汽轮机组其补汽均不能投入正常运行。其根本原因并非是汽轮机设备问题,而是余热发电热力系统及余热锅炉配置不当所至。如:汽轮机补汽要求补汽压力及温度相对稳定并要求高于汽轮机本体补汽点的蒸汽压力,由于工程设计单位未能透彻地研究水泥窑废气余热特性,其低压补汽均是由水泥窑大幅度波动的废气直接生产,更由于余热锅炉、热力系统的配置又不具备调整蒸汽压力及稳定蒸汽温度的能力,造成补汽蒸汽压力及温度的大幅度波动,使得补汽系统不能正常投入运行。补汽系统不能正常投入运行,不但不能进一步回收180℃以下废气余热,使余热发电系统达不到应该达到的发电功率,也同时严重影响了大家对补汽式汽轮机优越性的认识,阻碍了水泥窑纯低温余热发电技术的发展及进步。

这一时期水泥窑余热利用发电技术暂定义为第一代水泥窑余热发电技术(主蒸汽参数压力0.69~1.27Mpa,温度280~340℃,无补汽)。尽管这一时期在水泥窑余热利用改造上没有达到预期的效果(水泥窑余热没有得到充分利用),但是我们却获取了很多经验:一是余热汽轮机开始被水泥行业所认知;二是水泥窑纯低温余热发电技术发展离不开汽轮机技术发展;三是汽轮机供应商应投入更多的技术力量开发出适合水泥窑余热利用的汽轮机。

3、纯低温余热汽轮机在水泥窑上的广泛应用

①2004年~2007年(第二代水泥窑余热发电技术的应用期),在与大连易世达能源工程有限公司的紧密合作下,我公司已自主研发了处于国内领先水平、与第二代水泥窑余热发电技术(水泥窑余热按废气余热温度可实现梯级利用,使水泥窑废气余热按其热能品质最大限度地转换为电能,采用相对高压高温的主蒸汽(1.57~2.45MPa-340~385℃)及低压低温补汽(0.1~0.3 MPa-饱和至170℃),使余热发电能力比采用相对低压低温主蒸汽(0.69~1.27MPa-280~340℃)参数的第一代水泥窑纯低温余热发电技术大幅提高)配套的新一代补汽式汽轮机。这种汽轮机的基本系列为4.5MW、6MW、7.5MW、9MW、12MW、15MW、18MW、20MW等多个规格,主蒸汽进汽额定参数为1.57~2.45MPa-340~385℃,允许的运行变化范围为1.27~2.47MPa-280~390℃,补汽进汽额定参数为0.2MPa-150℃,允许的运行变化范围为0.1~0.3MPa-饱和至170℃,最大补汽量为主汽流量的20%。该系列产品可以有效利用水泥窑废气余热生产的不同能级的蒸汽、热水等低品位热能并能在保证汽轮机使用寿命和热效率的前提下,对水泥窑生产的波动性有很强的适应能力。

根据已投产的第二代水泥窑余热电站运行情况(用户:山水集团潍坊2500t水泥窑,2007年1月正式投运),汽轮机组补汽式比不补汽式时其发电功率提高8%以上,相应余热锅炉出口废气温度可得以大幅降低。

同时,因采用较高的主蒸汽压力和温度,为汽机滑参数运行创造了条件(当设计采用主蒸汽压力和温度为2.29MPa-370℃时,实际运行变化范围可以达到1.27~2.47Mpa、325℃~400℃);而第一代纯余热发电技术的汽轮机主蒸汽压力和温度允许变化范围则要小得多(当设计采用主蒸汽压力和温度为0.98MPa-310℃时,实际运行变化范围只能达到0.69~1.27Mpa、290℃~330℃)。因此,第二代纯余热发电技术在提高余热发电能力的同时,由于主蒸汽参数允许运行变化范围比第一代纯余热发电技术大得多,汽轮机运行的可靠性、对水泥窑生产波动的适应性也将比第一代技术好的多,更为重要的是延长了汽轮机设备的使用寿命。

③汽轮机新技术应用及创新点

随着水泥窑纯低温余热发电技术不断发展,我们与大连易世达深度合作,在深刻了解余热发电热力系统的构成及水泥生产线生产特点的基础上,在水泥窑余热发电用汽轮机的设计参数选择上充分考虑了水泥窑生产的大范围波动性,积极研发与第二代水泥窑发电技术配套的补汽式汽轮机。

在该类型补汽式汽轮机的设计制造过程中,我公司积极采用CAD/CAM/CAPP、PDM等先进的设计、制造、管理手段。主要技术创新点,有以下几方面:

a、采用国际上先进的模块化设计理念---产品零部件均采用模块化、标准化、系列化设计;

b、应用全三维技术设计机组的通流部分(采用高效率后加载叶型、全三维弯扭叶片),大大提高汽轮机的效率,整机效率提高8%以上。

c、本体结构设计必须满足主蒸汽进汽参数变化范围:压力1.27~2.45MPa、温度280~390℃,以适应水泥窑生产的波动性。

d、控制系统采用数字电液调节系统(DEH)(采用美国WOODWARD公司505+德国VIOTH电液转换器)。可实现数据自动记录、自动控制,其技术水平国内领先,具有国际同类产品水平;配置先进的汽轮机安全监测保护系统(TSI),监视项目齐全、性能可靠,操作调整方便,自动化程度高,可随时监测机组的各种运行参数,便于故障分析和判断,限制事故范围,提高机组运行安全性。

e、高效的补汽结构设计

●补汽混合室的设计:根据主汽、补汽混合后的流动特性按蜗壳理论进行结构设计,使流动效率达到最佳值。整机效率比补汽量10%的结构提高了1.5%。

●补汽强关阀的设计:一是要具有在任何紧急情况下,能够自动快速(<1S)切断补汽,杜绝了汽轮机因补汽造成的飞车事故的发生;二是要具有在汽轮机正常运行时,可随时强行切断补汽。

f、为减少电站投资及工程建设周期,我公司已为2500t水泥窑纯低温余热汽轮机采用新布置理念---快装式(单层布置)、配集中油站,汽、水、油管路全部厂内组装,结构紧凑,安装方便(如下图)。

正在研发用于5000t水泥窑纯低温余热汽轮机的快装结构(如下图)。

三、大补汽式低温余热汽轮机的设计、运行及对余热发电技术发展的影响

2008年~2009年,随着大连易世达对水泥窑纯低温余热发电技术不断探索研究,成功将补汽量由20%提高到40%。

●2500t水泥窑: 补汽量由4t/h提高到8t/h,装机容量由4.5MW提高到5MW,发电量增加了9%,汽轮机本体结构采用快装式+集中油站,机组已投运(用户:江苏东湖等);

●5000t水泥窑: 补汽量由8t/h提高到16t/h,装机容量由9MW提高到11.5MW,发电量增加了9%,机组已投运(用户:华新集团的金猫水泥、阳新水泥等,平均发电量10 MW以上);

●2×5000t水泥窑: 补汽量由18t/h提高到36t/h,装机容量由20MW提高到23MW,发电量增加了9%,机组已投运(用户:峨嵋山水泥,平均发电量预计21 MW以上)。

最近,大连易世达公司在水泥窑纯低温余热发电技术又有新的突破——第三代水泥窑余热发电技术即补汽量由现在的40%提高到额定补汽量80%,最大补汽量100%。为此,我公司正在研发与第三代水泥窑余热发电技术配套的大补汽式低温余热汽轮机,并将在如下技术上有新突破。

1、补汽室结构的新突破

按全三维的技术设计补汽混合室,使混合室的流动损失达到最小,补汽顺利进入汽轮机,使汽轮机整机效率提高1%。

2、补汽控制的新突破

在原来补汽强关阀的基础上必须增加补汽调节阀。当补汽量达到主汽流量80%~100%时,补汽对汽轮机补汽口处的压力、发电功率影响较大。在补汽不是很稳定情况下,目前的WOODWARD 505系统很难控制汽轮机平稳、安全运行。故必须增加补汽调节阀并采用WOODWARD 505E,最终实现对电功率和补汽压力进行关连调节,确保汽轮机安全、可靠运行;同时也起到协助锅炉稳定出口压力的作用。

3、通流结构的新突破

当补汽量减少一半时,排汽流量将减少1/4,末级叶片的动应力将成倍增加,给汽轮机的安全运行带来严重隐患。故必须重新开发末级叶片,以满足大补汽式低温余热汽轮机的运行要求。

结论:随着上述技术的突破,大补汽式汽轮机不久将问世,水泥窑余热利用率将大幅度提高,其效果如下(典型窑型):

●2500t水泥窑:补汽量将由8t/h提高到18t/h,装机容量将由5MW提高到6MW,发电量增加17%~25%

●5000t水泥窑:补汽量将由18t/h提高到38t/h,装机容量将由11.5MW提高到13.5MW,发电量增加17%~25%

●2×5000t水泥窑:补汽量将由36t/h提高到70t/h,装机容量将由23MW提高到26.5MW,发电量增加17%~25%。

四、结束语

我公司将携手设计院及各水泥制造厂家,进一步就水泥窑余热回收发电领域进行积极的探索、研究,继续研发与纯低温余热发电技术相配套的汽轮机,在水泥窑余热汽轮机的设计中应用更多的国内、外新技术,全力打造全新产品,设计更便于安装、自动化程度更高、安全性更好、效率最高的产品。

面对新的机遇,新的挑战,青岛捷能汽轮机集团股份有限公司始终奉行“开拓创新,追求卓越”的企业精神,牢固坚持“精良产品、精诚服务、精打细算、精兵强将、精益求精”的“五精”理念要求,努力为每一个用户提供满意的精品。

水泥窑余热电站投入运行后电站及水泥窑生产过程

中容易产生的问题及解决方法

? 作者:董寿连 单位:大连易世达新能源发展股份有限公司 [2009-7-16]

关键字:余热发电

? 摘要:

大连易世达新能源发展股份有限公司是一家以技术为先导,集技术研发、工程设计、设备成套、工程施工、运营管理于一身的工程公司,主要从事工业余热、地热、太阳能、风能、潮汐能、沼气能、垃圾能等新能源开发利用,目前所做的主要工作是新型干法水泥窑纯低温余热发电工程设计、技术服务、设备成套、工程总承包、投资运营管理等。公司自2005年12月成立以来,发展到今天已历经了3年半时间。据不完全统计我公司采用大连易世达第二代余热发电技术已为92条水泥窑配套建设了75座纯低温余热电站,电站总装机容量达到了609.8MW,相当于减建了一座60万kW火力发电厂,截止目前建设的余热电站中已有24座并网发电,约占设计电站总数的1/3,其余电站仍在设计和施工之中。从投入运行的24座余热电站运行情况来看,吨熟料发电量达到了38-46kWh/t-cl,平均为42kWh/t-cl,电站随窑运转率达到了97%以上,自用电率为6.2%,各项指标均达到了设计要求。但是电站从开始并网到达标二者之间跨跃却经历了一段从不稳定到稳定,从低水平发电到高水平发电,从粗放运行到精细化运行的曲折过程。本人参加了部分电站的调试工作并对并网运行电站进行了回访,在调试和回访的基础上,经总结、归纳提出如下15个电站及水泥窑生产过程中容易产生的问题及解决方法,供与会专家和电站管理者在工作中参考。 问题1.关于合理加减负荷

汽机的加减负荷一般是通过增大或减小油动机行程来完成,对水泥窑余热发电一般不存在根据电网负荷自动调整油动机行程的问题,汽机加减负荷一般是根据锅炉产汽情况由操作员来调整。但电站运行初期,操作员经验不足,普遍存在加减负荷操作不合理的问题,即加减负荷操作过快、过大、过勤。负荷调整不合理,对汽机效率和寿命影响很大。当调整过大、过快时,电站处于准闪蒸发电,发电量迅速升高,但持续时间不长,发电量开始降低,随即又进行减负荷操作,如此往复,电站发电波动非常大,因此加减负荷操作是发电稳定的关键。 正确合理的加减负荷操作是根据余热条件控制给水量,根据给水量控制出汽量,根据出汽量确定油动机行程大小。并努力做到蒸汽温度、压力保持不变。为做到这一点,需操作员与水泥中控密切配合,根据窑头窑尾余热条件及其的变化趋势,及时调整水量,调整油动机行程,合理控制出汽量,从而保证了水位稳定,蒸汽参数稳定,发电量的均衡稳定。 问题2.关于汽机真空

水泥企业配套余热发电是近几年的事情,相当一部分单位对汽机真空问题认识不足,往往是真空偏低。

电站设计要求汽机真空为0.007MPa(表压-0.093MPa),排汽温度为38.7℃,实际汽机真空普遍偏低于此值,如:山东济南某电站2007年并网,2008年汽机真空仍为真空为0.01MPa(表压-0.090MPa),排汽温度为45~46℃;又如山东潍坊某电站2007年并网,2008

年4月汽机真空仍为真空为0.012MPa(表压-0.088MPa),排汽温度高达49℃;又如山东淄博某电站2007年并网,2008年4月汽机真空仍为真空为0.009MPa(表压-0.091MPa),排汽温度43.7℃;再如湖北黄石某厂汽机真空仍为真空为0.01MPa(表压-0.090MPa),排汽温度为45.8℃;与电站设计指标真空平均偏低0.003MPa,排汽温度平均升高7.1℃。 根据理论计算真空每降低0.001MPa,排汽温度上升2.4℃,排汽焓增高12.495kJ/kg。对2500t/d水泥窑余热电站,若进入汽轮机中压蒸汽为22099kg/h,低压蒸汽为5256kg/h,中压进汽焓3176.5kJ/kg,低压进汽焓2772.9kJ/kg,汽机效率以0.78计,经计算由此引起发电量下降84.8kW,降低1.7%。若按真空每降低0.003MPa计,发电量下降229.0kW,降低4.9%。对5000t/d水泥窑余热电站,若进入汽轮机中压蒸汽为40323kg/h,低压蒸汽为12565kg/h,中压进汽焓3176.5kJ/kg,低压进汽焓2772.9kJ/kg,汽机效率以0.78计,经计算由此引起发电量下降171.3kW,降低1.7%。若按真空每降低0.003MPa计,发电量下降462.7kW,降低4.8%。

汽机真空降低一般与汽轮发电机密闭性、射水抽汽器特性、凝汽器铜管胀口完好性,冷却水温和冷却水量以及凝汽器铜管表面热阻有关,当检查排除汽轮发电机密闭性、射水抽汽器性能因素后,重点通过加强操作维护来提高汽机真空。如某厂为降低自用电率,只开一台循环水泵,循环水量不足导致汽机真空降低,排汽温度升高。还有某厂原水杂质多,过滤不严格导致铜管表面结垢,热阻增大,真空降低,排汽温度升高。还有某厂循环水加药不严格导致铜管表面粘挂微生物导致热阻增大,真空降低,排汽温度升高。

我们回访中发现这一问题很严重,讲明原因,危害及处理办法后。这些电站很重视,均采取了行之有效的解决办法。如山东济南某厂对冷凝器进行酸洗后,每天再用胶球清洗装置做一次清洗,现汽机真空已由过去的0.01MPa(表压-0.090MPa) 达到0.006MPa(表压-0.094MPa),提高0.004MPa;排汽温度由45.8℃降为38℃,下降了7.8℃;发电量提高450kW左右,由于效果显著许多厂前去学习参观,目前山东平阴某厂、安丘某厂等均采用了酸洗和胶球清洗装置,均收到了预期效果。 问题3.关于SP炉低压调温蒸汽段

自从水泥窑配套余热锅炉后,余热的合理使用问题应当是一个首要问题,如何做到合理使用水泥窑余热呢?我们的指导思想是:一个根据和一个坚持。一个根据是:根据梯级利用原理,即根据水泥窑余热分布,做到高能高用,低能低用,即将450~550℃高温余热用于生产过热蒸汽,将210~400℃中温余热用于生产饱和蒸汽,将160~220℃低温余热用于生产低压蒸汽和原料烘干,将价值很低的150℃以下的低品位余热用于循环风。一个坚持是:坚持“能”尽其材,“量”尽其用。按照这一原理我们利用窑头冷却机前部500℃高温余热,设计了独立过热器,利用窑头电收尘排出的100℃低温余热,设计了篦冷机循环风系统,利用窑尾烘干温度在170~220℃变化的实际,设计了SP炉低压调温蒸汽段,通过调节SP炉低压调温蒸汽段的低压蒸汽产量使出SP炉废气温度从170~220℃变化,以满足不同烘干要求。

但是一些刚并网发电单位甚至有些运行已很长时间的单位,如:最近并网的湖北某电站,浙江绍兴某电站,对这一指导思想仍未完全理解。表现比较突出的就是SP低压调温蒸汽段使用问题。这些单位只利用了它的产汽功能,而忽略了它的调节功能。当原料温度降低、水分增大,需要较高的烘干温度时,不是通过调节SP低压调温蒸汽段的低压蒸汽产量的方式来解决,而是通过开启旁通阀门的方式来完成。

采取后一方式调节是严重损失发电量的,而采用前一方式调节其电量损失较少。通过计算,采用前一方式调节其电量损失:对2500t/d水泥窑余热电站为0~320kW,平均为160kW;对5000t/d水泥窑余热电站为0~650kW,平均为325kW;而用后一方式调节其电量损失:对2500t/d水泥窑余热电站为0~880kW,平均为440kW;对5000t/d水泥窑余热电站为0~1990kW,平均为995kW;与前一方式相比,电量损失:对2500t/d水泥窑余热电站平均增加280kW;对5000t/d水泥窑余热电站平均增加670kW;目前以第一代余发电技术设计的水泥窑余热电站,因无调温低压蒸汽段,只能采取后一方式调节烘干废气温度。因此余热的利用不够合理,浪费仍比较严重。

通过我们回访和现场讲解,逐步纠正了一些单位的错误操作,发电量明显得到提高,如湖北某电站,纠正前平均发电量为8500kW,纠正后为平均发电量为9300kW,平均提高800kW;再如浙江绍兴某1000t/d水泥窑电站,纠正前平均发电量为2200kW,纠正后为平均发电量为2400kW,平均提高200kW;事实上,SP炉低压调温蒸汽段除具有以上调温功能外,还具有调湿功能。如窑尾采用电收尘器,SP炉投运后收尘效果会受到影响,为了不影响收尘效果,将SP炉生产的低压蒸汽用于废气增湿(相应的减少发电量),这样可解决余热电站对窑尾收尘效果的负面影响问题。

目前一些单位没有使用好SP炉低压调温蒸汽段另一主要原因是培训工作还没有完全到位,操作员对余热的质和量的概念没有完全理解,对SP炉低压调温段设置的作用和目的还不清,对SP炉低压调温蒸汽段的操作要领还没有掌握。因此要加强对电站操作管理人员技术培训。

问题4.篦冷机操作与管理

篦冷机作为熟料烧成过程中重要机组,担负着熟料冷却和热量回收任务。

1370℃不同粒径的高温熟料从喂料端进入冷却机并平铺在篦床上,在篦板推力的作用下向出料端移动,在移动过程中篦下冷却空气源源不断地通过篦板穿过料层,与热物料进行热交换,热交换结果是熟料被冷却,空气被加热。熟料的冷却可近似地看作为一维不稳态冷却过程,过程中冷却时间基本一定,冷却风量基本一定,因不同时段的传热温差不同,传热速度也不一样,开始阶段非常快,以后迅速减慢,前1/3时间段几乎完成了全部换热量的60~70%。由于出窑熟料的温度、液相量、颗粒级配、比热、产量、布料均匀性时常变化,而传热又对熟料温度、液相量、颗粒级配、比热、料量、布料等非常敏感,因此前期传热特点是快速而多变。

由于影响因素多,操作参数相关性差,因此熟料冷却只能模糊控制。这种控制对熟料烧成影响不大。但对窑头余热锅炉影响却十分大,表现比较明显的是,窑工艺状况虽未发生异常,但进ASH和AQC炉的却做出了较大的反应。为减弱上述影响,可通过以下操作解决。 1.密切关注二次风温、三次风温及其它们的温差。一般出窑熟料物性参数变化对二次风温影响不大,但对三次风温影响较大。此时可通过观察三次风温和三次风温与二次风温差值变化来判定窑况的改变,并及时采取应对措施。一般当三次风温升高或三次风温与二次风温差值变小时,可减慢篦速,或减小鼓风风压,或减慢篦速和减小鼓风风压同时进行。反之,当三次风温降低或三次风温与二次风温差值变大时,可加快篦速,或增加鼓风风压,或加快篦速和增加鼓风风压同时进行。

2.密切关注各风室鼓风机的风门开度、转速及电流。目前操作员只注意鼓风机的风门开度和转速,却忽视了鼓风机的电流。因为当出窑熟料物性参数发生变动后,各风室通风阻力将会发生微弱的变化,进而引起鼓风量变化,因此风机电流或风机功率将有所变化。当电流或功率有减小趋势时,应有意识的开大风门或增大转速,并将电流或功率控制在更高的参数值上。反之,当电流或功率有增高趋势时,应有意识的减小风门或降低转速,并将电流或功率控制在更低的参数值上。

上述操作应与三次风温或三次风温与二次风温差值变化相兼顾,操作中尽量采用调风量的办法,最好不要调篦速,调篦速会导致更多因素变化,使篦冷机更难控制。篦速控制要与下料量和窑速保持一致。

3.加强篦板使用与维护,做到同室同期,严禁同室新老混用,尤其是高温室和中温室。我们知道不同龄期的篦板,孔隙率不同,新篦板孔小,老篦板孔大,同用一个室会导致上风不均匀,熟料冷却不好,废气温度降低,热效率下降。

4.加强配料,加强均化,加强热工检测,定期对计量设备进行标定,稳定窑的热工制度。 5.定期开门检查篦冷机内熟料结粒情况,布料情况,红河情况等。

6.两个余风风门的开启,破碎上部的余风烟囱常开,篦冷机的余风根据排气温度来开户启。

问题5.关于过热器积灰(结皮)堵塞

在并网运行的电站中了解到,由于过热器工作温度的关系(设计在500~550℃,有些电站实际高达600~700℃),因此不同程度地存在着过热器堵塞问题(06年及07年先期投产的余热电站中有个别电站余热过热器存在积灰堵灰问题,由于发现堵灰问题后修改了过热器的结构设计,因此近年投产的电站已不存在这个问题)。

过热器堵塞主要发生在进口2~4排换热管的翅片的间隙中,密实、坚固,不易清除。过热器堵塞影响过热器通风,影响蒸汽过热度,影响发电量,情况严重时还危及电站安全运行。

从形成过热器堵塞物质来看:一种是黄料粉,另一种是熟料粉。前者是因窑串料,大量生料粉串入冷却机并在冷却机鼓风作用下分散悬浮进入过热器,导致过热器堵塞。这种情况下形成的堵塞,速度快,分布均匀,阻力大,但质地比较松软,比较容易清除。后一种情况形成的堵塞是逐渐形成的,与温度有直接关系,温度低时形成速度比较慢,温度高时形成速度比较快,堵塞物质是水泥熟料,其与换热管和换热管的翅片结合紧密、坚固,很难清除。 前一种情况形成的堵塞比较容易理解,主要与高温度和大粉尘浓度有关。后一种情况形成的堵塞比较复杂,从形成过程和现象分析,后一种堵塞与熟料成分和操作温度有关。高温熟料含有液相粘性物质和挥发性物质,这些物质遇温度较低的换热管和换热管的翅片后并在其上冷凝结晶,粘挂,从而形成坚固堵塞物质。

过热器堵塞一旦形成,很难彻底清除,因此过热器堵塞本着预防为主,定期清理为辅,主辅兼备的办法加以控制。措施主要有: ⑴严格控制过热器进口烟气温度

蒸汽过热不仅需要较高的烟气温度,还要有一定烟气数量。由于冷却机内高温风数量有限,当少量提取时,温度高,流量小;当大量提取时,温度低,流量大;因此可通过调整高温风流量的办法来调整过热器温度。具体操作时以高温Ⅰ为主,以高温Ⅱ作为补充,适当增大过热器通风量,以确保进入过热器的烟气温度不至太高,又不影响蒸汽过热。为便于操作,过热器进口烟气温度控制在500℃,最高不应超过550℃。 ⑵将进口几排翅片管改成光管

由于光管的附着力差,不易结皮积灰,它的换热可使烟气降温,便利进入翅片管烟气温度降至500℃以下。因此可大大减轻过热器堵塞问题。 ⑶在进口适当位置装设吹扫装置

目前普遍采用的过热器堵塞清扫装置主要有:超声波除灰器,乙炔爆燃吹灰器,蒸汽吹灰器等。从使用情况看均有一定的效果,超声波除灰器价格较贵,乙炔爆燃吹灰成本较高,比较好的是蒸汽吹灰。建议在过热器进口装设蒸汽吹灰装置。 ⑷定期更换备用管束

由于每次停机时间短,不能对过热器进行彻底清理,因此在大修时,用备用管束替换工作管束,然后对换下的工作管束进行下线清理。清理干净后,留作备用管束备用。 ⑸加强与水泥中控配合,发现水泥窑串料及时关闭过热器进口阀门,同时打开放汽阀门。

问题6.关于生料磨操作调整

生料制备一般都采用烘干兼粉磨工艺,按主机设备不同分为管磨生料制备系统和立磨生料制备系统。

该系统可使最大入磨水分5%的配合物料,经烘干后达到出磨水分0.5%。所需热源由窑尾C1筒提供,废气温度通过预增湿调整到入磨要求温度。一般管磨烘干用风较少,但要求烘干温度较高,一般为250~280℃,控制出磨废气温度80℃;而立磨烘干用风较多,但要求烘干温度较低,一般为210~250℃,控制出磨废气温度90℃。

考虑原料入磨系统均使用了三道锁风装置,漏风较少;再有实际入磨物料水分不高,一般在2.0~3.5%之间,因此实际入磨温度:管磨为190~230℃;立磨为180~220℃。出磨温度:管磨为80℃;立磨为90℃。所需烘干用出C1出口废气需阶段增湿降温后再入磨。当由SP余热锅炉降温取代阶段增湿降温后,由于前者含水量极少,后者含水量较高。因此同样温度条件下的废气,前者干燥能力较强,后者较差。换句话说,对同样烘干能力废气,前者废气温度较低,后者温度较高。根据我们的经验,出SP余热锅炉温度调整为: 管磨为170~210℃; 立磨为160~200℃。 出磨控制温度调整为: 管磨为70℃; 立磨为80℃。

问题7.关于煤磨热风管道改造与操作调整

煤磨烘干热源一般取自篦冷机中部靠前位置,提取温度一般为300~400℃,而煤磨烘干用废气温度一般为200~250℃,因此热风在入磨前需配入大量冷风。这样将造成大量高品位余热资源浪费,为减少浪费,增加收益,一般采取高低温风搭配的办法加以解决。高温风仍从原取风口提取,低温风从原余风排出管道抽取。两股热风汇合后入磨,两股热风调整由中控员通过遥控设在两股热风管道上的电动蝶阀来完成。 控制参数:

高温风:300~400℃ 高温阀:55~28% 低温风:120℃ 低温阀:45~72% 入磨风:200~250℃ 出磨风:70℃

问题8.关于耐火浇注料的使用维护

在冷却机经过热器到AQC锅炉及冷却机到AQC锅炉的联接管道及沉降室中使用耐火浇注料。耐火浇注料的使用与维护水泥厂都很有经验,主要把握三点:

1.选料合理:即根据使用部位的技术要求进行选料,对冷却机经过热器到AQC锅炉及冷却机到AQC锅炉的联接管道及沉降室,由于温度不高,废气中化学成分稳定,含尘浓度不高,因此选用GT-13N普通耐碱浇注料即可。 2.施工规范:

⑴把钉按图纸要求加工,焊接要牢固,间隔尺寸符合图纸要求,表面涂沥青,沥青厚度均匀。

⑵硅酸钙板粘贴做到灰浆饱满,灰缝均匀,不超过2mm,硅酸钙表面要刷防水漆。 ⑶模板支护要符合要求。

⑷浇注料必须在搅拌机中搅拌,先干混,后加水,水灰比控制在6~8%,同一锅料要求30分钟内用完。

⑸浇注时要用振捣棒振捣密实。

⑹按图纸要求预留膨胀缝,膨胀缝应留设在锚固件间隔的中间位置。 3.严格的烧烤养护制度:

根据设计要求绘制的升温曲线,对浇注料进行烧烤养护。烧烤中防止升温过快发生爆裂,确保水分正常排出。 问题9.关于旁路阀漏风

SP旁路阀门的漏风对发电量影响很大,旁路阀门每漏风1%,发电量下降0.6%,因此必须严格控制,设计要求旁路阀漏风率为2%,最大不应超过3%,当漏风率超过3%时,可能阀板变形或阀轴活动,当经过详细检测、检查之后,应采取措施修复。 问题10.关于余风分离和甩风

水泥窑配套余热电站后,冷却机后部形成的占冷却机30~40%、温度约90~150℃左右废气必须及时分离,并经冷却机余风管道排掉,否则将严重影响系统发电效率。对2500t/d水泥窑,若低温废气分离不净,排气温度每上升1℃发电量下降5.8kW。对5000t/d水泥窑,若低温废气分离不净,排气温度每上升1℃发电量下降11kW。对2500t/d水泥窑,当高温废气无法分离随即排出,每多排出200~250℃热风10000Nm3/h,发电量将下降102kW;对5000t/d水泥窑,当高温废气无法分离随即排出,每多排出200~250℃热风10000Nm3/h,发电量将下降131kW。事实上,由于无法分离多排出的热风不只10000Nm3/h。如5月18日对黄石某电站标定:余风温度为180℃,余风风量为130000 Nm3/h,相当于多排200~250℃热风67000Nm3/h,由此导致发电功率下降为897kW。

导致余风温度偏高,风量偏大的主要原因是冷却机内的高温气层运动,个别厂还有206阀、207阀失灵等原因,解决措施可通过在冷却机加设挡风板,以及对206阀、207阀进行修复来完成。

问题11.关于篦冷机使用循环风后的操作调整

篦冷机使用循环风后,由于鼓风温度提高了50~70℃,同等条件下,风机特性发生改变,鼓风量将会减少。为获取同样的冷却效果,就必须增大冷却风量(质量流量);为使循环风顺利通过篦床冷却熟料,就必须增大体积流量。因此要求在操作上适当提高风机转速或风门开度,适当增大篦下鼓风压力控制或鼓风机轴功率控制。

下表1是山东安丘某厂篦冷机使用循环风前后,篦下风机控制参数和调节参数的变化情况。

表1:使用循环风前后各风机控制、调节参数变化情况表

阶 参数内容 段 无 循 环 风 有 循 环 风 进风温度 篦下控制压力 篦速 风门开度 风机电流 ℃ Pa r/m % A 77 105 75 168 70~90 6900 70~90 6000 70~90 6500 470 77 81 75 190 75 185 75 105 70~90 5800 70~90 5800 20 4000 606 76 127 20 3700 进风温度 篦下控制压力 篦速 风门开度 风机电流 ℃ Pa r/m % A 67 96 66 153 单位 57.18 20 6600 二段篦床下鼓风机 57.19 20 5500 57.20 20 6200 470 66 69 66 169 67 168 66 87 57.21 20 5500 三段篦床下鼓风机 57.22 20 4500 57.23 20 3500 606 66 113 57.24 20 3300 表中看出:使用循环风后篦速未改变,但各室鼓风压力提高300~500Pa,提高5~10%,风门开度增大10%,鼓风电流提高约10%。 问题12.关于主蒸汽温度偏低处理

第二代水泥窑余热发电技术使水泥窑余热资源得到了有效的开发利用,设置了独立过热器,主蒸汽温度较第一代技术得到了明显提高和稳定,一般情况下不会出现主蒸汽温度偏低问题。但在窑生产不正常、过热器堵塞、高温烟道阀门故障等特殊情况下仍会出现主蒸汽温度偏低或波动问题。如山东某电站因过热器经常堵塞,清理前主蒸汽温度不足300℃,清理后温度迅速升高到380℃,之后,又因过热器慢慢堵塞逐渐降低到300℃;又如四川某电站,

单炉运行时过热度正常,但当窑头、窑尾二炉同时运行时主蒸汽温度降低且变化不大,检查发现是高温Ⅰ阀门故障所致。

主蒸汽温度偏低会导致汽机效率和寿命下降,严重时将引起汽机设备故障。因此必须格外重视,发现主蒸汽温度降低,应及时采取措施进行处理。

如属过热器堵塞引起主蒸汽温度降低,问题处理详见“问题5.关于过热器积灰(结皮)堵塞”。

如属高温Ⅰ阀门故障引起主蒸汽温度降低,应及时处理,如属阀轴弯曲或卡死故障应采取停机处理措施。

如属水泥窑生产不正常引起主蒸汽温度降低,问题轻者采取开大高温Ⅱ阀门,关小高温Ⅰ阀门来处理,问题比较严重时可采取开大高温Ⅱ阀门,关小高温Ⅰ阀门的同时增大余风阀门开度,适当开大中温阀门开度的作法加以解决。

如主蒸汽温度过低,在采取以上措施仍无法解决时,应立即退炉停机,待问题处理后再起炉。

问题13.关于高温风机调整

许多人都曾思考,系统串入SP锅炉后高温风机能力够不够的问题,现在可以明确回答,系统串入SP锅炉后,高温风机能力不仅够,而且还会有富裕,为什么呢?这可用风机的轴功率计算公式进行说明。因为

N1=HS1Q1/(1000ηS1)………………………………………………(1) 式中:N1—串前风机轴功率,m3/s; HS1—串前风机进口静压,Pa; Q1—串前风机进口风量,m3/s; ηS1—串前风机进口风量,m3/s;

N2=HS2Q2/(1000ηS2) ……………………………………………(2) 式中:N2—串后风机轴功率,m3/s; HS2—串后风机进口静压,Pa; ηS2—串后风机进口风量,m3/s;

Q2—串后风机进口风量,m3/s;可用下式计算

Q2=(273+t2)/(273+t1)(P0-HS1)/(P0-HS2)Q1………………………(3)

式中:t2—串后进风机烟气温度,℃; t1—串前进风机烟气温度,℃; P0—当地大气压力,Pa;

一般串入SP锅炉后风机进口静压将增加1000Pa左右,即由串前的6000 Pa左右增至7000 Pa左右;又因为串入SP锅炉后烟气温度由300℃左右降至170~210℃,平均降至190℃,考虑3%SP锅炉漏风并设ηS1=ηS2后,进入风机的风量变为: Q2=(273+t2)/(273+t1)(P0-HS1)/(P0-HS2)Q1=0.8411Q1 (1)/(2)得:

N2/N1=(HS2/HS1)(Q2/Q1)=(7000/6000)(0.8411Q1/Q1)=0.9813 N2/N1<1,说明风机负荷减小。

根据以上计算分析,串入SP锅炉后,风机调整应以C1筒负压为基准,负压保持与串入前一致即可。如果串前感到窑系统通风不足,风机调整可以以串前负荷为基准,调整后相应窑的产量会有所提高。

问题14.如何防止窑头排风机能力不足

窑头串入余热锅炉后,进入窑头排风机的风量具有与ID风机相同的情况,即温度降低、风量减少,不同的是窑头串入余热锅炉后,系统阻力变化相对较大,详见下表2。

表2:窑头串入余热锅炉前后系统阻力变化情况

序号 1 2 3 4 5 6 序号 7 8 9 10 11 12 13 项目 冷却机过剩废气量 风机入口标况废气量 风机入口工况废气量 风机入口废气温度 风机入口静压 进气密度 项目 电收尘器阻力 烟风管道阻力 AQC余热锅炉阻力 沉降室阻力 AQC炉系统烟风管道阻力 冷却机内负压 风机闸门阻力 单位 Nm/h Nm/h m/h ℃ Pa kg/m 单位 Pa Pa Pa Pa Pa Pa Pa 3333串入AQC前 300000 330000 675124 280 -1000 0.6320 串入AQC前 250 250 -100 300 串入AQC后 300000 343200 478116 100 -1950 0.9281 串入AQC后 250 400 500 300 400 -100 0 由于系统阻力变化相对较大,风机负荷变化也相当大,以5000t/d水泥窑为例,风机负荷计算如下:

⑴窑头串入余热锅炉前风机输入功率的计算

N1=HS1Q1/(1000ηS1)=1000×675124/3600/1000/0.77=243.5kW ⑵窑头串入余热锅炉后风机输入功率的计算

N2=HS2Q2/(1000ηS2)=1950×478116/3600/1000/0.77=336.3kW ⑶负荷相对变化

M=(N2-N1)/N1=(336.3-243.5)/243.5=38.1%

因负荷变化较大,对于选配较小的风机,串入余热锅炉后有可能导致风机主轴机械强度不足,或风机电机能力不足,因此应对风机主轴和电机进行校核。 ⑷风机额定风压的修订

窑头风机理论上按额定风量1.3储备、风压按1450Pa选配。但许多单位窑头风机配置较高,如四川峨胜厂窑头风机4500Pa(袋收尘阻力<1700Pa);又如蒙西厂窑头风机2995Pa(电收尘阻力<250Pa);再如华新武穴厂窑头风机2000Pa(电收尘阻力<250Pa);以窑头风机风压为1450Pa为例,当串入余热锅炉后,风机的额定风压修订如: P2/P1=(ρ2/ρ1)( n2/n1)2…………………………………………(6) 式中:P2—串后风机额定全压,Pa;

P1—串前风机额定全压,Pa,P1=1450Pa; ρ2—串后进气密度,kg/m3,ρ2=0.9281kg/m3; ρ1—串前进气密度,kg/m3,ρ1=0.6320kg/m3; n2—串后风机转数,r/m; n1—串前风机转数,r/m; 当n2=n2时取得最大值; 将表1等数据代入后:

P2 = P1ρ2/ρ1=1450×0.9281/0.6320=2129Pa

扣除150Pa动压后,P2静压=1979Pa>1950Pa,因此,只要串入余热锅炉后系统阻力满足设计要求,一般窑头风机能力可以满足要求。但当窑头锅炉布置太远,管径选取过小,弯头设计不合理时,按1450Pa选配的窑头风机就会感到抽力不足,此时就要对场地、管道、弯头等进行设计优化,如仍不能满足设计要求,应考虑更换窑头风机风叶、更换风机电机等。而对于窑头风机选配较大的水泥窑,串入余热锅炉后则不会出现窑头排风机能力不足问题。

问题15.关于减少余热浪费

现场回访看到,许多企业的节能意识还不能完全到位,存在大量的余热浪费问题。如某厂原料磨三道锁风器失灵的问题;某厂原料磨热风管道不保温的问题;某厂原料磨冷风阀常开的问题;某厂煤磨喂料系统不锁风的问题;某厂煤磨冷风阀常开的问题;某厂熟料带走热偏高问题;某厂C1本体及原有管道无保温或保温不符合要求问题等。由于上述问题普遍存在,余热浪费的问题也就普遍存在,不同的是有的单位很严重,有的单位不太严重,但不管严重还是不严重,只要有浪费损失,势必要牺牲另一部分余热来加以弥补,最终将导致余热发电量降低。以5000t/d水泥窑为例,经初步计算三道锁风器每增加1%漏风,电量损失38kW;原料磨热风管道每增降温1℃,电量损失为19kW;原料磨冷风阀每增加1%漏风,电量损失38kW;煤磨喂料系统每增加1%漏风,电量损失3.5kW;煤磨冷风阀漏风每增加1%,电量损失3kW;熟料带走热每提高10%,电量损失124.6kW;C1本体及原有管道保温不规范或不保温每降低1℃,电量损失40kW。

防止余热浪费的措施都很简单,基本是保温问题和防止漏风问题,难点是点多、面广、量大,一时难以全面解决,但是只要我们重视节能,推广节能,鼓励节能,在节能上打歼灭战和持久战,余热浪费将逐渐减少,最终将完全消除,届时余热发电量将会得到进一步提高。 结语

我国新型干法水泥生产工艺技术从70年代末开始,经历了20余年的发展,目前其技术与装备已很成熟,基本达到了点火下料之日,就是达标之时的水平。现在我国水泥窑余热发电技术方兴未艾,尤其是第二代余发电技术与装备处于日臻成熟时期,相信通过本次(西南区)水泥窑低温余热发电技术高级研修班,对第二代水泥窑余热发电技术与装备推广普及,一些企业将从中受益:少走弯路,或不走弯路,及早驶入发展快车道。研修班将为促进节能减排,发展循环经济起到一定的积极作用。

加强电站运行管理,提高发电能力

?

作者:李山正 单位:山东山水集团创新水泥公司 [2009-7-16]

关键字:余热发电

? 摘要:

山东山水集团创新水泥公司建有1条2500t/d新型干法水泥熟料生产线,为充分利用水泥窑生产过程中排出的废气余热,节约能源、降低成本,我们委托大连易世达于2006年为其配套建设了一座装机4.5MW的余热电站。电站设计平均发电功率4250kW,于2007年6月并网运行。电站投入运行后,通过我们加强机组运行管理,发电功率的逐年提高。现就我们在余热发电系统运行管理经验总结如下,供与会的专家参考:

1.运行管理应遵循的基本原则 1.1水泥窑工艺为基础

水泥窑配套余热发电,热能通过余热锅炉取自水泥窑烧成余热。因此,窑系统稳定、高效、长期稳定运行是水泥窑余热发电的基础。为此,要求窑工艺从原、燃料进厂检验,生料配料,烧成控制,设备维修等工序加强提高,以适应发电系统的操作要求。如果烧成工艺不能稳定,设备运转率较低,则会造成发电机组并网解列频繁,严重影响发电效率和机组安全运行。

1.2余热发电技术是保障

水泥窑余热发电技术包含了水泥窑烧成控制技术、热力循环原理、锅炉热力技术、汽机做功原理、自动控制技术、励磁发电技术、水处理技术等多学科理论。每一位余热发电管理者都应当认真学习和实践这些理论基础,并灵活应用到机组发电过程中,以保障机组安全、稳定、高效运行。

1.3提高余热利用率是关键

在窑系统与发电系统正常运行的情况下,机组的发电效率,取决于旋窑及机组操作人员的操作调整,在保证窑工艺稳定的前提下,尽可能多的把余热热能输送到机组热力系统之中,以提高SP炉、AQC炉、ASH过热器的入口烟气温度、流量为基本原则,来提高机组效率。但从发展的观点来看,余热热能的取热方式,是提高余热利用率的重要环节。因此,余热取热方式的科学合理是大幅提高余热发电效率的关键所在。

2.窑系统与发电系统管理体制的建立

水泥窑余热发电,从窑系统到发电系统均以废气为介质进行热能的传递,其废气参数的品质对余热发电能力起着决定性的作用,而废气品质是由窑中控操作调整的。在窑系统不正常的情况下,中控操作以稳定水泥窑工艺为主,此时对废气参数的调整相对频繁,废气参数波动大,废气品质较差,发电量不稳定且很低;而当窑系统处于正常稳定的情况下,此时废气参数相对稳定,废气品质较好,发电量稳定且很高。因此提高电站发电能力,水泥窑是基础,相互配合是关键。

为密切窑系统与发电系统关系,达到相互配合,我们将发电系统与窑系统做为统一的整体来管理。具体做法是:

(1)是在管理制度上,制定了提高发电能力协作配合管理办法及将罚办法,实行层层目标管理责任制,将发电指标分解到每个人,不仅发电系统有指标,水泥窑系统也有指标。由于措施得利,较好地调动了广大职工生产积极性,消除了两系统的相互影响,促进两系统的高效平稳,保证了发电量的稳定。

(2)是在机构设置上,山水创新公司把窑中控与发电中控合并为一个部室,统一管理,统一协调,从根本上铲除相互推委,相互扯皮现象,从而理顺了关系,明确了责任,明确了目标,促进了水泥窑与发电系统健康发展。

3.运行参数的控制

3.1创新公司窑工艺对发电功率有影响的几个重要参数 a.高温风机转速:870~890r/min; b.过剩风机转速:570~590r/min; c.篦冷机篦速:一篦床:厚料层操作; 二篦床:薄料层操作;

d.一篦床前冷却风机转速:2800~3000r/min; e.窑产量:2800~3000t/d; f.C1出口温度:320~340℃;

3.2创新公司4.5MW机组发电工艺参数的控制要求 a.汽轮机真空度:-0.091~-0.094MPa 夏季控制:-0.091~-0.092MPa 冬季控制:-0.093~-0.094MPa

在汽轮机供汽参数一定的情况下,真空度提高0.001MPa,汽轮机可增加60kW的有功输出。

影响汽轮机真空的主要因素有:循环冷却水量和水温以及冷凝器换热管热阻。一般由循环冷却水量少和水温高带来的影响相对较小,也比较容易解决。一般冬季水温低,冷凝器换热充分,真空较高;一般夏季水温高,冷凝器换热不好,真空较低。因此夏季应适当增加冷却水量,以提高冷凝器换热能力,提高真空度。但是由冷凝器换热管热阻增高带来的影响比较大,也比较难处理。

冷凝器换热管热阻增高主要是凝汽器冷凝管积尘、积藻、结垢所致。解决办法通常是采取过虑和在循环水中填加稳定剂的办法,但是该办法只能缓解不能根除,随着时间的延续,在冷凝管束内壁上仍然积存了大量的粘性污物,且越来越厚,由于粘性污物的热传导性较差,因此冷凝器换热管的热阻越来越高,冷凝器换热越来越差,真空越来越低。为解决凝汽器冷凝管积尘、积藻、结垢问题我们采取了酸洗加胶球清洗处理措施。考虑胶球清洗运行成本低,操作简单,不需停机,效果较明显,因此我们主要采用胶球清洗方式清垢。采用胶球清洗措施后,污物得到清除,热阻降低,因此汽轮机真空度由清洗前的-0.086MPa提高至清洗后的-0.094MPa,发电能力由清洗前的4000kW提高至清洗后的4350kW,提高350kW,效果十分明显。

b.主蒸汽参数的控制管理 主蒸汽参数的运行范围:

压力:1.5~2.3MPa,正常情况下力争控制在上限2.0~2.3MPa; 过热度:320~400℃,正常情况下力争控制在上限360~400℃; 蒸汽流量:16~24t/h。

在主蒸汽参数的控制管理上,以稳定和提高过热度为主,以稳定和提高压力为辅。因为在一定的主蒸汽压力情况下,提高主蒸汽温度可以提高蒸汽的热焓值,降低汽耗率,提高发电能力。因此,在运行过程中应尽可能提高主蒸汽温度控制值。

至于主蒸汽压力控制,考虑到在一定的主蒸汽温度情况下,提高主蒸汽压力,锅炉的换热效率将下降。因此主蒸汽压力控制应通过方案优化进行确定。

4.主要采取的措施

为提高提高发电能力,我们重点采取了以下几项技术和管理措施: (1)是变更了振打装置的传动比,提高了SP锅炉的振打频率;

(2)是每天定期开启胶球清洗装置对冷凝器管束的污垢进行清洗,提高换热效率;

(3)是生料成分中加入3%粉煤灰,提高SP锅炉入口烟气温度;

(4)是通过改造提高了篦冷机中温取风口的取面面积;

(5)是在高、中温烟道上增设了联通管道,方便了高温风和中温风的调整,从而提高和稳定了AQC锅炉进口温度;

(6)是用耐磨陶瓷涂料代替原浇筑料,减小了浇注料厚度,增大了高温烟道的有效通风面积;

(7)是针对ASH过热器经常积灰问题,安装了蒸汽吹灰器,定期对过热器管束进行清理,保证了过热器的通畅和正常换热;

(8)是锅炉化学水处理采用了反渗透制水工艺,从而减小了锅炉排污造成的热能损失。

5.取得的技术和经济效果

通过采取以上技术及管理措施后,取得了明显效果。通过统计:2007年下半年平均发电功率为4056kW;2008年平均发电功率为4368kW,提高了312kW;2009年上半年平均发电功率为4610kW,相对2008年又提高了242kW;相对2007下半年提高了554kW。如按年运转7200h计算,年可增加发电量399万kWh;如每kW电价按0.5元计,年可节省电费支出近200万元,经济效益十分可观。

提高窑外分解窑纯低温余热发电量几项技术措施的

探索与实践

?

作者:钱建荣 单位:浙江新都水泥有限公司 [2009-7-16]

关键字:余热发电

? 摘要:

一、窑头低温废气余热的循环利用

水泥窑实施纯低温余热发电项目后,在采用较先进的低温低压补汽系统情况下,窑尾余热锅炉(SP炉)的排烟温度可做到165℃左右,这部分废气中的余热大都用于原料(生料)磨作为烘干热源加于利用;窑头余热锅炉(AQC炉)在设置锅炉热水段后排烟温度可做到130℃左右,这部分废气与窑头篦冷机余风混合后的温度为110℃左右,一般经窑头收尘后排放。

如何利用窑头排放废气中的余热资源?理论上有使用低沸点工质换热后用于发电的方案,但其经济性和实用性尚需探讨;此外还有生产热水等方案。我们采用了易世达能源工程公司的方案,将窑头废气经篦冷机风机引回中温段,通过循环利用其热焓提高AQC炉的产汽量,方案示意如附图1。

本方案的要点在于将110℃左右目前难于利用的低温废气通过与篦冷机内的中温(500℃左右)熟料换热升温后加于利用,实现低温废气余热资源焓— 的转换。本方案在工程实践中已解决的问题有以下几点:

1、对熟料冷却尤其是出窑熟料骤冷要求的影响

篦冷机在预分解窑系统中作为一项重要的热工设备,主要完成对出窑熟料(1300℃左右)的冷却和回收热能两项任务。一般要求出篦冷机的熟料温度<65℃+环境温度;此外要求在篦冷机高温区段对出窑熟料实现骤冷,以阻止熟料矿物晶体的长大和其中阿利特矿物C2S由β型向γ型的转化。

分析出窑熟料在篦冷机中的运动和冷却过程,在推动型篦冷机(目前通常称第三/第四代)中,熟料在篦床上的冷却可划分为高中低温三个区段:其高温区主要实现对出窑熟料的骤冷并提高入窑和入炉的二、三次风温;中温区为热回收区:低温区实现对熟料的进一步冷却、降低出篦冷机的熟料温度。

分析篦冷机的风量分配关系:冷却用风由各段风机分别鼓入,风温为20℃左右,高中低温三个区段的进风量分别占总风量的31%、50%和19%左右。换热后出篦冷机的风量分配为;入窑二次风占15%左右(标况、风温1050℃左右);入分解炉三次风占22%左右(标

本文来源:https://www.bwwdw.com/article/hha7.html

Top