Comparison of batch and fed-batch fermentations using corncob hydrolysate for bioethanol production
更新时间:2023-07-23 01:54:01 阅读量: 实用文档 文档下载
- comparison推荐度:
- 相关推荐
玉米芯分批补料发酵工艺优化
Comparisonofbatchandfed-batchfermentationsusingcorncobhydrolysateforbioethanolproduction
Yi-HuangChanga,Ku-ShangChanga,Cheng-WeiHuangb,Chuan-LiangHsuc, ,Hung-DerJanga,
a
DepartmentofFoodScience,YuanpeiUniversity,Hsinchu300,TaiwanInstituteofFoodScience,YuanpeiUniversity,Hsinchu300,Taiwanc
DepartmentofFoodScience,TunghaiUniversity,Taichung407,Taiwan
b
articleinfoabstract
Theoptimalconditionsforthemaximumproductionofethanolfromcellulosichydrolysateinbatchandfed-batchcultureswereinvestigatedandcompared.Thepretreatedcorncobcouldbeconvertedintoreducingsugarwithmaximalyieldsaftertheenzymemixtureswerefed.After48hofhydrolyticreaction,overallreducingsugarandglucoseconcentrationsreached0.61and0.36g/gdriedsubstrate,respectively.FurtherbatchfermentationofcellulosichydrolysatewasperformedusingbatchculturesofSaccharomy-cescerevisiaeBCRC21812,23.3–41.1g/lbiomassand6.9–23.0g/lethanolwasobtained.Forthefed-batchfermentation,theeffectsoffeedingglucoseconcentrationsonethanolfermentationwerestudied.Thefeedingglucoseconcentrationof30g/lresultedinahigherethanolyieldthanthatof20g/land10g/ldid.Thecellbiomass,ethanolyields,andethanolconversionrateforthefed-batchfermentation,feedingat30g/lglucoseconcentration,were44.5g/l,32.3g/land0.64gethanol/gglucose,respectively.Theresultsindicatethatthefed-batchfermentationhadahigherethanolyieldthanthatofthebatchfermentation.
Ó2012ElsevierLtd.Allrightsreserved.
Articlehistory:
Received31January2011
Receivedinrevisedform5February2012Accepted6February2012
Availableonline18February2012Keywords:
CellulosichydrolysatesBatchfermentation
Fed-batchfermentationBioethanol
1.Introduction
Tolessentheworld’sdependenceonnon-renewableresources,useofagriculturalbiomassfortheproductionofbiofuelssuchasbioethanolhasdrawnmuchattentiontomanyresearchersinthepastfewdecades.Cellulosicbiomassisanidealsourceofenergybecauseitisbothrenewableandavailableinlargequantitiesaroundtheworld.However,theprocessfortheproductionofethanolfromcellulosicmaterialsismorecomplicatedthanitsproductionfromsugarorstarch-basedones.Speci cally,therearetechnicalandeconomicalimpedimentsinregardstothedevel-opmentofcommercialprocessesthatutilizecellulosicbiomass.Technologiesthatwillallowforthecost-effectiveconversionofcellulosicbiomassintofuelsandotherchemicalsarebeingdevel-oped.Thesetechnologiesincludelow-costthermoorchemicalpre-treatment,highlyeffectivecellulasesandhemicellulases,andef cientandrobustfermentativemicroorganisms,havemadethecommercializationofbiofuelproductionmuchmorepromising[1–3].
Forproductionofbioethanol,alowerrawmaterialprice,togetherwithahighethanolyieldandef cientenzymes,willde-creasetheproductioncostsigni cantly.Severaldifferentpretreat-mentmethodshavebeenusedtofacilitatetheenzymaticCorrespondingauthors.Tel.:+886423590121x37306;fax:+886423599059
(C.-L.Hsu),tel.:+88635381183x8482;fax:+88636102342(H.-D.Jang).
E-mailaddress:hungder@mail.ypu.edu.tw(H.-D.Jang).
0016-2361/$-seefrontmatterÓ2012ElsevierLtd.Allrightsreserved.doi:10.1016/j.fuel.2012.02.006
hydrolysisoflignocellulosicmaterial[4].Anef cientprocessforobtainingreducingsugarsfromlignocellulosicmaterialistousechemical/physicalpretreatment,followedbyenzymatichydroly-sis.Thehydrolysisofnaturallignocellulosetoglucosedependsonthesynergyofenzymessystem,i.e.,b-1,4-endoglucanase,b-1,4-exoglucanaseandb-glucosidase[5],andb-1,4-endoxylanase.Thesecellulolyticenzymeshavebeenappliedtoincreasethehydrolysisef ciencyofcellulosicmaterials[6].
Manydifferenttypesofprocessesforethanolfermentationhavebeenproposed,includingbatchfermentation,continuousfermen-tation,continuousfermentationwithcellrecycling,fed-batchcul-turesandrepeated-batchcultures[7].Batchfermentationprocessisusedextensivelytoconvertsugarstoethanolfortheproductionofbeveragesandbiofuels.Asforfed-batchfermentation,theinter-mittentadditionofglucose,withouttheremovalofthefermenta-tionbroth,intothefed-batchcultureisoneofthemostcommonmethodsfortheproductionofethanolintheindustry.Theadvan-tagesofthisprocessincludethereductionofsubstrateandend-productinhibition,higherproductivityofethanol,higherdissolvedoxygenrate,decreasedfermentationtime,andhighersacchari ca-tionrate[8].Fed-batchfermentationhasbeenreportedasagoodprocessforethanolproductionwhenperformedondifferentrawmaterialssuchascornstover[9]andrecycledpaper-derivedmaterial[10].
Evenconversionofcorncobhydrolysatetobioethanoleitherbybatchfermentation[1,11]orbyfed-batchfermentation[12,13]separatelyhasbeenstudiedinthepast,thesimultaneous
玉米芯分批补料发酵工艺优化
Y.-H.Changetal./Fuel97(2012)166–173167
comparisonoftheef cienciesofbothbatchandfed-fermentationsbythesamecellulosichydrolysatewererare.Additionally,theim-pactofdifferentfermentationtreatments,i.e.batchandfed-batch,ofcellulosichydrolysateonthedynamicsofmicrobialgrowthandethanolproductionrateintherespectivefermentorswereseldomevaluated.Inthiswork,thehydrolysisprocessofthecorncobsub-strateusingpretreatmentwithacid,autoclavingandthenhydroly-siswiththeenzymemixtureswasexamined.Thefermentationprocessesandkineticsofthecorncobhydrolysateinthebatchandfed-batchculturesofSaccharomycescerevisiaeBCRC21812werealsocompared.
Acidpretreatmentwasperformedwith1%(v/v)sulfuricacidfor30minatasolid-to-liquidratioof1:10.Themixturewas ltered.Thenthe ltratewasfurtherhydrolyzedbyautoclavingat121°Cfor60min,accordingtotheproceduresdescribedinourpreviousreport[14].Afterthepretreatment,thecellulosicresiduewassoakedindistilledwaterandincubatedinwaterbathat50°Cfor30min,andthen ltered.
2.2.Microorganismsandcultivation
ThestrainofS.cerevisiaeBCRC21812,purchasedfromBiore-sourcesCollectionandResearchCenter,FIRDI(Hsinchu,Taiwan),wasusedasaninoculumforethanolfermentation.S.cerevisiaeBCRC21812istraditionallyusedforalcoholicbeverageandbioeth-anolproduction.IthadbeenfoundthatS.cerevisiaeBCRC21812couldgrowwellinYPDmediainthepresenceof8%(v/v)ethanolaccordingtoourpreviouspreliminarystudy.YeastculturesweremaintainedinaYPDmediumcontaining2%(w/v)dextrose,1%(w/v)peptoneand0.5%(w/v)yeastextractat25°Cfor48h.TheinitialpHwasadjustedto6.5either1NHClorNaOHpriortoster-ilizationat121°Cfor20min.
2.3.Hydrolysisofcellulosicresiduebytreatmentwiththeenzymemixture
Themixtureofprehydrolysateobtainedfromtheacidandauto-clavingpretreatmentswascollectedand lteredwithWhatman
2.Materialsandmethods
2.1.Cellulosicmaterialandpretreatment
Thecorncobmaterials,purchasedfromalocalmarket,wereoven-driedfor24hat50°C,groundedintoparticles(diameter2–10mm)andstoredinpillvialsat25°C.Thecorncobmaterialsconsistedmainlyof42%(w/w)celluloseand28%(w/w)hemicellu-lose,whichcouldbehydrolyzedtoreducingsugar.Inaddition,therewas20%oflignininthecorncobmaterials.Therestwereashesandminorcomponents.Thestructuralcarbohydrateandlig-nininbiomassweredeterminedaccordingtoStandardBiomassAnalyticalProceduresofNationalRenewableEnergyLaboratory(NREL).
玉米芯分批补料发酵工艺优化
168Y.-H.Changetal./Fuel97(2012)166–173
No.4 lterpaper.Acommercialcellulasemixture,1.5ml(1000IU/ml)Cellulase(Sigma,StLouis,MO,USA)supplementedwith0.52ml(250IU/ml)Novozyme188(Sigma,StLouis,MO,USA),wasusedtohydrolyzethecellulosicresidue.Enzymatichydrolysiswasperformedwitha100mlprehydrolysateandthecommercialcellulasesolution.Theprotocolsofenzymatichydrolysisofprehy-drolysatetoproducereducingsugarwerealsoaccordingtoourpreviousreport[14].Themixtureswereincubatedat50°Cinanorbitalshakerwithaspeedof160rpmfor72h.Sampleswerewithdrawnandanalyzedforlevelsoftotalreducingsugar,glucose,xylose,andcellobioseconcentration.
2.4.Batchandfed-batchfermentationofcellulosichydrolysateInoculumwaspreparedbytransferring5%(v/v)ofthecells(108/ml)ofS.cerevisiaeBCRC21812intofermentationmedia.Themediuminthebatchethanolfermentationwas(%,w/v):cellu-losichydrolysate,1–4;peptone0.5;yeastextract0.25atpH6.0.Themediumforfed-batchfermentationwas2%cellulosichydroly-sate,0.5%peptoneand0.25%yeastextract.After24h,thecellulosichydrolysatecontaining1–3%(w/w)glucosewasfed.Thecultureswereshakenat150rpmfor2d,thenadjustedto100rpmat25°C.Sampleswerecollectedregularlyand lteredthrougha0.45lmMilliporemembrane.Glucose,xylose,cellobioseandeth-anolconcentrationswereanalyzedbyHPLC(WatersCo.,MA,USA).2.5.Analysismethods
Thedryweightcontentoftherawmaterialswasdeterminedbydryingsamplesfor24hat110°C.Sampleswerewithdrawnfromthefermentationbroth,andyeastbiomasswasdeterminedbymeasuringcellopticaldensityrecordedwithaUltrospec2100
prospectrophotometersetat600nm(GEHealthcareCo.,IL,USA).Thereducingsugarsliberatedbythesereactionsweremea-suredusingthe3,5-dinitrosalicylicacidmethod[15],withglucoseasstandard.Reducingsugarwascalculatedasg/gdriedsubstrate(DS).
Glucose,xylose,cellobioseandethanolwereanalyzedbyHPLC(WatersCo.,MA,USA)withacationexchangerSugarpakcolumn(300Â6.5mmi.d.).Secondaryde-ionizedwater,ata owrateof0.5ml/min,wasusedasthemobilephase.Theinjectionvolumewas20llandthecolumntemperaturewasmaintainedat90°C.Allsampleswere lteredthrougha0.22lm lterbeforeundergo-ingHPLCanalysis.TheeluateoutofHPLCwasdetectedbyarefrac-tiveindexdetectorat50°C.
3.Resultsanddiscussion
3.1.PretreatmentandenzymatichydrolysisofcellulosicmaterialThecorncobsubstratesampleswerepretreatedwithautoclaveat121°Cfor60minandeitherwith1.0%(w/v)sulfuricacidfor15min(Sample2inFig.1A)orwithoutsulfuricacid(Sample1).ForSample2,afterthepretreatment,approximately0.43g/gDSofreducingsugarswasrecovered(Fig.1A).Theresultsshowthat61.4%(w/w)ofthecellulosicsubstratewasconvertedtoreducingsugarafterpretreatmentwithautoclaveandacid.NotoxiceffectsfromfurfuralsandHMFswereobservedduringthefermentationstudiesascon rmedbySumphanwanichetal.[16].Theirresultsindicatedthecorncobwastewithacid-treatmentgeneratednon-toxiclevelsoffurfurals(0.7g/l)andHMFs(0.8g/l)inthehydroly-satesforfermentation.
TheprehydrolysatewasfurtherhydrolyzedwiththereactionofenzymemixturesatpH6.0and50°Cfor72h(Sample3).
玉米芯分批补料发酵工艺优化
Y.-H.Changetal./Fuel97(2012)166–173169
Thereducingsugarconcentrationreached0.61g/gDSafter48hofhydrolysis(Fig.1B).However,extendingthehydrolysistimebeyond48hdidnothelpfurtherinincreasingthereducingsu-garconcentration.Fromthereducingsugarconcentrationafterhydrolysis,itindicatesthat87.1%(w/w)ofthecellulosic/hemi-cellulosiccomponentswerehydrolyzedandconvertedtoreduc-ingsugaraftertreatmentwiththeenzymemixture.Xylosewasdetectedinthehydrolysate,showingthatthepresenceofb-1,4-endoxylanaseassistedinthehydrolysisofxylaninthesubstrate.Additionally,theb-1,4-endoglucanaseandb-1,4-exoglucanasehydrolyzecellulosechainsresultedintheformationofcellobi-ose,whichcanbefurthercleavedintoglucosebycellobiase.Itwasfoundthatasigni cantlylowamountofcellobioseexistedinthecellulosichydrolysate,indicatingthatcellobiaseincreasedthehydrolysisofcellobioseintheresultingprehydrolysate.Inaddition,ahighamountofglucoseandacomparativelyloweramountofcellobioseexistedinthecellulosichydrolysate,indi-catinggoodactivitiesofb-glucosidaseinenzymemixtures.Thereby,withtheaidofenzymatichydrolysis,higheryieldsoftotalreducingsugar(0.61g/gDS),glucose(0.36g/gDS)andxy-lose(0.17g/gDS)intheresultedhydrolysateswereachieved.These ndingsindicatethattheenzymemixtureshelpedtoin-creasethehydrolysisef ciencyofthecellulosichydrolysatesandwerenecessarytoproducethemonosaccharidesforfurtherethanolfermentation.
3.2.Batchfermentationofcellulosichydrolysateforbioethanolproduction
Batchfermentationforbioethanolproductionwasperformedinthecellulosichydrolysate-basedmediacontainingvariousconcen-trationsofglucoseasthemaincarbonsource.Duetotheconcernthatthehighconcentrationofglucoseinthehydrolysatewouldin-hibitthegrowthofyeast,themaximumconcentrationofglucose(40g/l)wasused.Todeterminetheeffectofglucoseconcentrationonthegrowthpro leofS.cerevisiaeBCRC21812,batchexperi-mentswereperformedinconical askswithglucoseconcentrationinthehydrolysatesrangingfrom10to40g/l.Fig.2showstheplotsofcellbiomassandpHvaluesagainstfermentationtime.Forthehydrolysatemedium,thepHdecreasedslowlyandremainedabove5.6throughoutthe rst vedaysofthefermentationandde-creasedrapidlyfrom5.7to5.0after6dofcultivation(Fig.2A).AsreportedbyPalmqvistandHahn-Hagerdal[17],cellgrowthincellulosichydrolysatesstronglydependedonpH,duetothelargeconcentrationofdissociatedweakacidsatlowpH.ThepH,around5.0duringtheentirefermentationprocess,didnotin uencethegrowthofyeastcellsandthusfavoredtheethanolproduction.Theyeastcellbiomassincreasedfrom23.3to41.1g/lwiththein-creasedconcentrationofglucosefrom1%to4%inthehydrolysate(Fig.2B).Inaddition,aftertheinoculationofyeastcells,themicro-bialbiomassbegantoincrease,reachedthemaximalvaluesafter
玉米芯分批补料发酵工艺优化
170Y.-H.Changetal./Fuel97(2012)166–173
2dofincubation,andthenremainedsteadythereafter.Thesere-sultsindicatedthattheyeastgrewwellonthecellulosichydroly-satewithglucoseataconcentrationupto4%.However,cellgrowthwasgreatlyrepressedwhentheglucoseconcentrationreached4%.Speci cally,whentheglucoseconcentrationincreasedfrom3to4%,theyeastcellbiomassdidnotshowobviousincrease,i.e.from40.2to41.1g/l.Thisfactshowedthattheconcentrationofglucoseat4%wouldinhibitthegrowthofyeast,duetothehaltincellbiomass.
Fig.3showsthechangeofglucose,xyloseandcellobiosecon-centration,andethanolyieldbyS.cerevisiaecultureafter6daysascomparedtotheinitialglucoseconcentrationinthehydrolysate.Inthefermentationusing1–2%glucoseinthehydrolysate,theglu-cosewasexhaustedafter2d,whereastheethanolproductionyieldincreasedrapidlyafterthe rstdayoffermentation.Thisresultindicatesthattheglucoseconsumptionwasconsistentwiththetimeperiodofethanolproduction.AsshowninFigs.3AandB,theglucosewasrapidlyusedupbytheyeastwithin2d,with1–2%glucoseinthehydrolysate.However,1.2–4.1g/lxyloseand1.7–3.3g/lcellobioseweredetectedandcouldnotbeutilizedbytheyeastcellsafter2d.Thefermentationwascompletedafter2d.Themaximalconcentrationsofethanolwere6.9and8.5g/lfortheculturesof1%and2%glucoseinthehydrolysate,respec-tively,whentheglucosewereusedup.ThefermentationresultssuggestthatS.cerevisiaecouldgrowwellinthehydrolysatemed-iumandachievevirtuallycompleteconversiontoethanolfromglucoseinthehydrolysate.However,8–10g/lofglucosewasnot
utilizedbytheyeaststrainafter6doffermentationwhentheglu-coseconcentrationsinthehydrolysatewere3–4%(Fig.3CandD).Furthermore,considerablequantitiesofxyloseandcellobiosewerealsodetected,whichcouldnotbeutilizedbytheyeastcells.Whenthesubstrateconcentrationreached4%,yeastbiomassandethanolyieldwerenotsigni cantlyincreased,suggestingthataconsider-ableinhibitoryeffecthadoccurred.Inaddition,theethanolyieldswere18.3and23.0g/lwhentheinitialglucoseconcentrationsinthehydrolysatewere3%and4%,respectively.Besides,rateoftheconversionofglucosetoethanolwas0.58–0.61gethanol/gglu-cose,using3–4%glucoseinthehydrolysate,asigni canthigheramountthanthat(0.45gethanol/gglucose)ofYuandZhang[1].TodevelopanimprovedculturemethodforethanolproductionwithS.cerevisiae,batch askcultureswere rstlycarriedouttodeterminethesuitablesubstrateconcentrationoftheinitialmedia.ItwasfoundthatS.cerevisiaegrewwithasimilarpatterninglu-coseconcentrationsupto4%,indicatingagoodabilitytodealwithosmoticstress.Thismadeitpossibletofeedconcentratedglucosesolutioninadiscontinuouswayduringthefed-batchfermentation.3.3.Fed-batchfermentationofcellulosichydrolysateforbioethanolproduction
Itrequiresahighinitialsugarconcentrationinthecellulosichydrolysatetoobtainhighconcentrationsofethanolinthefer-mentationbroth.However,highersugarconcentrationinthehydrolysateoftencausesmixingandheattransferproblems,due
玉米芯分批补料发酵工艺优化
Y.-H.Changetal./Fuel97(2012)166–173171
totherheologicalpropertiesofaverydense broussuspension[7].Suchproblemscouldbeeffectivelyavoidedinthefed-batchfer-mentationprocess,wherethesubstrateisaddedgraduallyandtheviscosityofthereactionmixturecanbekeptatalowlevel.Theglucoseconcentrationinthehydrolysateincreasedfromaninitial2%to3%byadditionof1%onthe rstdayinthefed-batchprocess(Fig.4).Itwasobservedthatthecellbiomassconcentra-tionreached22.3g/lontheseconddayoffermentationandthatthepHofthefermentationbrothslightlydecreasedfrom5.8to5.5duringthe5doffermentation.Theresidualglucoseconcentra-tioninthehydrolysatewas1.8g/l,whichwasmuchlowerthanthatofthebatchculture.Aftertheadditionofthehydrolysate,theconcentrationofxyloseincreasedfrom6to15.2g/l.Thisindi-catesthatS.cerevisiaecouldreadilyfermenttheglucoseinhydro-lysatetoethanolbutcouldnotmetabolizexylose,duetothelackofxylose-degradingenzymes.Inaddition,theresultsshowthatmostoftheglucoseinthehydrolysatewasusedinfed-batchcultures,therefore,higherconcentrationsofethanol(19.0g/l)werepro-ducedthaninbatchcultureswith3%glucoseinthehydrolysate.Fed-batchculturesshortenedthereactiontimedegradinganequivalentsubstrate,thereforeenhancingtheef ciencyofutilizingthecellulosicsubstrate.
Theresultsoffed-batchculturewithinitial2%glucoseincellu-losichydrolysateandanadditionof2%glucosewereshowedinFig.5.ThecellbiomassincreasedrapidlyaftertheinoculationofS.cerevisiaeandreachedthemaximum(42.5g/l)onthethirddayoffermentation(Fig.5A).Theglucoseinthehydrolysatewasgoingtobeusedupafter1doffermentation,andtheethanolyieldswere
only15g/l(Fig.5B).Aftertheadditionofthehydrolysate,theeth-anolyieldsincreasedandreachedthemaximumontheseconddayoffermentation.Thus,theoverallethanolyieldsandglucosecon-versiontoethanolratewereestimatedtobe24.0g/land0.60gethanol/gglucose.Theresultsoffed-batchculturewithini-tial2%glucoseinhydrolysateandanadditionof3%glucoseareshowedinFig.6.Thecellbiomassincreasedrapidlyaftertheinoc-ulationofS.cerevisiaeandreachedthemaximum(44.5g/l)ontheseconddayoffermentation;moreover,thepHofthebrothde-creasedsteadilyfrom5.8to5.2duringthefermentationprocess(Fig.6A).Afterfeedingthehydrolysatetothemedia,theethanolyieldsincreasedandreached32.3g/lattheseconddayoffermen-tation.Thus,rateoftheconversionofglucosetoethanolwasesti-matedtobe0.64gethanol/gglucose.Asproposedinthisstudy,theseresultingdatawerehigherthanthosefromthebatchculturesystem.Furthermore,rateoftheconversionofglucosetoethanolfromthefed-batchfermentationinthisstudywassigni cantlyhigherthanthat(0.44gethanol/gglucose)ofthestudyusingthebatchcultureofCandidatropicalis[18].
4.Conclusions
Asaneconomicalwaytoproduceethanolfromcellulosicsub-strate,synergetichydrolysisofcellulaseandxylanasemixturescreatesafeasibleprocessthatcanbeusedintheproductionofbio-ethanol.Bioethanolproductionwithfed-batchfermentationoffersadvantagesoverthatwithbatchfermentation.Theconversionrate
玉米芯分批补料发酵工艺优化
172Y.-H.Changetal./Fuel97(2012)166–173
ofethanolfromglucosewashigherinfed-batchfermentationthanitwasinbatchfermentation.Moreover,thesubstrateinhibitionef-fectsoncellbiomassandyieldsofethanolwerelesspronouncedforfed-batchfermentationthanbatchfermentation.Furtherworkshouldbefocusedonscale-upoffed-batchfermentationtomaketheprocessindustriallyfeasible.Acknowledgment
TheauthorswouldliketothanktheNationalScienceCounciloftheRepublicofChina(Taiwan)for nanciallysupportingthisre-searchunderContractNo.NSC97-2313-B-264-001-MY3.References
[1]YuZ,ZhangH.Ethanolfermentationofacid-hydrolyzedcellulosicpyrolysate
withSaccharomycescerevisiae.BioresourTechnol2004;93:199–204.
[2]TabkaMG,Herpoël-GimbertI,MonodF,AstherM,SigoillotJC.Enzymatic
sacchari cationofwheatstrawforbioethanolproductionbyacombinedcellulasexylanaseandferuloylesterasetreatment.EnzymeMicrobTechnol2006;39:897–902.
[3]ÖhgrenK,VehmaanperaJ,Siika-AhoM,GalbeM,ViikariL,ZacchiG.High
temperatureenzymaticprehydrolysispriortosimultaneoussacchari cationandfermentationofsteampretreatedcornstoverforethanolproduction.EnzymeMicrobTechnol2007;40:607–13.
[4]SunY,ChengJY.Hydrolysisoflignocellulosicmaterialsforethanolproduction:
areview.BioresourTechnol2002;83:1–11.
[5]TolanJS,FoodyB.Cellulasefromsubmergedfermentation.AdvBiochemEng
Biotechnol1999;65:41–67.
[6]SreenathHK,KoegelRG,MoldesAB,JeffriesTW,StraubRJ.Ethanolproduction
fromalfalfa berfractionsbysacchari cationandfermentation.ProcBiochem2001;36:1199–204.
[7]YoshidaF,YamaneT,NakamotoK.Fed-batchhydrocarbonfermentationswith
colloidalemulsionfeed.BiotechnolBioeng1973;15:257–70.
[8]StanburyPF,WhitakerA,HallSJ.Principlesoffermentationtechnology.2nd
ed.Oxford(UK):PergamonPress;1995.
[9]VargaE,KlinkeHB,ReczeyK,ThomsenAB.Highsolidsimultaneous
sacchari cationandfermentationofwetoxidizedcornstovertoethanol.BiotechnolBioeng2004;88:567–74.
[10]BallesterosM,OlivaJM,ManzanaresP,NegroMJ,BallesterosI.Ethanol
productionfrompapermaterialusingasimultaneoussacchari cationandfermentationsysteminafed-batchbasis.WorldJMicrobiolBiotechnol2002;18:559–67.
[11]ChenM,XiaM,XueP.Enzymatichydrolysisofcorncobandethanolproduction
fromcellulosichydrolysate.IntBiodeteriorBiodegr2007;59:85–9.
´enG.Designingsimultaneoussacchari cationand[12]OlofssonK,RudolfA,Lid
fermentationforimprovedxyloseconversionbyarecombinantstrainofSaccharomycescerevisiae.JBiotechnol2008;134:112–20.
[13]Tomás-PejóE,OlivaJM,GonzálezA,BallesterosI,BallesterosM.Bioethanol
productionfromwheatstrawbythethermotolerantyeastKluyveromycesmarxianusCECT10875inasimultaneoussacchari cationandfermentationfed-batchprocess.Fuel2009;88:2142–7.
[14]HsuCL,ChangKS,LaiMZ,ChangTC,ChangYH,JangHD.Pretreatmentand
hydrolysisofcellulosicagriculturalwasteswithacellulase-producingStreptomycesforbioethanolproduction.BiomassBioenergy2011;35:1878–84.
[15]eofdinitrosalicylicacidreagentfordeterminationofreducing
sugar.AnalChem1959;31:426–8.
[16]SumphanwanichJ,LeepipatpiboonN,SrinorakutaraT,AkaracharanyaA.
Evaluationofdilute-acidpretreatedbagasse,corncobandricestrawfor
玉米芯分批补料发酵工艺优化
Y.-H.Changetal./Fuel97(2012)166–173
ethanolfermentationbySaccharomycescerevisiae.AnnMicrobiol2008;58(2):219–25.
[17]PalmqvistE,Hahn-HagerdalB.Fermentationoflignocellulosichydrolysates.I.
Inhibitionanddetoxi cation.BioresourTechnol2000;74:17–24.
173
[18]GarcíaMartínJF,CuevasM,BravoV,SánchezS.Ethanolproductionfromolive
pruningsbyautohydrolysisandfermentationwithCandidatropicalis.RenewEnergy2010;35:1602–8.
正在阅读:
Comparison of batch and fed-batch fermentations using corncob hydrolysate for bioethanol production07-23
太阳能光伏培训教材(NEW)04-26
DCS课程设计解读01-05
2014年新《安全生产法》试卷(答案)11-18
精选高中语文第四专题第14课谏太宗十思疏课时跟踪检测苏教版必修305-08
某大酒店康乐部管理与服务全套规定04-29
2016-2017学年人教版一年级上册数学全册同步练习及答案 - 图文05-05
人教版语文五年级句子排序练习题附答案03-03
灭菌效果监测与质量管理06-11
爱无处不在作文400字02-04
- 1Baryon production in ALEPH
- 2A Comparison Between Chinese Etiquette and Western Etiquette
- 3Problems of economics and cost control in charcoal production
- 4An analysis of historic production trends in Australian base
- 5Comparison between Chinese and American traditional values
- 6Comparison between Chinese and American Education(中美教育
- 7Joint resummation for heavy quark production
- 8A joint model of production scheduling and predictive
- 9Enhanced production of dihydroxyacetone from glycerol by overexpression
- 10Improvement of conical shaped charge system and comparison o
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- batch
- fermentations
- hydrolysate
- Comparison
- bioethanol
- production
- corncob
- using
- fed
- 郑州公租房廉租房申请条件、材料及流程
- Topic1_中国债券市场概览
- 光伏电能在城市路灯照明中的应用设计
- 第四章混频器模块的制作与调试
- 2012高考物理实验题——实验题预测冲刺高考
- 变压器制作规格书
- 2014-2019年中国黑小米行业市场发展现状及投资前景预测报告
- 5000立方米液氨储罐施工方案
- 转子动平衡理论分析
- 物料主数据_维护示例1
- 言多必失,沉默是金
- 桥面系及附属工程施工方案
- 中国各省市名称大全
- 《科技英语》课后习题答桉完整版
- 军训活动开幕致辞2021年5篇
- 虞园小学课改实验方案
- 第三章国际私法的历史发展
- 3.3旅游业对地理环境的影响
- 1.2.4 绝对值(第一课时)(新人教版七年级上洋思教案)
- 牛津英语 7B Unit 8 单词词汇练习