安徽省阜阳市第三中学2015-2016学年高二上学期第二次调研考试理数试题
更新时间:2023-09-10 14:04:02 阅读量: 教育文库 文档下载
安徽省阜阳三中2015-2016学年高二年级第二次调研考试
理科数学
第Ⅰ卷(选择题 共60分)
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.
1. 命题“存在x0?R,2x0?0”的否定是( )
xx0A不存在x0?R, 使20>0 B一切x0?R, 2C 假命题 D真命题
?0
2.已知a=(λ+1,0,2),b=(6,2μ-1,2λ),若a∥b,则λ与μ的值可以是( )
111
A.2, B.-, C.-3,2 D.2,2
2323.如图所示,PD垂直于正方形ABCD所在平面,AB=2,E为PB的中3→→
点,cos〈DP,AE〉=,若以DA,DC,DP所在直线分别为x,y,z
3轴建立空间直角坐标系,则点E的坐标为( )
13
1,1,? C.?1,1,? D.(1,1,2) A.(1,1,1) B.?2?2???
4.二面角α-l-β为60°,A,B是棱l上的两点,AC,BD分别在半平面α,β内,AC⊥l,BD⊥l,且AB=AC=a,BD=2a,则CD的长为( )
A. a B.5a C.2a .3a
y2x2
5.抛物线的顶点在坐标原点,焦点与双曲线-=1的一个焦点重合,则该抛物线的标准方
54程可能是 ( )
A.x2=4y B.x2=-4y C.y2=-12x D.x2=-12y
x22→→
6.已知椭圆+y=1的左、右焦点分别为F1、F2,点M在该椭圆上,且MF1·MF2=0,则点
4M到y轴的距离为( )
23263A. B. C. D.3
3337.双曲线x2?my2?1的实轴长是虚轴长的2倍,则m=( )
A.2
B.4
C.
1 2D.
1 48.已知抛物线y=-x2+3上存在关于直线x+y=0对称的相异两点A,B,则|AB|等于( )
A.3 B.4 C.32 D.42
x2y2
9.在椭圆+=1内,通过点M(1,1),且被这点平分的弦所在的直线方程为( )
164
A.x+4y-5=0 C.4x+y-5=0 10.给定下列四个命题:
①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行; ②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直; ③垂直于同一直线的两条直线相互平行;
w.w.w..c.o.m B.x-4y-5=0 D.4x-y-5=0
④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直. 其中,为真命题的是
A.①和② B.②和③ C.③和④ D.②和④
11.已知实数a、b、c、d、e、f都不为零,则“”是“不等式与不等式的解集相同”的( )条件
A 充分非必要 B必要非充分 C 充要 D既不充分又不必要 12.如图,正方体ABCD-A1B1C1D1的棱长为1, 点M在棱AB上,且AM?D1 A1
B1
C1
1,点P是平面ABCD上的动点,且动点P3到直线A1D1的距离与点P到点M的距离的平方差为1, 则动点P的轨迹是( ) A A.圆 B.椭圆 C.抛物线 D.双曲线
D .P . M
C B
第Ⅱ卷(非选择题 共90分)
二、填空题:本大题共4小题,每小题5分,共20分.
13.双曲线C:x2?3y2?1的右焦点到其中一条渐近线的距离是 .
14.三角形ABC中,“sinA?sinB”是“A>B”的___________条件(填写“充分非必要,必要非充分,充要,或者既不充分又不必要”之一)
15.若直线y=(a+1)x-1与曲线恰好有一个公共点,则实数a的取值的集合为___________ 16.若自椭圆的中心到焦点、长轴顶点、以及到准线的距离之长可以组成一个直角三角形,则该椭圆离心率的平方等于_____________
三、解答题:解答应写出文字说明,证明过程或演算步骤.(必做题每题12分,选做题10分,
共70分)
17.已知p:-x2+6x+16≥0,q:x2-4x+4-m2≤0(m>0). (1)若p为真命题,求实数x的取值范围;
(2)若p是q成立的充分不必要条件,求实数m的取值范围
18.默写并证明三垂线定理(要求用向量法证明)
19.如图,平面PAC?平面ABC,?ABC是以AC为斜边的等腰直角三角形,E,F,O分别为PA,PB,AC的中点,
AC?16,PA?PC?10.
(1)设G是OC的中点,证明:FG//平面BOE; (2)证明:在?ABO内存在一点M,使FM?平面
BOE,并求点M到OA,OB的距离.
20.已知椭圆C经过点P(2),且与双曲线有相同的焦点 (1)求椭圆的标准方程;
(2)如果点Q是椭圆C上一点,点F是椭圆C的左焦求的取值范围。
?2?0交于两点A(xA,yA)和B(xB,yB),且21.已知曲线C:y?x2与直线l:x?yxA?xB.记曲线C在点A和点B之间那一段L与线段AB所围成的平面区域(含边界)为
D.设点P(s,t)是L上的任一点,且点P与点A和点B均不重合.
(1)若点Q是线段AB的中点,试求线段PQ的中点M的轨迹方程;
(2)若曲线G:x?2ax?y?4y?a?22251?0与点集D有公共点,试求a的最小值. 25
请考生在第(22),(23),(24)三题中任选一题做答.注意:只能做所选定的一个题目.如果多做,则按所做的第一个题目计分.如果第一个做的题目划掉,则直接计零分,请慎重!
22.设
{an}是首项为a,公差为d的等差数列(d?0),Sn是其前n项和.记
bn?nSn*,n?N,其中c为实数. 证明:数列{bn}是等差数列的必要条件是:c?0. 2n?c
23已知四棱锥P-ABCD的五个顶点都在半球O的球面上,若半球的半径是2,正方形ABCD的边长是,求四棱锥P-ABCD的体积最大是多少?
3x2y2??1上的两个动点,A(1,)24.已知 E,F是椭圆C:,
243O如果直线AE、直线 AF与x轴的交点不同,分别为点M、N,且 =,证明直线EF的斜率为定值,并求出这个定值。
高二理科数学
参 考 答 案
本试卷涉及到的其他知识尽量以必修五为依托,尽量紧扣课本,希望学生们学会研读教材,认真体会。题目4、9、10、13、15、18、20均来源于课本,你能找到么? 1-12 DAACD BBCAD DC
13、 14、充要 15、 16、 17.(1)由-x2+6x+16≥0,解得-2≤x≤8,
所以当p为真命题时,实数x的取值范围为-2≤x≤8.
(2)解法一:若q为真,可由x2-4x+4-m2≤0(m>0),解得2-m≤x≤2+m(m>0) 若p是q成立的充分不必要条件,则[-2,8]是[2-m,2+m]的真子集, m>0??
所以?2-m≤-2,(两等号不同时成立),得m≥6.
??2+m≥8所以实数m的取值范围是m≥6.
解法二:设f(x)=x2-4x+4-m2(m>0), 若p是q成立的充分不必要条件,
m>0??
,(两等号不同时成立),解得m≥6. 则有?f?-2?≤0
??f?8?≤0所以实数m的取值范围是m≥6.
18.默写并证明三垂线定理。(课本41页例题三),
19.证明:(I)如图,连结OP,因为PA?PC?10,所以PO AC, 由平面PAC?平面ABC,可得PO ,且?ABC是等腰直角三角形,BO
以O为坐标原点,分别以OB、OC、OP所在直线为x轴,y轴,建立空间直角坐标系O?xyz,z轴,
O?0,0,0?,A(0,?8,0),B(8,0,0),C(0,8,0),P(0,0,6),E(0,?4,3),F?4,0,3?,由题意得,G?0,4,0?,因
z ????????OB?(8,0,0),OE?(0,?4,3),因此可以计算得到
?????平面BOE的法向量为n?(0,3,4),FG?(?4,4,?3得?????n?FG?0,又直线FG不在平面BOE内,
因此有FG//平面BOE
y x ?????(II)设点M的坐标为?x0,y0,0?,则FM?(x0?4,y0,?3),因为FM?平面BOE,所以有??????99??FM//n,因此有x0?4,y0??,即点M的坐标为?4,?,0?,在平面直角坐标系xoy中,
44???x?0??AOB的内部区域满足不等式组?y?0,经检验,点M的坐标满足上述不等式组,所以
?x?y?8?在?ABO内存在一点M,使FM?平面BOE,由点M的坐标得点M到OA,OB的距离
正在阅读:
安徽省阜阳市第三中学2015-2016学年高二上学期第二次调研考试理数试题09-10
2022年关于难忘的社会实践-写事的作文1200字08-02
MODIS Product Table01-06
IP地址与Mac地址绑定11-26
通达信 大智慧 钱龙 公式 指标 条件 选股(2)11-05
金融资产管理公司资产处置公告管理办法(修订)(财金87号)03-11
管理学原理10-22
少儿编程分享:手把手教你用Python编写圣诞大挑战(一)08-19
动力学和热力学各模型特点10-22
- 1【政治】湖南省凤凰县华鑫实验中学2015-2016学年高二上学期第二次月考试题
- 2安徽省黄山市屯溪一中2015-2016学年高二上学期期中试题 英语
- 3河南省扶沟县包屯高级中学2015-2016学年高二上学期第二次段考(期
- 4山东省武城县二中2015-2016学年高二上学期第二次月考生物试卷
- 5安徽省合肥一中2015-2016学年高二上学期第一次段考数学试卷(理
- 6安徽省合肥市第一六八中学2015-2016学年高二上学期开学考试英语试题 Word版含答案
- 72015-2016学年河北省正定中学高二上学期第三次(期中)考试生物
- 82015-2016学年高二上学期第二阶段考试生物(理)试卷
- 9西北农林科大附中2015—2016学年高二上学期第二次月考政治试卷
- 10安徽省六安市第一中学2022-2022学年高二上学期国庆作业理数试题
- exercise2
- 铅锌矿详查地质设计 - 图文
- 厨余垃圾、餐厨垃圾堆肥系统设计方案
- 陈明珠开题报告
- 化工原理精选例题
- 政府形象宣传册营销案例
- 小学一至三年级语文阅读专项练习题
- 2014.民诉 期末考试 复习题
- 巅峰智业 - 做好顶层设计对建设城市的重要意义
- (三起)冀教版三年级英语上册Unit4 Lesson24练习题及答案
- 2017年实心轮胎现状及发展趋势分析(目录)
- 基于GIS的农用地定级技术研究定稿
- 2017-2022年中国医疗保健市场调查与市场前景预测报告(目录) - 图文
- 作业
- OFDM技术仿真(MATLAB代码) - 图文
- Android工程师笔试题及答案
- 生命密码联合密码
- 空间地上权若干法律问题探究
- 江苏学业水平测试《机械基础》模拟试题
- 选课走班实施方案
- 阜阳市
- 安徽省
- 学年
- 高二
- 调研
- 试题
- 学期
- 中学
- 考试
- 理数
- 2015
- 2016
- 2019年新版《教育学》复习要点
- 邛崃市高埂中学校园防范暴力事件应急处置预案
- 2014北京电影学院导演系考研真题答案讲解
- 高速公路养护专业人员考试题库
- 万水二桥施工方案
- 各大高校心理咨询热线
- 口号标语之仓库管理标语口号
- 两个荷载结构法ansys命令流实例
- 船舶动力装置实操实习报告
- 儿科入院评估单 - 图文
- 江苏省句容市华阳学校2017 - 2018学年八年级数学下学期期中试题新人教版(附答案)
- 2017-2018届安徽省江淮十校高三8月联考文科数学试题及答案
- 靖远县基层党建工作综述
- WHO造血与淋巴组织肿瘤分类分型及标准新
- 文明礼仪伴我行班会教案
- 党风廉政文化建设知识竞赛题库
- 110kV xx变电站改造工程施工方案1
- 高鸿业第五版《西方经济学》宏观部分期末必看试题及答案
- 2008上英语三级试题及答案
- 河南省电力公司配电网工程20千伏及以下配电网建设预算编制与计算… - 图文