2020-2021学年湘教版数学八年级下册1.4角平分线的性质及其逆定理教案
更新时间:2023-06-03 18:37:01 阅读量: 实用文档 文档下载
第1课时角平分线的性质及其逆定理
一、教学目标
1、探究并理解角平分线的性质及其逆定理。(重点)
2、会运用角平分线性质定理的逆定理判定角平分线。(重难点)
3、通过探究讨论,提高学习数学的兴趣,培养合作交流意识。
二、重点难点
1.探究并理解角平分线的性质及其逆定理。(重点)
2.会运用角平分线性质定理的逆定理判定角平分线。(重难点)三、方法手段
(一)教法
1、信息技术手段。(没有“班班通”的免)
2、演示法,讲授法,图示法,例题法,练习法,随堂检测法。(二)学法
阅读法,观察法,理解记忆法,习题法。
(三)教学准备
1、制作PPT,微课和几何画板。
2、用硬纸做一个角,用于对折演示角平分线。
3、配套导学案
四、教学过程
(一)挑战第一关,温故知新
1、如图1,已知OC平分∠AOB,
则 = =
2
1
=2 =2
2、如图2,AOB
内有一点P,
①过点P作OA、OB的垂线段PD、PE
②的长度叫做点P到OA的距离.
③的长度叫做点P到OB的距离.
3. 如图3, OC是∠AOB的平分线,
点P是射线OC上的任意一点,
PD⊥OA,PE ⊥OB,
点D、E为垂足.
PD和PE有什么样的关系呢?
(操作过程:点名个别学生回答)
(二)挑战第二关探索新知
探究一:探究角平分线的性质
1.认真观察自己手中的角的平分线上的点,你有什么发现?
2.大胆猜测角平分线的性质。
3.如何验证你的猜测,可以采取什么样的方法?
图1 图2 图3
4.验证。
方法一:根据角的对称性和折叠得出猜想
方法二:(见学案第4页报告单)
方法三:证明
证明与图形有关的命题,一般有以下步骤:
第一步:根据题意,画出图形;
第二步:根据命题的条件和结论,结合图形,写出已知,求证。 已知:如图,∠AOC =∠BOC ,点P 在OC 上, PD ⊥OA ,
PE ⊥OB ,垂足分别为点D 、E. 求证:PD=PE. 第三步:通过分析找出证明的途径,写出证明过程。
证明:∵ PD ⊥OA ,PE ⊥ OB (已知)
∴ ∠PDO= ∠PEO=90°(垂直的定义)
在△PDO 和△PEO 中
∠PDO= ∠PEO (已证)
∠AOC= ∠BOC (已证)
OP=OP (公共边)
∴ △PDO ≌ △PEO (AAS )
∴ PD=PE (全等三角形的对应边相等)
结论:角平分线上的点到角的两边的距离相等.
几何语言:
∵∠AOC=∠BOC, PD ⊥OA ,PE ⊥OB
∴ PD=PE (操作过程:先独立思考,再对子合作交流,再对子分工进行展示,
重点说明分析思路,并注意几何语言的书写)
(三)挑战第三关 快乐砸蛋
1.我来答:(加2分)
第一个敢回答问题的你,非常棒!恭喜你已经迈出了成功的第一步。
2.我来判
(1)∵ 如下左图6,AD 平分∠BAC (已知),
∴BD=CD (在角的平分线上的点到这个角的两边的距离相等) 图4
图5
(2)∵ 如上右图, DC ⊥AC ,DB ⊥AB (已知).
∴BD=CD (在角的平分线上的点到这个角的两边的距离相等)
3.我来填
如图,AM 是∠BAC 的平分线,点P 在AM 上,
PD ⊥AB ,PE ⊥AC ,垂足分别是D 、E ,PD=4cm ,
则PE=______cm
4.我来写 角的平分线的性质:角的平分线上的点到角的两边的距离相等
这个定理的条件是什么?结论呢?
(操作过程:学生抢答,对所学知识进行巩固)
(四)挑战第四关 探索新知2
探究二:角平分线的性质定理的逆定理
问题:交换角的平分线的性质中的条件和结论,你能得到什么命题,这个新命题正确吗?
已知:如图,PD ⊥OA ,PE ⊥OB ,垂足分别是D 、E ,PD=PE.
求证:点P 在∠AOB 的平分线上. 证明:作射线OP , ∵PD ⊥OA ,PE ⊥OB.
∴∠PDO =∠PEO =90°
在Rt △PDO 和Rt △PEO 中,
OP=OP (公共边),
PD= PE (已知 ),
∴Rt △PDO ≌Rt △PEO ( HL ). ∴∠AOP =∠BOP
∴点P 在∠AOB 的平分线上.
结论:角的内部到角的两边的距离相等的点在角的平分线上.
几何语言:
∵ PD ⊥OA,PE ⊥OB ,PD=PE.
∴点P 在∠AOB 的平分线上.
(操作过程:先独立思考,再对子合作交流,再对子分工进行展示, 重点说明分析思路,并注意几何语言的书写)
(五)挑战第五关 典例精析 1.已知:如图,在△ABC 中,AD 是它的角平分线,
且BD=CD,DE ⊥AB, DF ⊥AC.垂足分别为E,F.
求证:EB=FC.
图8 图8 F
E D B
C A 图11 图9 图10
2已知:如图,在△ABC 中,D 是BC 的中点,DE ⊥AB ,DF ⊥AC ,垂足分别是E ,F ,且BE =CF 求证:AD 是△ABC 的角平分线。
(操作过程:先独立思考,再小组合作交流,再小组分工进行展示,
一、三、五组展示第1题,二、四、六组展示第2题,重点写出分析过程。)
(六)挑战第六关 我的收获
1.请把你的收获分享给大家
2.请把你的提醒告诉给同伴
3.请把你的困惑反馈给老师
(操作过程:学生自由发言,讲出他的收获或困惑,其他同学进行补充)
D B A 图12
正在阅读:
2020-2021学年湘教版数学八年级下册1.4角平分线的性质及其逆定理教案06-03
陕北人结婚03-26
公需课新时期广东生态文明建设答案11-14
小学生礼仪常识12-11
实习合约(doc 1页)08-20
中国十大古代名曲简介06-03
中国浮式生产储油船(FPSO)的开发现状11-10
24点练习题库(不含答案)11-28
小学生六一优秀作文06-15
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- 逆定理
- 分线
- 学年
- 下册
- 教案
- 性质
- 及其
- 年级
- 数学
- 2020
- 2021
- 1.4
- 6S管理在现代医院管理中的作用
- 危险化学品事故应急救援预案(2012版)
- 浅议书法与中学语文教学
- 高一政治作业设计:第二课第一框(优)
- 中国大气污染治理行业发展研究与投资价值报告(2015版)
- 生活垃圾填埋场课程设计(榆林环11级)
- 张家界旅游产业发展总体规划(修编)
- 宏观经济学习题解答
- 机电一体化-回转工作台的设计
- 多介质过滤器的工作原理
- New J. Chem. 2009, 33, 1320-1323
- 北京林业大学教务处
- 教案 山东科技版小学英语五年级下册Unit 4
- 《不动产估价》实训指导书
- 机械加工工艺过程卡片及工序卡
- 抗-HCV的实验室检测及其结果报告指南
- 移动通信网络的规划与优化
- 八年级生物上册复习习题
- 自考金融理论与实务笔记(11)
- 人教版数学八年级下册导学案:19.1.2函数图像(1)