2011Consensus of linear multi-agent systems with reduced-order observer-based protocols
更新时间:2023-05-20 11:51:01 阅读量: 实用文档 文档下载
linear consensus
Systems&ControlLetters60(2011)
510–516
ContentslistsavailableatScienceDirect
Systems&ControlLetters
journalhomepage:
/locate/sysconle
Consensusoflinearmulti-agentsystemswithreduced-orderobserver-basedprotocols
ZhongkuiLia,XiangdongLiua,PengLinb,WeiRenc,
abc
SchoolofAutomation,BeijingInstituteofTechnology,Beijing100081,China
InstituteofAstronauticsandAeronautics,UniversityofElectronicsScienceandTechnologyofChina,Chengdu610054,ChinaDepartmentofElectricalandComputerEngineering,UtahStateUniversity,Logan,UT84322-4120,USA
articleinfoabstract
Thispaperconsiderstheconsensusproblemsforbothcontinuous-anddiscrete-timelinearmulti-agentsystemswithdirectedcommunicationtopologies.Distributedreduced-orderobserver-basedconsensusprotocolsareproposed,basedontherelativeoutputsofneighboringagents.Amulti-stepalgorithmispresentedtoconstructareduced-orderprotocol,underwhichacontinuous-timemulti-agentsystemwhosecommunicationtopologycontainsadirectedspanningtreecanreachconsensus.Thisalgorithmisfurthermodifiedtoachieveconsensuswithaprescribedconvergencerate.Thesetwoalgorithmshaveafavorabledecouplingproperty.InlightofthemodifiedalgebraicRiccatiequation,analgorithmisthengiventoconstructareduced-orderprotocolforthediscrete-timecase.
©2011ElsevierB.V.Allrightsreserved.
Articlehistory:
Received15November2010Receivedinrevisedform18February2011
Accepted4April2011
Availableonline5May2011Keywords:
Multi-agentsystemConsensus
Reduced-orderobserverConvergencerate
1.Introduction
Cooperativecontrolofagroupofagentshasreceivedcom-pellingattentionfromvariousscientificcommunities.Agroupofautonomousagentscancoordinatewitheachotherviacommuni-cationorsensingnetworkstoperformcertainchallengingtasks,whichcannotbewellaccomplishedbyasingleagent.Itspotentialapplicationsincludespacecraftformationflying,sensornetworks,andcooperativesurveillance[1,2].Intheareaofcooperativecon-trolofmulti-agentsystems,consensusisanimportantandfunda-mentalproblem,whichiscloselyrelatedtoformationcontrol[3]andflockingproblems[4,5].Themainideaofconsensusistode-velopdistributedcontrolpoliciesthatenableagroupofagentstoreachanagreementoncertainquantitiesofinterest.
Consensusproblemshavebeenextensivelystudiedbynumer-ousresearchersfromvariousperspectives.Atheoreticalexplana-tionisprovidedin[6]forthealignmentbehaviorobservedin[7]byusinggraphtheory.In[8],ageneralframeworkoftheconsensusproblemfornetworksofdynamicagentswithfixedorswitchingtopologiesisaddressed.Theconditionsgivenby[6,8]arefurtherrelaxedin[9].Thecontrolledagreementproblemformulti-agentnetworksisconsideredfromagraph-theoreticperspectivein[10].Trackingcontrolformulti-agentconsensuswithanactiveleaderis
Correspondingauthor.Tel.:+14357972831;fax:+14357973054.
E-mailaddresses:wei.ren@usu.edu,wren@u.edu(W.Ren).
consideredin[11]byusinganeighbor-basedstate-estimationrule.Adistributedalgorithmisproposedin[12]toachieveconsensusinfinitetime.ThedistributedH∞controlandconsensusproblemsareinvestigatedin[13,14]fornetworksofagentssubjecttoexternaldisturbances.Theconsensusproblemofnetworksofdouble-andhigh-orderintegratorsisstudiedin[15–18].Sampled-datacontrolprotocolsareproposedin[19,20]toachieveconsensusforfixedandswitchingagentnetworks.Onelimitationintheaforemen-tionedworksisthattheagentdynamicsareassumedtobefirst-,second-,orhigh-orderintegrators,whichmightberestrictiveinmanycases.
Thispaperextendstoconsiderthedistributedconsensusprob-lemsformulti-agentsystemswithcontinuous-anddiscrete-timegenerallineardynamicsanddirectedcommunicationtopologiesbyexpandingonourpreliminarywork[21].Distributedreduced-orderobserver-baseddynamicconsensusprotocols,relyingontherelativeoutputsofneighboringagents,areproposedforboththecontinuous-anddiscrete-timecases.Thedynamicprotocolsherecanberegardedasextensionsofthetraditionalreduced-orderobserver-basedcontrollerforasinglesystemtothoseformulti-agentsystems.Itisshownthattheseparationprincipleoftra-ditionalobserver-basedcontrollersstillholdsinthemulti-agentsetting.Previousworksrelatedtothispaperinclude[22–26].Incontrasttothestaticconsensusprotocolbasedontherelativestatesin[22],theprotocolsinthecurrentpaperrelyontherelativeoutputs.Incontrasttothedynamicprotocolsin[23–26],whosedi-mensionsareequaltoorevenhigherthanthatofasingleagent,the
0167-6911/$–seefrontmatter©2011ElsevierB.V.Allrightsreserved.doi:10.1016/j.sysconle.2011.04.008
linear consensus
Z.Lietal./Systems&ControlLetters60(2011)510–516511
protocolsinthecurrentpaperarereduced-orderandhencehavelowerdimensions.Inparticular,thefull-orderobserver-basedpro-tocolin[25]possessesacertaindegreeofredundancy,whichstemsfromthefactthatwhiletheobserverconstructsanestimateoftheentirestate,partofthestateinformationisalreadyreflectedinthesystemoutputs.Thereduced-orderprotocolproposedhereelim-inatesthisredundancyandtherebycanconsiderablyreducethedimensionoftheprotocolespeciallyforthecasewheretheagentsareMIMOsystems.
Forthecontinuous-timecase,amulti-stepalgorithmispresentedtoconstructareduced-orderobserver-basedconsensusprotocolforamulti-agentsystemwhosecommunicationtopologycontainsadirectedspanningtree.Itisshownthatasufficientconditionfortheexistenceofsuchaprotocolisthateachagentisstabilizableanddetectable.Anotheralgorithmisfurtherproposedtoconstructaprotocol,underwhichtheagentscanreachconsensuswithaprescribedconvergencerate.Thesetwoalgorithmshaveafavorabledecouplingfeature.Specifically,thefirstthreestepsinthesealgorithmsdealwithonlytheagentdynamics,whilethelaststeptacklesthecommunicationtopology.Thecasewithdiscrete-timeagentdynamicsisalsoconsidered,wheretherow-stochasticmatrix,ratherthantheLaplacianmatrixasinthecontinuous-timecase,isutilizedtocharacterizethecommunicationtopology.InlightofthemodifiedalgebraicRiccatiequation,analgorithmisgiventoconstructareduced-orderprotocoltosolvetheconsensusproblemforadiscrete-timemulti-agentsystemwhosecommunicationtopologycontainsadirectedspanningtree.ItisobservedthatthenonzeroeigenvaluewiththesmallestrealpartoftheLaplacianmatrixplaysakeyroleinthecontinuous-timecase,whilethenon-oneeigenvalueofthestochasticmatrixwiththelargestmagnitudeiscriticalinthediscrete-timecase.
Therestofthispaperisorganizedasfollows.Somebasicno-tationandusefulresultsofthegraphtheoryarereviewedinSec-tion2.Theconsensusproblemsofcontinuous-anddiscrete-timemulti-agentsystemsareinvestigatedin,respectively,Sections3and4.Section5concludesthepaper.2.Conceptsandnotation
LetRn×n
andCn×n
bethesetofn×nrealmatricesandcomplexmatrices,respectively.ThesuperscriptTmeanstransposeforrealmatricesandHmeansconjugatetransposeforcomplexmatrices.INrepresentstheidentitymatrixofdimensionN.Matrices,ifnotexplicitlystated,areassumedtohavecompatibledimensions.Denoteby1thecolumnvectorwithallentriesequaltoone.Re(ζ)denotestherealpartofζ∈C.A BdenotestheKroneckerproductofmatricesAandB.ThematrixinequalityA>(≥)BmeansthatAandBaresquareHermitianmatricesandthatA Bispositive(semi-)definite.AmatrixisHurwitz(inthecontinuous-timesense)ifallofitseigenvalueshavenegativerealparts,whileitisSchurstable(inthediscrete-timesense)ifallofitseigenvalueshavemagnitudelessthan1.
AdirectedgraphGisapair(V,E),whereVisanonemptyfinitesetofnodesandE V×Visasetofedges,inwhichanedgeisrepresentedbyanorderedpairofdistinctnodes.Foranedge(i,j),nodeiiscalledtheparentnode,nodejthechildnode,andiisaneighborofj.Agraphwiththepropertythat(i,j)∈Eimplies(j,i)∈Eissaidtobeundirected.ApathonGfromnodei1tonodeilisasequenceoforderededgesoftheform(ik,ik+1),k=1,...,l 1.Adirectedgraphhasorcontainsadirectedspanningtreeifthereexistsanodecalledtheroot,whichhasnoparentnode,suchthatthereexistsadirectedpathfromthisnodetoeveryothernodeinthegraph.
Suppose)∈thattherearemnodesinagraph.TheadjacencymatrixA=(aijRm×misdefinedbyaii=0,aij=1if(j,i)∈Eandaij=
0∑otherwise.TheLaplacianmatrixL∈Rm×misdefinedasLm×m
ii=matrixj=iaij,Lij= aijfori=j.LetD∈R
bearow-stochasticwiththeadditionalassumptionthatd(ii>0,dij>0ifj,i)∈Eanddij=0otherwise.
Lemma2.1([8,9,27]).ZeroisaneigenvalueofLwith1andanonnegativevectorrT∈R1×N,respectively,asthecorrespondingrightandlefteigenvectors,andallnonzeroeigenvalueshavepositiverealparts.Furthermore,zeroisasimpleeigenvalueofLifandonlyifthegraphGhasadirectedspanningtree.
Lemma2.2([9]).OneisaneigenvalueofDwith1anda
nonnegativevector r
T∈R1×N,respectively,asthecorrespondingrightandlefteigenvectors,andallothereigenvaluesofDareintheopenunitdisk.Furthermore,oneisasimpleeigenvalueofDifandonlyifGcontainsadirectedspanningtree.3.Continuous-timemulti-agentsystems
ConsideragroupofNidenticalagentswithgeneralcontinuous-timelineardynamics.Thedynamicsofthei-thagentaredescribedby
˙x
i=Axi+Bui,yi=Cxi,
i=1,...,N,
(1)
wherexi∈Rnisthestate,ui∈Rpthecontrolinput,andyi∈Rqthemeasuredoutput.A,B,C,areconstantmatriceswithcompatibledimensions,whereCisassumedtohavefullrowrank.
Itisassumedthateachagenthasaccesstotherelativeoutputmeasurementswithrespecttoitsneighbors.Differingfromthedynamicprotocolsin[23–26],whosedimensionsareequaltoorevenhigherthanthatofasingleagent,weintroducehereareduced-orderobserver-basedconsensusprotocolas
v˙i=Fvi+Gyi+TBui,
u Ni=cKQ1
aij(yi yj)
j=1
(2)
+cKQ N2
aij(vi vj),
i=1,···,N,
j=1
wherevi∈Rn qistheprotocolstate,c>0isthecouplingstrength,aijisthe(i,j)-thentryoftheadjacencymatrixAofadirectedgraphG,F∈R(n q)×(n q)isHurwitzandhasnoeigenvaluesincommonwiththoseofA,G∈R(n q)×q,T∈R(n q)×nistheuniquesolutiontothefollowingSylvesterequation:TA FT=GC,
whichfurthersatisfiesthat (3)
C
T
isnonsingular,Q1∈Rn×qQ and
2∈R
n×(n q)
aregivenby[QC 1
1Q2]=
T
,andK∈Rp×nis
thefeedbackgainmatrixtobedesigned.Notethatprotocol(2)isdistributed,sinceitisbasedonlyontherelativeinformationofneighboringagents.
Letzi=[xTT]T
andz=[zTTTi,vi1,...,zN].Then,theclosed-loopnetworkdynamicsresultingfrom(1)and(2)canbewrittenas
˙z
=(IN M+cL R)z,(4)
whereL∈RN×N[
]
istheLaplacianmatrixofG,andM=
A0GC
,R=
[
BKQ1C
BKQ2
]
F
TBKQ1C
TBKQ2
.
Wesaythattheprotocol(2)solvestheconsensusproblemfor(1),ifthestatesof(4)satisfylimt→∞‖xi(t) xj(t)‖=0, i,j=1,...,N.
Next,analgorithmispresentedtoselectthecontrolparametersin(2).
linear consensus
512Z.Lietal./Systems&ControlLetters60(2011)510–516
Algorithm3.1.Giventhat(A,B,C)isstabilizableanddetectable,theprotocol(2)canbeconstructedasfollows:
(1)ChooseaHurwitzmatrixFhavingnoeigenvaluesincommon
withthoseofA.SelectGsuchthat(F,G)isstabilizable.(2)Solve(3)togetasolutionT,whichsatisfiesthat
C T
nonsingular. Then,computematricesQ1andQ2by
Q1
Q2
is
=
C 1
T
.
(3)Solvethefollowinglinearmatrixinequality(LMI):
AP+PAT
2BBT
<0,
(5)
togetonesolutionP>0.Then,choosethematrixK= BTP 1.
(4)Selectthecouplingstrengthc≥1
λminRe,whereλiisthei-thi=0
i
eigenvalueofL.
Remark3.2.ByTheorem8.M6in[28],anecessaryconditionforthematrix Ttotheuniquesolutionto(3)andfurthertosatisfythat
C
T
isnonsingularisthat(F,G)isstabilizable,(A,C)is
detectable,andFandAhavenocommoneigenvalues.Inthecasewheretheagentin(1)issingle-inputsingle-output(SISO),thisconditionisalsosufficient.Undersuchacondition,itisshownforthegeneral multi-input multi-output(MIMO) casethattheprobabilityfor
C
T
tobenonsingularis1[28].If
CT
issingularin
step(2),weneedtogobacktostep(1)andrepeattheprocess.Asshownin[25],anecessaryandsufficientconditionfortheexistenceofapositive-definitesolutiontotheLMI(5)isthat(A,B)isstabilizable.Therefore,asufficientconditionforAlgorithm3.1tosuccessfullyconstructaprotocol(2)isthat(A,B,C)isstabilizableanddetectable.
Theorem3.3.Forthemulti-agentnetwork(4)whosecommunica-tiontopologyGcontainsadirectedspanningtree,thedynamicpro-tocol(2)constructedbyAlgorithm3.1solvestheconsensusproblem.Specifically,
xi(t)→ (t) (rT eAt) x1( .0).. ,(6)
xN(0)
vi(t)→GC (t),i=1,...,N,ast→∞,
wherer∈RNisanonnegativevectorsuchthatrTL=0and
rT1=1.
Proof.ξLetξ=((IsatisfiesthefollowingN 1rTdynamics:
) I2n q)z.Then,itfollowsfrom(4)thatξ
˙=(IN M+cL R)ξ.(7)
Clearly,0isasimpleeigenvalueofIN 1rTwith1astherighteigenvector,and1istheothereigenvaluewithmultiplicityN 1.Thus,bythedefinitionofξ,ξ=0ifandonlyifz1=···=zN,i.e.,theconsensusproblemissolvedifsystem(7)isasymptoticallystable.
BecauseGcontainsadirectedspanningtree,itfollowsfromLemma2.1thatzeroisasimpleeigenvalueofLandallother
eigenvalueshavepositiverealparts.thatUT
LU=Λ=
LetUN×N
besucha00
∈Runitarymatrix0
,wherethediagonal
entriesof arethenonzeroeigenvaluesofL.Sincetherightandlefteigenvectorscorrespondingtothezeroeigenvalue[ofLare,respectively,1andrT,wecanchooseU=1
]
Y1 N,UT=rT
Y2
,withY1∈RN×(N 1),Y2∈R(N 1)×N.Letζ [ζTTT
1,...,ζN]=
(UT I2n q)ξ.Then,(7)canberewrittenasζ
˙=(IN M+cΛ R)ζ.(8)
Bythedefinitionofξ,itiseasytoseethatζ1=(rT I2n q)ξ=0.Noteζthatthestatematrixof(8)isblockuppertriangular.Hence,i,i=2,...,N,convergeasymptoticallytozero,ifandonlyiftheN 1subsystems
ζ
˙i=(M+cλiR)ζi,i=2,...,N,
(9)
areasymptoticallystable.Multiplying sidesofthematrixM+cλI
theleftandrightiRbyQ= TI
andQ 1,respectively,andin
virtueof(3),weget[
Q(M+cλiR)Q
1
=
A+cλiBK
cλiBKQ2
]
F
.(10)
Bysteps(3)and(4)inAlgorithm3.1,wecanobtainthatthereexistsaP>0satisfying
(A+cλiBK)P+P(A+cλiBK)H=AP+PAT 2cRe(λi)BBT
≤AP+PAT 2BBT<0,i=2,...,N.
Thatis,A+cλiBK,i=2,...,N,areHurwitz.Therefore,theN 1systemsin(9)areasymptoticallystable,implyingthatsystem(7)isasymptoticallystable,i.e.,theconsensusproblemissolved.Next,thesolutionof(4)canbeobtainedasz(t)=e(IN M+cL R)tz(0)
=(U I)e(IN M+cΛ R)t[(UT I)z(0)
Mt=(U I)e0
e
(0]I)t(UT
N 1 M+c R I)z(0).
(11)
IthasbeenshownabovethatIN 1 M+c RisHurwitz.Thus,z(t)→(1 I)eMt(rT I)z(0)
=(1rT) eMtz(0),
ast→∞,
implyingthat
zi(t)→rT eMtz(0),
ast→∞.
(12)
SinceFisHurwitz,(12)directlyleadsto(6).
Remark3.4.Theconsensusprotocol(2)canberegardedas
anextensionofthetraditionalreduced-orderobserver-basedcontrollerforasinglesystemtotheoneformulti-agentsystems.Theseparationprincipleofthetraditionalobserver-basedcontrollersstillholdsinthemulti-agentsetting,asshownin(10).Someobservationsonthefinalconsensusvaluein(6)canbeconcludedasfollows:IfAin(1)haseigenvalueslocatedintheopenright-halfplane,thentheconsensusvalue (t)reachedbythe (agentswilltendtoinfinityexponentially.IfAisHurwitz,thent)→0,ast→∞.Ontheotherhand,ifAhaseigenvaluesintheclosedleft-halfplane,thentheagentsin(1)mayreachconsensusnontrivially.Thatis,somestatesofeachagentmightapproachacommonnonzerovalue.Typicalexamplesbelongingtothelastcaseincludethecommonly-studiedfirst-,second-,andhigh-orderintegrators.
Remark3.5.Algorithm3.1hasafavorabledecouplingfeature.Specifically,thefirstthreestepsdealwithonlytheagentdynamicsandthefeedbackgainmatricesof(2),whilethelaststeptacklesthecommunicationtopology.Therefore,theconsensusprotocol(2)constructedviaAlgorithm3.1foragivencommunicationgraphcanbedirectlyusedforanyothercommunicationgraphcontainingadirectedspanningtree,withtheonlyadditionaltaskofappropriatelyadjustingthecouplingstrengthc.
linear consensus
Z.Lietal./Systems&ControlLetters60(2011)510–516
513
Fig.1.Thecommunicationtopology.
Algorithm3.1constructsaprotocoltoachieveconsensus.Inthefollowing,theprotocol(2)willberedesignedtoachieveconsensuswithagivenconvergencerate.FromtheproofofTheorem3.3,itiseasytoseethattheconvergencerateoftheNagentsin(1)reachingconsensusundertheprotocol(2)isequaltotheminimaldecayrate
oftheN 1systemsin(9).Thedecayrateofthesystem˙x
=AxisdefinedasthemaximumofnegativerealpartsoftheeigenvaluesofA[29].Thus,bynoticing(10),theconvergencerateofagents(1)reachingconsensuscanbemanipulatedbyproperlyassigningtheeigenvaluesofA+cλiBK,i=2,...,N,andF.
Algorithm3.6.Giventhat(A,B,C)isstabilizableanddetectable,theprotocol(2)canbeconstructedasfollows:
(1)ChoosethematrixFwhoseeigenvalueslieintheleft-halfplane
ofx= α.SelectGsuchthat(F,G)isstablizable.(2)Step2inAlgorithm3.1.(3)SolvethefollowingLMI:
AQ+QAT 2BBT+2αQ<0,
(13)
togetonesolutionQ>0.Then,choosethematrixK= BTQ 1.
(4)Step4inAlgorithm3.1.
Theorem3.7.Forthemulti-agentnetwork(4)withGcontain-ingadirectedspanningtree,theprotocol(2)constructedbyAlgo-rithm3.6solvestheconsensusproblemwithaconvergenceratelargerthanα.Thefinalconsensusvaluesarethesameasin(6).
Proof.ItcanbeshownbyfollowingsimilarstepstothoseinTheorem3.3,andbyfurthernotingthefact:Thedecayrateofthe
system˙x
=Axislargerthanα>0,ifandonlyifthereexistsamatrixQ>0suchthatAQ+QAT+2αQ<0[29].
Example3.8.Consideranetworkofsecond-orderintegrators,i.e.,theagentdynamicsin(1)aregivenby[
]
[A=
010
]
00
,B=
1
,C=
1
0
.
Afirst-orderdynamicprotocolbasedonlyontherelativepositionsisintheformof(2).
TakeF= 2andG= ingthefunctiontosolvetheSylvesterEq.(3)givesT= lyapin 0.50.25 Matlab,whichobviouslysatisfiesthat
C
T
isnonsingular.Then,thematricesQ1
andQ2canbeobtainedasQ0
1=
4
andQ1
2=
2
.Solving
the LMI(5)byusing theSedumitoolbox[30],wehaveK= 0.8543 2.5628.Assumethatthecommunicationgraphis
givenbyFig.1.ThecorrespondingLaplacianmatrixis
300 1
1
1 10000L= 1 1 12000
1
00100 ,000 110
00
1
1
whosenonzeroeigenvaluesare1,1.3376±0.5623j,2,3.3247.ByAlgorithm3.1andTheorem3.3,theprotocol(2)withfeedbackgainmatricesgivenasabovesolvestheconsensusproblemforthecommunicationgraphinFig.1,ifthecouplingstrengthc≥1.Algorithm3.6canbeutilizedtoconstructaprotocolachievingconsensuswithaprescribedconvergencerate,e.g.,largerthan1.Thematricesin(2)exceptKremain(13)withα=1givesK= thesame.Solving 5.0141 3.7372 theLMI.ForthecommunicationgraphinFig.1,selectc=1forsimplicity.Thestatesofthenetwork(4)withtheprotocol(2)givenbyAlgorithm3.6asabovearedepictedinFig.2.Theconvergencerateoftheagentsreachingconsensuscanbeobtainedas1.5301.4.Discrete-timemulti-agentsystems
Thissectionfocusesonthediscrete-timecounterpartofthelastsection.ConsideranetworkofNidenticaldiscrete-timelinearagents,withthedynamicsofthei-thagentdescribedbyx+i=Axi+Bui,yi=Cxi,
i=1,...,N,
(14)
wherexi=xi(k)∈Rn×nisthestate,x+i=xi(k+1)isthestateat
thenexttimeinstant,ui∈Rp
isthecontrolinput,andyi∈Rqisthemeasuredoutput.ItisassumedthatCisoffullrowrank.
Similartothecontinuous-timecase,thefollowingreduced-orderobserver-basedconsensusprotocolisproposed
v +i=Fv i+Gyi+TBui,
u Ni=KQ1
dij(yi yj)+KQ N2
dij(v i v j),
(15)
j=1
j=1
i=1,...,N,
wherev i∈Rn qistheprotocolstate,F∈R(n q)×(n q)isSchurstableandhasnoeigenvaluesincommonwiththoseofA,G∈R (n q)×q,T∈R(n q)×nistheuniquesolutiontoC
(3),satisfyingthat
T
isnonsingular,Q1
QC 1
2
=
T
,K∈Rp×nisthefeedback
gainmatrixtobedesigned,anddijisthe(i,j)-thentryoftherow-stochasticmatrixDassociatedwiththegraphG.
Let zi=[xTi,v
Ti]Tand z=[ zT
TTnetworkdynamicscanbewritten1,...,zN].Then,thecollectiveas
z
+=(IN M+(IN D) R)z ,(16)
wherematricesMandRaredefinedin(4).
Wesaythattheprotocol(15)solvestheconsensusproblemfor(1)ifthestatesof(16)satisfylimk→∞‖xi(k) xj(k)‖=0, i,j=1,...,N.
Beforemovingforward,weintroducethefollowingmodifiedalgebraicRiccatiequation(MARE)[31,32]:P=ATPA δATPB(BTPB+I) 1BTPA+Q.
(17)
Forδ=1,theMARE(17)isreducedtothecommonly-useddiscrete-timeRiccatiequationdiscussedin,e.g.,[33].
ThefollowinglemmashowstheexistenceofsolutionsfortheMARE.
linear consensus
514Z.Lietal./Systems&ControlLetters60(2011)
510–516
Fig.2.Thestatesofthenetwork(4)undertheprotocol(2)constructedviaAlgorithm3.6.Herexi(k)denotesthek-thcomponentofxi.
Lemma4.1([31,32]).For0<δ<1,theMARE(17)hasauniquepositive-definitesolutionP,ifthematrixAhasnoeigenvalueswithmagnitudelargerthan1,(A,Q1/2)isstablizable,and(A,C)isdetectable.Furthermore,P=limk→∞PkforanyinitialconditionP0≥0,wherePksatisfies
P(k+1)=ATP(k)A δATP(k)B(BTP(k)B+I) 1BTP(k)A+Q.Next,analgorithmfortheprotocol(15)ispresented,whichwillbeusedlater.
Algorithm4.1.Giventhat(A,B,C)isstabilizableanddetectable,theprotocol(15)canbeconstructedasfollows:
(1)SelectaSchurstablematrixFhavingnoeigenvaluesin
commonwiththoseofA,andGsuchthat(F ,G )isstablizable.(2)Solve(3)togetasolutionT,satisfyingthat
Then,computethematricesQ1andQ2byQ1
T
Theorem4.3.AssumethatAhasnoeigenvalueswithmagnitude
largerthan1.Forthemulti-agentnetwork(16)withGcontain-ingadirectedspanningtree,theprotocol(15)constructedbyAlgo-rithm4.1solvestheconsensusproblem.Specifically,
T Ak) xi(k+1)→ψ(k+1) (rv i(k+1)→GCψ(k+1),
. .. ,
xN(0)
x1(0)
(19)
i=1,...,N,ask→∞,
∈RNisnonnegativesuchthatr T(IN D)=0andr T1=1.wherer
=((IN 1r T) I2n q)z .AsdemonstratedintheProof.Letξ
proofofTheorem3.3,theconsensusproblemcanbereducedto
,whichevolvesaccordingtothetheasymptoticalstabilityofξ
followingdynamics:
+=(IN M+(IN D) R)ξ. ξ
(20)
C
T
isnonsingular.Q2=
1
CT
.
(3)ChooseK= (BPB+I)BPA,whereP>0istheunique
solutionofthefollowingMARE:
1T
i|2)ATPB(BTPBP=ATPA (1 max|λ
i|<1|λ
+I) 1BTPA+Q,
ibeingthei-theigenvalueofD.withQ>0andλ
(18)
Foranygraphcontainingadirectedspanningtree,itfollowsfrom
Lemma2.2that0isasimpleeigenvalueofIN Dandallothereigenvaluesliewithinadiskofradius1+0j[1centered]atthepoint T 1 1,U = T=rYinthecomplexplane.LetU 2,withY
N
1∈RN×(N 1),Y 2∈R(N 1)×N,besuchunitarymatricesthatY
Remark4.2.Asufficientconditionfortheexistenceofthe
consensusprotocolbyusingAlgorithm4.1isthat(A,B,C)isstabilizableanddetectable,andAhasnoeigenvalueswithmagnitudelargerthan1whichisrequiredheretoensurethesolvabilityoftheMARE(18).
T(IN D)U =Λ =U
,wherethediagonalentriesof
TTT [ζ 1 NarethenonzeroeigenvaluesofIN D.Letζ,...,ζ]=
T I2n q)ξ .Then,(20)canberewrittenas(U
+=(IN M+(IN Λ ) R)ζ.ζ
(21)
linear consensus
Z.Lietal./Systems&ControlLetters60(2011)510–516515
Clearly,ζ
1=(r T I2n q)ξ =0.of(21)isblockuppertriangular,ζ
Bynotingthatthestatematrixi,i=2,...,N,convergetozeroasymptotically,ifandonlyiftheN 1subsystemsζ
+i=(M+(1 λ i)R)ζ i,i=2,...,N,
(22)
are asymptoticallystable.Itis knownthatM+(1 λ i)Rissimilar
to
A+(1 λ
i)BK(1 λ
i)BKQ20
F
.Inlightofstep(3)inAlgorithm4.1,
wecanobtain
(A+(1 λ
i)BK)HP(A+(1 λ i)BK) P=ATPA 2Re(1 λ
i)ATPB(BTPB+I) 1BTPA P+|1 λ
i|2ATPB(BTPB+I) 1BTPB(BTPB+I) 1BTPA=ATPA+( 2Re(1 λ
i)+|1 λ i|2)AT×PB(BTPB+I) 1BTPA P+|1 λ
i|2ATPB(BTPB+I) 1×( I+BTPB(BTPB+I) 1)BTPA
=ATPA+(|λ
i|2 1)ATPB(BTPB+I) 1BTPA P |1 λ
i|2ATPB(BTPB+I) 2BTPA≤ATPA (1 max| i|2|λ
<λ
)ATPB(BTPB+I) 1BTPA Pi|1= Q<0,
(23)
wheretheidentity I+BTPB(BTPB+I) 1= (BTPB+I) 1
hasbeenapplied.Then,(23)impliesthatA+(1 ,...,λ
i)BK,i=2N,areSchurstable.Therefore,theN 1systemsin(22)areasymptoticallystable,implyingthattheconsensusproblemissolved.
BynotingthatIN 1 M+
RisSchurstable,thesolutionof(16)canbeobtainedas
z
(k+1)=(IN M+(IN D) R)kz (0)=(U
I)(IN M+Λ R)k(U T I)z (0)=(U
[ I)Mk0] T0(I R)k(U I) z(0)N 1 M+ →(1 r
T) Mkz (0),ask→∞.
(24)
Therefore,wehave
z
i(k+1)→r T Mkz (0),ask→∞,
whichdirectlyleadsto(19).
Remark4.4.Theorem4.3givesthediscrete-timecounterpartof
theresultsinTheorem3.3.TheLaplacianmatrixLisusedinthelastsectiontorepresentthecommunicationgraphforcontinuous-timemulti-agentsystems.Incontrast,therow-stochasticmatrixDisutilizedhereforthediscrete-timecase.ByobservingAlgorithms3.1,3.6and4.1,itcanbeconcludedthatthenonzeroeigenvaluewiththesmallestrealpartoftheLaplacianmatrixplaysakeyroleincontinuous-timemulti-agentsystems,whilethenon-oneeigenvalueofthestochasticmatrixwiththelargestmagnitudeiscriticalforthediscrete-timecase.Itcanbeobservedfrom(19)thattheconsensusvalueψ(k+1)reachedbytheagentswilltendtoinfinityexponentially,ifAin(14)hasaneigenvaluewithmagnitudelargerthan1.Therefore,theassumptiononAinTheorem4.3doesnotinvolvemuchconservatism.SimilartoTheorem3.3,Ain(14)witheigenvalueswithaunitmagnitudeiscriticalfortheagentstoreachconsensusnontrivially.5.Conclusion
Inthispaper,theconsensusproblemsformulti-agentsystemswithcontinuous-anddiscrete-timelineardynamicsanddirected
communicationtopologieshavebeenconsidered.Distributed
reduced-orderconsensusprotocols,basedontheinformationofrelativeoutputsofneighboringagents,havebeenproposed.Severalmulti-stepalgorithmshavebeenpresentedtoconstructtheconsensusprotocols,whichsolvetheconsensusproblemforboththecontinuous-anddiscrete-timecases.Inthispaper,wedidnotconsidertheissuesoftimedelays,switchingtopologies,orrandomgraphs.However,theseissuesareinterestingtopicsthatdeservefurtherinvestigationinfuturework.Acknowledgments
ThisworkwassupportedinpartbytheNationalNaturalScienceFoundationofChinaunderGrantNos.10832006,10872030,ChinaPostdoctoralScienceFoundationunderGrantNo.20100480211,andNationalScienceFoundationCAREERAwardECCS–0748287.References
[1]R.Olfati-Saber,J.Fax,R.Murray,Consensusandcooperationinnetworked
multi-agentsystems,ProceedingsoftheIEEE95(1)(2007)215–233.
[2]W.Ren,R.Beard,E.Atkins,Informationconsensusinmultivehiclecooperative
control,IEEEControlSystemsMagazine27(2)(2007)71–82.
[3]J.Fax,R.Murray,Informationflowandcooperativecontrolofvehicle
formations,IEEETransactionsonAutomaticControl49(9)(2004)1465–1476.[4]R.Olfati-Saber,Flockingformulti-agentdynamicsystems:algorithmsand
theory,IEEETransactionsonAutomaticControl51(3)(2006)401–420.
[5]H.Su,X.Wang,Z.Lin,Flockingofmulti-agentswithavirtualleader,IEEE
TransactionsonAutomaticControl54(2)(2009)293–307.
[6]A.Jadbabaie,J.Lin,A.Morse,Coordinationofgroupsofmobileautonomous
agentsusingnearestneighborrules,IEEETransactionsonAutomaticControl48(6)(2003)988–1001.
[7]T.Vicsek,A.Czirók,E.Ben-Jacob,I.Cohen,O.Shochet,Noveltypeofphase
transitioninasystemofself-drivenparticles,PhysicalReviewLetters75(6)(1995)1226–1229.
[8]R.Olfati-Saber,R.Murray,Consensusproblemsinnetworksofagentswith
switchingtopologyandtime-delays,IEEETransactionsonAutomaticControl49(9)(2004)1520–1533.
[9]W.Ren,R.Beard,Consensusseekinginmultiagentsystemsunderdynamically
changinginteractiontopologies,IEEETransactionsonAutomaticControl50(5)(2005)655–661.
[10]A.Rahmani,M.Ji,M.Mesbahi,M.Egerstedt,Controllabilityofmulti-agent
systemsfromagraph-theoreticperspective,SIAMJournalonControlandOptimization48(1)(2009)162–186.
[11]Y.Hong,G.Chen,L.Bushnell,Distributedobserversdesignforleader-following
controlofmulti-agentnetworks,Automatica44(3)(2008)846–850.
[12]J.Cortés,Distributedalgorithmsforreachingconsensusongeneralfunctions,
Automatica44(3)(2008)726–737.
[13]P.Lin,Y.Jia,DistributedrobustH∞consensuscontrolindirectednetworksof
agentswithtime-delay,SystemsandControlLetters57(8)(2008)643–653.[14]Z.Li,Z.Duan,L.Huang,H∞controlofnetworkedmulti-agentsystems,Journal
ofSystemsScienceandComplexity22(1)(2009)35–48.
[15]W.Ren,Onconsensusalgorithmsfordouble-integratordynamics,IEEE
TransactionsonAutomaticControl53(6)(2008)1503–1509.
[16]P.Lin,Y.Jia,Furtherresultsondecentralisedcoordinationinnetworksof
agentswithsecond-orderdynamics,IETControlTheoryandApplications3(7)(2009)957–970.
[17]W.Ren,K.Moore,Y.Chen,High-orderandmodelreferenceconsensus
algorithmsincooperativecontrolofmultivehiclesystems,ASMEJournalofDynamicSystems,Measurement,andControl129(5)(2007)678–688.
[18]F.Jiang,L.Wang,Consensusseekingofhigh-orderdynamicmulti-agent
systemswithfixedandswitchingtopologies,InternationalJournalofControl85(2)(2010)404–420.
[19]Y.Cao,W.Ren,Sampled-datadiscrete-timecoordinationalgorithmsfor
double-integratordynamicsunderdynamicdirectedinteraction,InternationalJournalofControl83(3)(2010)506–515.
[20]Y.Gao,L.Wang,G.Xie,B.Wu,Consensusofmulti-agentsystemsbased
onsampled-datacontrol,InternationalJournalofControl82(12)(2009)2193–2205.
[21]Z.Li,X.Liu,P.Lin,W.Ren,Consensusofmulti-Agentsystemswithgeneral
lineardynamicsandreduced-orderprotocols,in:ProceedingsoftheChineseControlConference,Yantai,China,2011.
[22]S.Tuna,Conditionsforsynchronizabilityinarraysofcoupledlinearsystems,
IEEETransactionsonAutomaticControl54(10)(2009)2416–2420.
[23]L.Scardovi,R.Sepulchre,Synchronizationinnetworksofidenticallinear
systems,Automatica45(11)(2009)2557–2562.
[24]J.Seo,H.Shim,J.Back,Consensusofhigh-orderlinearsystemsusingdynamic
outputfeedbackcompensator:lowgainapproach,Automatica45(11)(2009)2659–2664.
linear consensus
516Z.Lietal./Systems&ControlLetters60(2011)510–516
[30]J.Sturm,UsingSeDuMi1.02,aMATLABtoolboxforoptimizationover
symmetriccones,OptimizationMethodsandSoftware11(1)(1999)625–653.
[31]B.Sinopoli,LSchenato,M.Franceschetti,K.Poolla,M.Jordan,S.Sastry,Kalman
filteringwithintermittentobservations,IEEETransactionsonAutomaticControl49(9)(2004)1453–1464.
[32]L.Schenato,B.Sinopoli,M.Franceschetti,K.Poolla,S.Sastry,Foundationsof
controlandestimationoverlossynetworks,ProceedingsoftheIEEE95(1)(2007)163–187.
[33]K.Zhou,J.Doyle,EssentialsofRobustControl,PrenticeHall,UpperSaddle
River,NJ,1998.
[25]Z.Li,Z.Duan,G.Chen,L.Huang,Consensusofmultiagentsystemsand
synchronizationofcomplexnetworks:Aunifiedviewpoint,IEEETransactionsonCircuitsandSystemsI:RegularPapers57(1)(2010)213–224.
[26]Z.Li,Z.Duan,GChen,Ondynamicconsensusoflinearmulti-agentsystems,
IETControlTheoryandApplications5(1)(2011)19–28.
[27]R.Agaev,P.Chebotarev,OnthespectraofnonsymmetricLaplacianmatrices,
LinearAlgebraanditsApplications399(1)(2005)157–178.
[28]C.Chen,LinearSystemTheoryandDesign,OxfordUniversityPress,NewYork,
NY,1999.
[29]S.Boyd,L.ElGhaoui,E.Feron,V.Balakrishnan,LinearMatrixInequalitiesin
SystemandControlTheory,SIAM,Philadelphia,PA,1994.
正在阅读:
2011Consensus of linear multi-agent systems with reduced-order observer-based protocols05-20
云桂线沉降观测实施细则02-03
爱提分四年级第一阶几何第02讲12-23
两室一厅简欧风格装修设计 - 图文03-17
传播学理论起源、方法与应用05-26
2014江苏事业单位面试备考:考前实战演练及解析二十九05-11
神奇的蚯蚓作文600字07-09
汽车倒车防撞报警器毕业设计12-25
- 1ATOMAS A Transaction-oriented Open Multi Agent-System. Final Report
- 2A Consensus Based Method for Tracking Modelling Background Scenario and Foreground Appearan
- 3A Consensus Based Method for Tracking Modelling Background Scenario and Foreground Appearan
- 4A new interface paradigm for motion capture based animation systems
- 5From Design to Integration of Transitic Systems A Component Based Approach
- 6Method of Designing Missile Controller Based on Multi-Objective Optimization
- 7A Framework for Role-Based Access Control in Group Communication Systems
- 8Measuring Similarity of Large Software Systems Based on Source Code Correspondence
- 91 Mobile Maps and More – Extending Location- Based Services with Multi-Criteria Decision A
- 10LMI-based robust control of uncertain discrete-time piecewise affine systems
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- 2011Consensus
- protocols
- observer
- systems
- reduced
- linear
- multi
- agent
- order
- based
- with
- 小儿咳嗽变异性哮喘的护理分析
- 加强信息化建设促进农村党建工作
- 九江分公司开发医用透明聚丙烯专用树脂_倪杰
- 外国文学史综合论述题第二部分(精华)宏利巨献
- 中医内科学考试常考知识点总结
- 2010年泰安市初中学生学业考试地理试题(试题+答案+解析)
- 天天平价—沃尔玛的促销策略
- 公园绿地调研报告
- 磁悬浮离心式冷水机组
- 机电一体化技术的研究现状与发展趋势
- 房屋建筑工程质量保修书(示范文本)
- 城市住宅小区物业管理服务收费暂行办法(1996-3-1)
- 梯形屋架课程设计
- 丰田品质体系保证图
- SAP__PM_40_维修工单管理
- 利益分析视域下的英国北极参与:政策与借鉴
- 八年级上学期政治期中考试知识点(1)
- 我国城市文化艺术的保护性开发策略研究——以金坛刻纸为例
- 数学课堂教师即时评价语言的运用123
- 某路桥公司部门岗位职责描述