小学五年级奥数整除练习题

更新时间:2023-09-28 01:18:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

6.能被11整除的数的特征是:这个数的奇数位上的数字之和与偶数位上数字之和的差(大减小)是11的倍数

例:判断123456789这九位数能否被11整除

解:这个数的奇数位上的数字之和三个是9+7+5+3+1=25,偶数位上的数字之和是8+6+4+2=20。因为25-20=5,有因为11不能被5整除,所以123456789不能被11整除

再例如:判断13574能否是11的倍数?

解:这个数的奇数位上的数字之和与偶数位上的数字和的差是:(4+5+1)— (7+3)=0因为0是任何整数的倍数,所以11能被0整除。因此13574是11的倍数。 7.能被7(11或13 )整除的数的特征:一个整数的末三位数与末三位以前的数字组成的数之差,(大减小)能被7(11或13 )整除 例如:判断1059282是否是7的倍数?

解:把1059282分成1059和282两个数,因为1059-282=777,由777能被7整除,所以1059282能被7整除,因此1059282是7的倍数 再例如:判断3546725能否被3整除?

解:把3546725分乘3456和725两个数。因为3456—725=2821。在把2821分成2和821两个数。因为82—2=819,又819能被13整除,所以2819能被13整除,进而3546725能被13整除 练习题

1. 判断123456789这九位数能否被11整除? 判断13574是否是11的倍数? 判断1059282是否是7的倍数? 判断3546725能否被13整除?

2.已知45x1993y。求所有满足条件的六位数x1993y。

3.李老师为学校一共买了28支价格相同的钢笔,共付人民币9.2元。已知处数字相同,请问每支钢笔多少元?

4.已知整数1a2a3a4a5a能被11整除。求所有满足这个条件的整数。

5.把三位数3ab接连重复地写下去,共写1993个3ab,所得的数3ab3ab?3?ab恰是91的??????1993个3ab倍数。试求ab=?

6.在865后面补上三个数字,组成一个六位数,使它能分别被3、4、5整除,且使这个数值尽可能的小。

7.求能被26整除的六位数x1991y。

8.已知72x931y,求满足条件的五位数。

9.已知五位数154xy能被8和9整除,求x?y的值。

10.若五位数32x5y能同时被2、3、5整除,试求满足条件的所有这样的五位数。

11.将自然数1、2、3、4、5、6、7、8、9依次重复写下去组成一个1993位数,试问:这个数能否被3整除?

12.一本陈年老账上记着:72只桶,共67.9元。这里处字迹已不清。请把处数字补上,并求桶的单价。

13.证明:任意一个三位数连着写两次得到一个六位数,这个六位数一定能同时被7、11、13整除。

14.如果四位数6

8能被73整除,那么商是多少?

15.求出能被11整除,首位数字是4,其余各位数字均不相同的最大和最小的六位数。

17.已知自然数2?3?4?5?1能被11整除,问:?代表数码几?

18.四位数A752是24的倍数,A最大是几?

19.1?2?3???15能否被9009整除?

20两个四位数A275和275B相乘,要使它们的乘积能被72整除,求A和B。

21.小马虎买了72支同样的钢笔,可是发票不慎落水浸湿,单价已无法辨认,总价数字也不全,只能认出:11.4字么?

22.商店里有六箱货物,分别中15,16,18,19,20,31千克,两个顾客买走了其中五箱。已知一个顾客买的货物重量是另一个顾客的2倍。问:商店剩下的一箱货物

元(

表示不明数字)。你能帮助小马虎找出不明数

重多少千克?

23.有一水果店进了六筐水果,分别装着香蕉和桔子,重量分别为8,9,16,20,22,和27千克。当天只卖出一筐桔子,在剩下的五筐中香蕉的重量是桔子重量的2倍。问:这天水果店进了多少千克香蕉?

24、55个苹果分给甲、乙、丙三人,甲的苹果个数是乙的2倍,丙最少但也多于个。问:三人各得多少苹果?

25、证明:任意两个连续奇数的和一定是4的倍数。

10

本文来源:https://www.bwwdw.com/article/h71d.html

Top