Hydrodynamical simulations of the jet in the symbiotic star MWC 560 III. Application to X-r
更新时间:2023-07-21 23:58:01 阅读量: 实用文档 文档下载
In papers I and II in this series, we presented hydrodynamical simulations of jet models with parameters representative of the symbiotic system MWC 560. These were simulations of a pulsed, initially underdense jet in a high density ambient medium. Since th
Received2007February28;accepted2007April04
APreprinttypesetusingLTEXstyleemulateapjv.10/09/06
HYDRODYNAMICALSIMULATIONSOFTHEJETINTHESYMBIOTICSTARMWC560
III.APPLICATIONTOX-RAYJETSINSYMBIOTICSTARS
MatthiasStuteandRaghvendraSahai
JetPropulsionLaboratory,CaliforniaInstituteofTechnology,4800OakGroveDrive,Pasadena,CA91109,USA
Received2007February28;accepted2007April04
arXiv:0704.2240v1 [astro-ph] 17 Apr 2007
ABSTRACT
InpapersIandIIinthisseries,wepresentedhydrodynamicalsimulationsofjetmodelswithparametersrepresentativeofthesymbioticsystemMWC560.Theseweresimulationsofapulsed,initiallyunderdensejetinahighdensityambientmedium.Sincethepulsedemissionofthejetcreatesinternalshocksandsincethejetvelocityisveryhigh,thejetbowshockandtheinternalshocksareheatedtohightemperaturesandshouldthereforeemitX-rayradiation.Inthispaper,weinvestigateindetailtheX-raypropertiesofthejetsinourmodels.WehavefocusedourstudyonthetotalX-rayluminosityanditstemporalvariability,theresultingspectraandthespatialdistributionoftheemission.TemperatureanddensitymapsfromourhydrodynamicalsimulationswithradiativecoolingpresentedinthesecondpaperareusedtogetherwithemissivitiescalculatedwiththeatomicdatabaseATOMDB.ThejetsinourmodelsshowextendedandvariableX-rayemissionwhichcanbecharacterizedasasumofhotandwarmcomponentswithtemperaturesthatareconsistentwithobservationsofCHCygandRAqr.TheX-rayspectraofourmodeljetsshowemissionlinefeatureswhichcorrespondtoobservedfeaturesinthespectraofCHCyg.Theinnermostpartsofourpulsedjetsshowironlineemissioninthe6.4–6.7keVrangewhichmayexplainsuchemissionfromthecentralsourceinRAqr.WeconcludethatMWC560shouldbedetectablewithChandraorXMM-Newton,andsuchX-rayobservationswillprovidecrucialforunderstandingjetsinsymbioticstars.
Subjectheadings:circumstellarmatter—hydrodynamics—ISM:jetsandout ows–binaries:sym-biotic–methods:numerical—X-rays:ISM
1.INTRODUCTION
Highlycollimatedfastout owsorjetsarecommoninmanyastrophysicalobjectsofdi erentsizesandmasses:activegalacticnuclei(AGN),X-raybinaries(XRBs),youngstellarobjects(YSO),pre-planetaryneb-ulae(PPN),supersoftX-raysourcesandsymbioticstars.Inthelasttwoobjects,thejetengineconsistsofanac-cretingwhitedwarf.Insymbioticstars,thecompanionisaredgiantundergoingstrongmassloss.Morethanonehundredsymbioticstarsareknown,butonlyabouttensystemsshowthepresenceofjets.ThemostfamoussystemsareRAquarii,CHCygni,andMWC560.
RAquarii,withadistanceofabout200pc,isoneofthenearestsymbioticstarsandawellknownjetsource.Thejethasbeenextensivelyobservedintheopticalandatra-diowavelengths(e.g.Solf&Ulrich1985;Itshowsarichmorphol-ogy,e.g.aseriesofparallelfeaturesinthejetandthecounter-jet,extendingtoafewhundredAUeach.Thisisahintofpulsedejectionofbothjets.Furthermore,RAqristhe rstjetinasymbioticsystem,whichwasde-tectedinX-raysuKelloggetal.2001).Kelloggetal.(2001)foundpeaksofOVIIat0.57keVinboththeNEandSWjetsandapeakofNVIat0.43keVonlyintheNEjet.ThespectraareconsistentwithasoftcomponentwithkT~0.25keV.ThecentralsourceshowsasupersoftblackbodyemissionwithkT~0.18keVandaFeKαlineat6.4keVwhichsuggeststhepresenceofahardsourcenearthehotstar.Recently,reportedon veyearsofobservationswithChandraandwereable
Electronicaddress:Matthias.Stute@jpl.nasa.gov
tomeasurethepropermotionofintheNEjetofabout600kms 1.investigatedtheX-rayemissionfromtheinner500AUofthissystem.In1984/85,CHCygnishowedastrongradiooutburst,duringwhichadouble-sidedjetwithmultiplecompo-nentswasejectedThisevental-lowedanaccuratemeasurementofthejetvelocitynear1500kms 1.InHSTobservations2002),arcscanbedetectedthatalsocouldbeproducedbyepisodicejectionevents.X-raywas rstde-tectedbyEXOSAT(Leahy&Taylorandsubse-quentASCAobservationsrevealedacomplexX-rayspec-trumwithtwosoftcomponents(kT=0.2and0.7keV)associatedwiththejet,(7.3keV)andaFeKαlineTheyinter-pretedthehardcomponentasthermalemissionbyma-terialbeingaccretedontothewhitedwarfandthesoftcomponentaseithercoronalemissionfromthegiantstaroremissionsfromshocksinthejets.AnalysisofarchivalChandraACISdatabyGalloway&Sokoloski(2004)re-vealedfaintextendedemissiontothesouth,alignedwiththeopticalandradiojetsseeninHSTandVLAob-servations.Wheatley&KallmanreanalyzedtheASCAdataandinterpretedthesoftemissionasscatter-ingofthehardcomponentinaphoto-ionizedmediumsurroundingthewhitedwarf.Theyclaimthatnoothersourcesthantheaccretingwhitedwarfarerequiredtoexplainthespectrum.Theobviousexistenceofthejet,however,andfurthermoretheapparentdeclineofthehardX-raycomponentobservedwiththeUS-JapaneseX-raysatelliteSuzakubyMukaietal.togetherwiththelackofacorrespondingdeclineinthesoftcom-ponent,suggestthatthisinterpretationisimplausible.
In papers I and II in this series, we presented hydrodynamical simulations of jet models with parameters representative of the symbiotic system MWC 560. These were simulations of a pulsed, initially underdense jet in a high density ambient medium. Since th
2
Recently,Karovskaetal.(2007,hereafterKCR07)re-portedthedetectionofmultiplecomponents,includinganarc,inthearchivalChandraimages.
RAqrandCHCygaretheonlytwojetsofsymbioticstarswhicharedetectedinX-rays.Whilethesetwoob-jectsareseenathighinclinations,inMWC560thejetaxisispracticallyparalleltothelineofsight.Thisspe-cialorientationallowsonetoobservetheout owinggasaslineabsorptioninthesourcespectrum.Withsuchobservationstheradialvelocityandthecolumndensityoftheout owingjetgasclosetothesourcehasbeeninvestigatedingreatdetail.Inparticulartheacceler-ationandevolutionofindividualout owcomponentsandjetpulseshasbeenprobedwithspectroscopicmon-itoringprograms,asdescribedinSchmidetal.(2001).Usingthisopticaldata,sophisticatednumericalmod-elsofthispulsedpropagatingjethavebeendeveloped(Stute,Camenzind&Schmid2005;Stute2006,here-afterPaperIandIIinthisseries).Anumberofhydro-dynamicalsimulations(withandwithoutcooling)weremadeinwhichthejetdensityandvelocityduringthepulseswerevaried.Thebasicmodelabsorptionlinepro lesinMWC560aswellasthemeanvelocityandvelocity-widthareingoodagreementwiththeobserva-tions.Theevolutionofthetime-varyinghighvelocityabsorptionline-componentsisalsowellmodeled.Thesemodelsnotonly ttheMWC560data,butarealsoabletoexplainpropertiesofjetsinothersymbioticsystemssuchastheobservedvelocityandtemperatureoftheCHCygjet.
Sofar,MWC560hasnotbeendetectedinX-rays(M¨ursetetal.1997).We ndusingthePIMMStool1thatthenon-detectionintheROSATall-skysurveysetsan1upperlimitoftheabsorbedX-ray uxof0.07countss (M¨ursetetal.1997)and7×10 13ergs 1cm 2,respectively.
Thejetsinallthreesymbioticstarsshowevidenceofepisodicity.Suchepisodicityintheejectionprocesshasbeenseeninnumericalmodelsoftheinteractionofthestellarmagnetosphereandtheaccretiondisk(e.g.Goodsonetal.1997;Mattetal.2002).Inthedisk-windscenario(e.g.Blandford&Payne1982;Andersonetal.2003)thetime-dependentemissioniscreatedbytimevariationsintheaccretionrateoftheunderlyingdisk.Unfortunately,sofarnohydrodynamicalmodelsexistforexplainingtheX-rayemissionfromsymbioticstars.Asa rststepwehavethereforeusedourexistingsim-ulations,which tMWC560,forunderstandingtheob-servedX-rayemissionpropertiesofMWC560,CHCygandRAqr.
In§2,webrie ydescribethenumericalmodelswehaveused.ThetotalX-rayluminosityanditstimedepen-denceisexaminedin§3.Aftertheresultingspectraarecalculatedin§4,weshowemissionmapsin§5andap-plyourmainresultstoX-rayobservationsofCHCyg,MWC560andRAqrin§6.Finallyourconclusionsaregivenin§7.
2.THENUMERICALMODELS2.1.Thehydrodynamicalsimulations
1
http://heasarc.gsfc.nasa.gov/Tools/w3pimms.html
Wesolvedtheequationsofidealhydrodynamicswithanadditionalcoolingtermintheenergyequation
ρ
t
+ (ρv v)= p ρ Φ e
CPwhichwaswrittenby
Ziegler&Yorke(1997)andmodi edbyThiele(2000)tocalculateradiativelossesduetonon-equilibriumcool-ingbylineemission.ρisthegasdensity,pthepressure,etheinternalenergydensity,Φthegravitationalpoten-tial,vthevelocityandγtheratioofthespeci cheatsatconstantpressureandvolumewhichissettoγ=5/3.ThegeneralcapabilitiesofthecodehavebeendescribedindetailinPaperI,forourapproximationsandassump-tionsrelatedtothecoolingtreatmentwereferthereadertoPaperII.Webrie ydescribethegeometrywhichwehaveadoptedinoursimulationsbelow.
Weuseacylindricalcoordinatesystemwherethejetaxiscorrespondstothezaxisandbothcomponentsofthebinarysystemarelocatedintheplaneperpendiculartothisaxis.Thehotcomponentislocatedattheoriginofthecoordinateframe;withabinaryseparationof4AU,aredgiantisimplemented.Theredgiantissurroundedbyastellarwindwithconstantvelocityof10kms 1andamasslossrateof10 6M⊙yr 1.
Thejetisproducedwithinathinjetnozzlewitharadiusof1AU.Theinitialvelocityofthesteadyjetischosento1000kms 1anditsdensityissetto8.4×10 18gcm 33(equaltoahydrogennumberdensityof5×106cm ). These8parametersleadtoi)amasslossrateof≈10M⊙yr 1inthesteadyjet,andii)adensitycontrastbetweenthesteadyjetandtheambientmediumηof5×10 3andaMachnumberof≈60inthejetnozzleattheoriginofthecoordinatesystem.Repeatedlyeachseventhday,thevelocityanddensityvaluesinthenozzlearechangedtosimulatethejetpulseswhichareseenintheobservationsofMWC560.Thedurationofeachpulseisoneday.
Twomodels(iv’andi’)outofourexistingsetofeightmodelswerechosenforcomputingX-rayemissionprop-erties.Thesemodelsrepresentmaximum(modeliv’)andminimum(modeli’)valuesofthejetdensityinthepulses.Inmodeliv’(modeli’),thejetdensityinthepulsesishigher(lower)thanthejetdensityinthesteadyjet.Althoughmodeliv’providedthebest tfortheop-ticaldataforMWC560,ourworkinthispapershowsthatmodeli’resultsinX-raypropertieswhicharemoreappropriateforCHCyg.Forbothmodelsweusedanapproximatetreatmentofradiativecooling.ThemodelpropertiesincludingthevelocitiesanddensitiesofthejetpulsesaregiveninTable1.
Mapsoflogarithmofdensityandtemperatureformodeli’onday162andformodeliv’onday115aregiveninFig.1.Botharethelasttime-stepscalculated.
2.2.CalculatingtheX-rayproperties
WedeterminedtheexpectedX-ray uxusingtheden-sityandtemperaturemapsfromthehydrodynamical
In papers I and II in this series, we presented hydrodynamical simulations of jet models with parameters representative of the symbiotic system MWC 560. These were simulations of a pulsed, initially underdense jet in a high density ambient medium. Since th
3
TABLE1
Parametersofthejetpulses
modeli’iv’
npulse[cm 3]1.25×1061×107
vpulse[kms 1]
20002000
˙jp[M⊙yr 1]M
4.66×10 93.73×10 8
Ljet[ergs 1]5.88×10334.70×1034
˙js=9.33×10 9M⊙yr 1andLjet=2.93×1033Note.—Thevaluesofthesteadyjetemissionaren=5×106cm 3,v=1000kms 1,M
˙jsandM˙jparethemassout owratesofthejetinthesteadystateandduringthepulse,respectively.Thedurationergs 1,respectively.M
ofeachpulseisoneday,theirperiodisseven
days.
Fig.1.—Logarithmofdensity(top)andtemperature(bottom)formodeli’onday162(left)andformodeliv’onday115(right),shownascontourplotsandslicesalongthejetaxis(solid)andparalleltothejetaxisatr=2AU(dashed).
In papers I and II in this series, we presented hydrodynamical simulations of jet models with parameters representative of the symbiotic system MWC 560. These were simulations of a pulsed, initially underdense jet in a high density ambient medium. Since th
4
Fig.2.—X-rayluminosityasafunctionoftheevolutiontimeofrangethei.e.0.15jetin–model15i’(solid)andmodeliv’(dashed)intheenergykeVtheareplotssimilar.
showingkeV.Mosttheluminosityoftheenergyintheisemittedenergyrangebelow0.152keV,–2simulationsasfollows.WeusedtheatomicdatabaseATOMDBwithIDLincludingtheAstrophysicalPlasmaEmissionDatabase(APED)andthespectralmodelsoutput
fromtheAstrophysicalPlasmaEmissionCode(APEC,Smithetal.2001)tocalculatetheemissivity.ThedefaultabundancesinATOMDB,i.e.14elements(H,He,C,N,O,Ne,Mg,Al,Si,S,Ar,Ca,Fe,Ni)withsolarabundancesofAnders&Grevesse(1989),areused.Theenergyrangeisdividedintobinsof0.01keV.Wecomputethespectrumandthetotal uxinX-raysasafunctionofevolutionarytimeforeachofourmodels.WecalculatetheX-rayemissionintherangebetween0.15–15keV,whichisexactlytheenergyrangecoveredbyEPIConXMM-NewtonandincludesthatoftheACISinstrument(0.2–10keV)andofHETG(0.4–10keV)onChandra.Theemissionfromgaswithatemperaturelowerthan 106Kisonlymarginalinthisenergyrange.
3.THETOTALX-RAYLUMINOSITYANDITSTIME
DEPENDENCE
Asexpected,thehightemperatures,createdbythein-teractionofthejetpulseswithpreviouslyejectedmatter,leadtosubstantialX-rayemission(Fig.2).TheX-rayluminosityinmodeliv’ishigherthaninmodeli’.ThisisaresultofthehigherdensityinthepulsesofthehigherkineticluminosityL˙andthus
v2pumpedjet.Furthermore,inmodeljet=1/2M
intothei’about5%oftheaveragekineticluminosityisradiatedinX-rays,butinmodeliv’about19%.SincetheX-raysareemittedbyshockedmaterialfromthefastmovingpulsesandsincetheX-rayluminosityisproportionaltoρ2,comparedtoLjetbeingproportionaltoρ,theratiooftheX-raylu-minositytothekineticluminosityisproportionaltoρ.Thereforethisratioishigherinmodeliv’thaninmodeli’.
We ndminimaandmaximaintheX-rayemissionL(computedbyintegratingovertheenergyrange0.15–15XkeV)whichareconnectedwiththeperiodicemergenceofjetpulses(Fig.3).ThustheperiodofthevariationsintheX-rayemissionisabout7days.Thesizeofthe uctuationsis50%andmoreoftheaverageemission.WhiletheX-rayluminositystaysconstantwithtimeformodeli’,itdecreaseswithtimeformodeliv’.Thisdi erencemightberelatedtoalargeramountofcoolinginmodeliv’.Theinitialshocktemperatureisidenticalinbothmodels,sincethevelocitiesarethesame.The
Fig.3.—X-rayluminosityasafunctionoftimeformodeli’(top)createdandmodeliv’(bottom);onecanindecreasesthetopbyplotstheemergenceshowthedi erentofeachnewtrendsjetseeofpulse;minimatheX-raytheanddottedmaximaluminositylineshigherdensitieswithtime.
inthejetpulsesinmodeliv’,however,leadtohigherdensitiesintheX-rayemittingmaterialandthustohigherpressureswhichresultinstrongeradi-abaticexpansionandhenceenhancedadiabaticcooling.Radiativecoolingisalsoenhancedbythehigherdensitiesinmodeliv’.
4.THESPECTRUMANDITSTIMEDEPENDENCE
Thespectraofbothmodelsintheenergyrangebe-tween0.15–15keVshowmanydi erentfeatures.Theyshowcontinuumemission,andsuperimposedonthecon-tinuum,alargenumberofemissionfeatures(someofwhichareblendsofseveralemissionlines).Aprominentfeature,whichismainlyduetoblendedironlines,isseenbetween0.7–1keV.Ironalsoproducesastrongemissionfeatureinthe6.4–76.7keVrangerequiringveryhightemperatures(~10K)thatarereachedlocallyinthejet.
LikethetotalX-rayluminosity,thespectrumisalsohighlytime-dependent(Fig.4).Wede netwoproxiesforthetemperature,oneusingthelowenergyspectrumandoneusingthehighenergyspectrum.Theseproxiescanthenbeusedconvenientlyfordirectcomparisonwiththesingle-temperaturethermalplasmamodelstypicallyusedto ttheobserveddata.
4.1.De ningtemperatureproxies
Inordertocharacterizethetemperatureoftheprop-agatingjetfromthelowenergyspectrum,weusethefactthatbelowenergiesofabout0.7keV,bothspectrainFig.4arealmostidentical,butdi ersigni cantlybe-tween0.7and2keV.Thereforewede netheproxyζfor
In papers I and II in this series, we presented hydrodynamical simulations of jet models with parameters representative of the symbiotic system MWC 560. These were simulations of a pulsed, initially underdense jet in a high density ambient medium. Since th
Fig.4.—Spectrumintheenergyrangebetween0.15–15keV;top:minosity,formodelity,solid)i’andondays155(close153(atominimumthemaximumoftheX-raytotalX-raylu-(dashed).dashed),wardsseethebytimeaThebottom:factorspectrumfordependenceof100plottedmodeliv’ondays105(solid)luminos-and107offortheclaritywithspectrum.
inaeachsolidplot.lineisOneshiftedcanclearlydown-relativelylowtemperatureplasma(107K)inthejetas
ζ=
f(0.2 0.7)keV
f(3)
9keV
Wechooseregionsinthespectrumwherenolinesarepresent,althoughphotonswiththesehighenergieshavenotbeenobservedfromthejetormightbeconfusedwithphotonsfromthecentralengineinobservedspectra.
4.2.Determiningthetemperaturefrommodelspectra
Inmodeli’,thehightemperatureproxy,log(ξ),varieswithtimespanningarangefrom1.5to3.Ithasitshigh-estvalue(i.e.thespectrumhasthesteepestslope,hencetheaveragetemperatureisatitslowest
value),whentheX-rayluminosityshowsaminimum(Fig.6).Compar-isonofthemodellog(ξ)valueswiththatofasingle-temperaturethermalplasma(Fig.5,bottom)givesustemperatureestimatesofthehotcomponentbetween8×106K(0.69keV)and1.7×107K(1.5keV).Thehighesttemperaturesareconsistentwiththatofpost-shockgaswithashockvelocityofabout1100kms 1.Theminimuminthelog(ξ)(i.e.maximuminaverage
5
Fig.5.—Temperatureproxiesasafunctionoftemperatureforahardnesssingle-temperaturetext.
ratioζ(top)thermaland uxplasmaratioξcalculated(bottom)aswithde nedATOMDB:intheFig.6.—X-rayluminosityofthejetasafunctionoftimeintheenergy(middle)range0.15–15keV(top), uxratioξasafunctionoftimemodelsi’.
andhardnessratioζasafunctionoftime(bottom)fortemperature)coincideswiththeemergenceofeachnewpulse;withinthenext2–3dayperiodthecompressedknotcoolsandtheemissivityincreases.ThereforethemaximumintheX-rayluminosityisreachedabout2–3dayslater.
Thelowtemperatureproxy,log(ζ),variesbetweenabout0.5and1.6,thecorrespondingtemperaturesliebetween1.6×106K(0.14keV)and3×106K(0.26keV).Thejetisthereforebetterdescribedasacombi-nationofawarmandahotcomponentratherthanasasingle-temperatureplasma.
Inmodeliv’,log(ξ)variesbetween2.16and2.8;thecorresponding7temperaturesare8×10K(0.69keV)and1.2×10K(1.03keV).Thelowtemperatureproxy,log(ζ),liesbetween0.1and0.6;thecorrespondingtem-peraturesare3×106K(0.26keV)and3.8×106K(0.33keV).Asinmodeli’,thejetisbettercharacterizedasacombinationofawarmandahotcomponent.
Therangeoftemperaturesinthehotcomponentoveronepulsecycleinmodeliv’issmallercomparedtothatinmodeli’;thisisbecausethehigherdensityinmodeliv’makesradiativecoolingmoree cient,suchthattheshockheatingisdampedmoree ciently.Thedi erentdensitycontrastsbetweenthejetpulsesandthesteadyjetinbothmodelsalsoleadtodi erentshockvelocitiesandthustodi erentshocktemperaturestowhichtheplasmaisheatedinitially.
In papers I and II in this series, we presented hydrodynamical simulations of jet models with parameters representative of the symbiotic system MWC 560. These were simulations of a pulsed, initially underdense jet in a high density ambient medium. Since th
6
Fig.7.—sameasFig.
6,butformodeliv’
Fig.8.—Spectrumintheenergyrangebetween0.15–15keVformodelveryusingdi erenti’ondaystwocomponentsionization155;severalatpotentialsstrongemissiondi erenttemperatures.
whichcanlinesonlyarebepresentexplainedwith4.3.Emissionlinesinthemodelspectra
Wehaveidenti edthestrongestemissionlineschar-acterizingatypicaljetspectrumusingthespectrumde-rivedfrommodeli’onday155asatemplate(Fig.8).Themostprominentlinesaretheoxygenlineat0.57keV,theNelinesat0.93and1.03keV,theMglinesat1.35and1.47keV,theSilinesat1.86,2.01and2.18keV,andtheFecomplexatabout6.5keV.Allstronglineswiththeiridenti cationsaregiveninTable2,in-cludingtheir uxesatdays153and155inmodeli’anddays105and107inmodeliv’.MostoftheselinesarehydrogenicorHe-likelinesofheavyelements,however,alsolinesofhigherionizationstatesarepresent(FeXXII,FeXXIII,FeXXV).Thusthissetoflineswithverydif-ferentionizationpotentialscanalsoonlyexplainedwithtwocomponentsatdi erenttemperatures.
5.THEX-RAYEMISSIONMAPS
Theresultsintheprevioussectionsuggesttheexis-tenceoftwocomponents,awarmonewithtemperaturesintherangeof(1.6–3.8)×106Kandahotonewithtemperaturesof(8–17)×106K,respectively.AsalreadypointedoutinPaperIandII,thejetconsistsofdense,coolknotsandtenuous,hotinter-knotgas.TheknotsaretoocoldtoemitX-rays,thusthelowandhighenergycomponentsintheX-rayspectrumprobethetempera-turestructureofthehotpartsofthejet(Fig.1andFig.12inpaperI).Thesehotpartsconsistofshockedmate-rialintheinter-knotgassegments.Temperaturegradi-
entsarepresentwithineachinter-knotgassegmentandalsobetweentheinter-knotgasclosetothejetsourceandthosedownstreamnearthejethead.Theregionswiththehighesttemperaturesandthusemissionabove6keVlieinthe rsttwointer-knotgassegmentswithinonlyafewAUfromthecentralsource(Fig.9).Theinter-knotgassegmentsbecomeprogressivelycooler,astheymovefartherawayfromthejetsourceduetoadiabaticexpansionandtheresultingcoolingofjetmaterial.
PARISONWITHOBSERVATIONS
WenowcomparetheresultsofourmodelstoX-rayobservationsofthethreeobjectsMWC560(onlyupperlimitstothe uxareavailable),CHCygandRAqr.
6.1.MWC560
Thesource uxesinthe0.2–2.4keVrangeare3×10 13ergs 1cm 2formodeli’and2×10 12ergs 1cm 2formodeliv’,usingadistanceof2.5kpctoMWC560(Schmidetal.2001,andreferencestherein).The 13latter uxisreducedtoanabsorbed uxof1.7×10ergs 1cm 2,usingthemodelofthevisualinterstellarextinctionintheGalaxybyHakkilaetal.(1997) 2whichgivesanAforMWC560.Thev=0.88orNabsorbed uxisH=1.55×1021cmconsistentwithMWC560’snon-detectionintheROSATall-skysurvey(<7×10 13ergs 1cm 2,M¨ursetetal.1997).The uxes,however,arehighenoughsuchthattoday’sX-raytelescopeasChandraandXMM-NewtonshouldbeabletodetectMWC5602.
6.2.CHCyg
SincethejetvelocitiesaresimilarinMWC560andCHCyg,wecanmakeadetailedcomparisonofourmodelswiththelatterobject.ThiscomparisonislimitedtothesoftemissionfromthepropagatingjetandexcludestheX-rayemissionaboveabout2keVwhichisbelievedtobedominatedbythevariablescatteredhardX-raysfromthecentralsource.
Ezukaetal.(1998)resolvedforthe rsttimeatomicemissionlines(ortheirblends)fromelementsinhydro-genicandHe-likeionizationstatesintheX-rayspectraofCHCyg.Themostprominentfeaturesintheobservedspectraaretheoxygenlineat0.57keV,theblendofi)Nelinesat0.93and1.03keV,ii)Mglinesat1.35and1.47keV,iii)Silinesat1.86,2.01and2.18keV,andtheFelinecomplexatabout6.5keV.Theselinesarealsoseeninourmodelspectra.Furthermore,theyalsohadtointroduceatwo-temperaturethermalplasmamodeltoexplainthesetoflinesdetectedintheASCAspec-trum.Thetemperaturesoftheirtwocomponents(0.21and0.72keV)areinthesamerangeasinourmodeli’(warmcomponent:0.14–0.26keV,hotcomponent:0.69–1.5keV,see§4.2).Inmodeliv’,thewarmcomponentistoohot(0.26–0.33keV)toexplaintheobservations.Recently,KCR07reportedthedetectionofmultiplecomponents,includinganarc,inthearchivalChandraimages.ThisarchasasimilaropeningangletomanyofthearcsvisibleinourX-rayemissionmaps(Fig.9),anditspresencesupportsourpulsed-jetmodelinwhich
2
executedXMM-NewtoninAO-6afterobservationsMay2007.
proposedbytheauthorswillbe
In papers I and II in this series, we presented hydrodynamical simulations of jet models with parameters representative of the symbiotic system MWC 560. These were simulations of a pulsed, initially underdense jet in a high density ambient medium. Since th
7
TABLE2
Prominentemissionlinesinthemodelspectra
ion
energy(keV)
ux(ergs 1cm 2)
modeli’modeliv’
day153day155day105day
107
Fig.9.—Emissionmapsofmodeli’onday155inthe0.15–1.5keVrange,inthe1.5–3keVrange,inthe3–6keVrangeandinthe
6–7keVrange.
In papers I and II in this series, we presented hydrodynamical simulations of jet models with parameters representative of the symbiotic system MWC 560. These were simulations of a pulsed, initially underdense jet in a high density ambient medium. Since th
8
suchemissionresultsfrominternalshocksgeneratedbycollidingjetejecta.
Consideringthesmallerdistanceof268pctoCHCyg,themodelX-ray33luminosityof2.2×1032ergs 1formodeli’and1.5×10ergs 1formodel 11iv’inthe0.2–2keVrangeimplies uxesof22.6×10ergs 1cm 2and1.74×10 10ergs 1cm ,respectively.TheinterstellarextinctionforCHCygisAv=0.006orNH=1×1020cm 2,thustheabsorbed uxis2×10 11ergs 1cm 2formodeli’and1.3×10 10ergs 1cm 2formodeliv’,respectively.Themeasured uxesofthesoftcompo-nentsassociatedwiththejet,however,lieintherange(0.4 3.8)×10 12ergs 1cm 2(Ezukaetal.1998;Galloway&Sokoloski2004;Mukaietal.2006).Sincethesemeasured uxesaresmallerthanthosepredictedbymodeli’andbyfarsmallerthanthosefrommodeliv’whichhasahigherjetpulsedensitythanmodeli’,weinferthatthejetpulsedensitiesinCHCygaresmallerthanthoseinMWC560andourmodels.If,asstatedin§3,theratiooftheX-rayluminositytothekineticen-ergypumpedintothejetisproportionaltothejetpulsedensity,wecanestimatethatthejetpulsedensityhastobereducedtoabout105cm 3tomodeltheX-ray uxobservedinCHCyg.Inordertoresolvethedi erencebetweenmeasuredandmodel uxeswithuncertaintiesinthedistancetoCHCyg,thelatterwouldhavetobeabout700pc,however,thislargevalueisveryunlikely,sincethedistancewasmeasuredwithHIPPARCOSwithanerrorof23%.
KCR07giveanobservationalestimateofthedensityinthejet,50cm 3,basedonthetotalX-rayluminosity,assuminganemittingspherewitharadiusof400AUandameanemissivityof2×10 23ergcm3s 1.How-ever,astrophysicaljets,typically,arecollimatedstruc-tureswhichhavesigni cantlysmallervolumesthanasphere.Sincewesimulatedthepropagationofthemodeljetsonlyuptoalengthof65AU,not400AU,wescaleupitsvolumeasfollows.Ifweassumethatthecross-sectionalareastaysconstantasthejetpropagatesandevolveswithtime,thejetvolumeisabout(π×62×400)AU3(Fig.9)whichissmallerbyaboutafactorof6000thanthatofaspherewitharadiusof400AU.Alter-natelyifweassumethatthelateralexpansionofthejetisproportionaltoitsaxialexpansion3,thevolumeisstilloverestimatedbyafactorofabout160.Furthermore,withinthevolumeofthejet,theX-raysareemittedbyclumpsandnotbythewholejet,i.e.the llingfactorfortheX-rayemissionis,ftemperatureof1.21<1.Inaddition,KCR07assumea×107K(1keV)toestimatetheemissivity,however,ourjetmodelsshowthatsuchhightemperaturesareonlyarchievedintheinnermostregionofthejet;atlargerdistancesfromthejetsourcealongtheaxis,theX-rayemittingknotsaresigni cantlycooler(Fig.1).ThusthevalueoftheemissitivityshouldbelowerandthedensityshouldbehigherthanestimatedbyKCR07byanothercorrectionfactorf2>1.HenceweconcludethatanaccurateestimateoftheX-rayemit-tingvolumeandthetemperaturewouldleadtoahigherdensitybyafactorof(160–6000)fgivenbyKCR07,oftheorder2/f1comparedtothevalueof104–106cm 3.ThisrangecompareswellwiththedensitiesofmaterialemittingsoftX-raysinourmodelswhichareoftheorder
3
whichisseeninourmodelsafterday70(PaperII)
of105–106cm 3(Fig.1).
OtherpossibilitiestoreducetheX-ray uxesinourmodels,bringingthemclosertotheobservedonesinCHCyg,arei)alongertimescalebetweenthepulsesandii)asmallervelocitydi erencebetweenthesteadyjetandthejetpulses.Inthe rstcase,lessenergyispumpedintothejetandeachjetknotandthejetheadcancoolfurtherbeforebeinghitbythenextpulse.Inthesecondcase,thesmallervelocitydi erencereducesthetemperaturetowhichtheshockedmaterialisheated.However,thedensitycontrastthenalsohastobeadjustedinordertoreproducetheobservedpropermotionofthejetknots.Whichoftheabovescenariosisthemostlikelyonecanonlybedeterminedfromfuturesimulationswhichhavebeen ne-tunedto tthepropertiesoftheX-rayemittingmaterialinthejetofCHCyg.
In1994and2006,the uxfromthejetinCHCygwasalmost 1atthesamelevel,intherange(2.7 3.8)×10 12ergscm 2(Ezukaetal.1998;Mukaietal.2006).In2001,however,itwaslowerbyafactoroften(Galloway&Sokoloski2004).Inthecontextofourmod-els,suchadropin uxmayresultfromalargedecreaseinthedensityofthepulseswhichmaybecausedbyadropintheaccretionrateontothewhitedwarf.
6.3.RAqr
SincethejetvelocityinRAqrissmallerbyafactorof2thanthoseinourmodels,wecanonlymakeamorelimitedcomparisonofthemodelresultswiththeob-servations.Kelloggetal.(2006)andalsoKorrecketal.(2006)reportatangentialmotionofanX-rayemittingknot4of600kms 1.Korrecketal.(2006)estimatedadensityof100cm 3,however,itmaybepossiblethat,asinthecaseofCHCyg,theX-rayemittingvolumeisoverestimatedandthusthedensityisunderestimated.Kelloggetal.(2001)foundinRAqrthattheNEjetismoreluminousbyafactorof3thantheSWjet.ThespectrumtheNEjetwas ttedwithasingle-temperaturethermalplasmawithatemperatureof1.66keV,thespec-trumoftheSWjetwithaplasmatemperatureof0.2keV.Thesimplestexplanationofthisdi erenceisthattheambientmediaonbothsideshavedi erentdensitieswhichwouldleadtodi erentcompressionfactorsandthustodi erentshockheatingtemperatures.However,propermotionmeasurementsshownosigni cantdi er-encesinthevelocitiesoftheknotsinbothsidesofthejet(Paresce&Hack1994;M¨akinenetal.2004),whichwewouldexpectifdi erentambientdensitieswouldde-celeratethejetdi erentlyonbothsides.
Ourmodelingcanprovideaplausibleexplanationfortheobserveddi erencesbetweenthetwosidesofthejet,ifweassumethattheejectionofthejetpulsesonbothsidesareoutofphasewitheachother.Hollisetal.(1991)derivedakinematicageofbothjetsofabout90yrs;overtheextentofthejetwecanobserve3–6knotsintheob-servationsofe.g.Paresce&Hack(1994)whichsuggestsseveralejectioneventsinthisperiodoftime.Aperiodofabout17yearsfortheseejectioneventshasbeenin-ferredfromradioobservations(Kafatosetal.1989),thustheyaresigni cantlylargerthaninMWC560andinour
4
1Korrecketal.(2006)giveanevensmallervelocityof380kmsfrominthetheirvalueTablegiven1,inhowever,thetext.
withoutexplainingthedi erence
In papers I and II in this series, we presented hydrodynamical simulations of jet models with parameters representative of the symbiotic system MWC 560. These were simulations of a pulsed, initially underdense jet in a high density ambient medium. Since th
models5.WehypothesizethattheX-rayemittingblobsintheNEjetwereejectedlaterthanthoseintheSWjetandthereforehavecooledless.Thishypothesisissup-portedbythefactthattheX-rayemittingcomponentintheNEjetisclosertothecentralcore(about8”)thantheblobsintheSWjet(12–26”,Kelloggetal.2001).AnewSWjetcomponentwithano setofabout1.5”fromthecentralsourcehasrecentlybeenreportedbyNicholset al.1(2007).Assumingajetvelocityofabout600kms(Kelloggetal.2006),i.e.about0.6”peryear,weobtainakinematicageofabout2.5yearsforthiscomponent.EvenifthenewcomponenthadbeenejectedduringtheepochofKelloggetal.(2001)’sobser-vations,its uxwouldhavecontributedtothecentralsource,butnottothatoftheSWjet.Hencethepres-enceofthenewcomponentdoesnotcon ictwithourhypothesis.ThetimeperiodbetweentheemergenceofthenewSWjetcomponentandtheemergenceoftheblobnowlocatedat12”isabout17yearswhichsupportstheinferredperiodfortheejectionofjetpulsesinRAqr.In§3,weshowedthatthetotalX-rayluminosityde-creaseswithtime,probablyduetoadiabaticcoolinginthejet(PaperII).Thise ectprovidesaplausibleex-planationofthedecreaseinX-ray uxinthejetofRAqrfromavalueof5×10 13ergs 1cm 2intheearly1990s(H¨unschetal.1998)to1×10 13ergs 1cm 2in2000(Kelloggetal.2001).Ifthisexplanationholds,weexpecttoseeafurtherdecreasein uxinfutureobser-vations.
6.4.The6.4–6.7keVironlinecomplex
Thisironlinecomplexhasbeenobservedinbothob-jects,CHCygandRAqr.OurmodelspectraalsoshowtheexistenceofthisFelinecomplex(§4).Ezukaetal.(1998) ttedtheobservedspectrumofCHCygwiththreesingle-temperaturecomponents(awarmandahotcom-ponenttoexplainthejetemissionandhardcomponentforthecentralengine)andanadditionalGaussianrep-resenting uorescenceemissionintheFeKαline.This uorescenceoccursclosetothewhitedwarfandtheac-cretiondisk.Sinceitisnotpossibletodisentanglethe uxofthethermalandthe uorescencecomponentsinthislinecomplexandsinceourmodelsdonotincludethee ectof uorescence,wecannotcompareourmodelswiththispartoftheobservedspectrumofCHCyg.InRAqr,theoriginofthehardX-rayemissionismoreambiguous.Kelloggetal.(2001)detected16photonsintherangebetween6.4and6.7keVwhichtheyattributetothecentralsourceduetotheextractionregionstheychose.Thephysicaloriginofthisemission,i.e.ther-malor uorescence,cannotbedecided,sincetherearenotenoughphotonstomodelthespectruminthisen-ergyandcharacterizeitsnature.Inourmodel,we ndsigni canthardradiationincludingcontinuumandironemissionlines,beingemittedbythe rsttwointernalshocksinthejetdownstreamfromthesource(i.e.atadistancelessthan15AU).SinceatRAqr’sdistanceof200pc,15AUcorrespondto75milliarcseconds,whichiswellbelowtheangularresolutionofChandra,theX-rayemissionfromtheseshockscannotbeseparatedfromthe
5
passage,TheeventsinRAqrarethoughttodiskinstabilities.
whilethevariationsinMWC560betriggeredseemtobebyaperiastronresultof9
centralsource.ThemodelX-ray24luminosityinthe6.4–6.7keV1rangeisbetween5.1×10ergs 1and7.3×1028ergs formodeli’andbetween2.8×1028ergs 1and5.1×1029ergs 1formodeliv’,respectively,depend-ingonwhetherthejetisinitsminimumormaximumstate.Atadistanceof200pc,this2correspondsto uxesbetween1.1×10 18ergs 1cm and1.1×10 13ergs 1cm 2 .14SinceKelloggetal.(2001)measureda uxof4.9×10ergs 1cm 2at6.41keV,wesuggestthatthemeasuredironline uxmaybeemittedbythejetitself,andanadditional uorescencecomponentisnotneeded,inRAqr.However,newsimulationswiththesamejetvelocityasinRAqrareneededinordertotestthissuggestion.
7.CONCLUSIONS
Wehaveusedourmodelsofpulsed,radiativejetsinsymbioticstarsinordertoinvestigatetheirX-rayprop-ertiesindetail.Thesemodelsshowthatthewell-studiedpole-onjetinMWC560shouldbeeasilydetectedbytoday’sX-raytelescopessuchasChandraandXMM-Newton,sinceourmodel uxand13itstimevariationforthissourceareoftheorderof10 ergs 1cm 2.
We ndminimaandmaximaintheX-rayemissionL(computedbyintegratingovertheenergyrange0.15–15XkeV)whichareconnectedwiththeperiodicemergenceofjetpulses.ThemaximaofthetotalX-rayluminos-ityoccur2–3daysaftertheemergenceofnewjetpulses,whichareejectedevery7days.Thesizeofthe uctua-tionsis50%andmoreoftheaverageemission,makingsuchX-ray ashingjetsdetectablewithChandraandXMM-Newton.
TheX-rayspectraofourmodeljetsarerichinemissionlinefeatures,themostprominentofwhichcorrespondtoobservedfeaturesinthespectraofCHCyg.
Byusinglowandhighenergytemperatureproxiesde-rivedfromthespectra,wecanshowthattheemissioncanbeadequatelycharacterizedwithahotandawarmoptically-thinplasmacomponent.Thehotcomponenthastemperaturevaluesofabout0.7keV(1.6keV)duringtheminima(maxima)ofthetotalX-rayluminosityandthewarmcomponenthastemperaturevaluesofabout0.14keV(0.33keV)duringtheminima(maxima).
Whilemodeliv’isappropriateforMWC560,wehaveshownthatmodeli’,whichhasalowerjetpulsedensitythanmodeliv’,ismoreappropriateforthejetinCHCygintermsofexplainingthelowerX-ray ux.Otherpossi-bilitiestoreducethe uxarealongertimescalebetweenthepulsesandasmallervelocitydi erencebetweenthesteadyjetandthejetpulses.Whichoftheabovesce-nariosisthemostlikelyonehastobetestedinfuturesimulationswhichhavetobetunedtothejetinCHCyg.Ourmodelsalsoo eraplausibleexplanationforthedi erencesinluminositiesandtemperaturesintheNEandtheSWjetofRAqr.Weassumethattheejectionofthejetpulsesonbothsidesareoutofphasewitheachother.WehypothesizethattheX-rayemittingblobsintheNEjetwereejectedlaterthanthoseintheSWjetandthereforehavecooledless.
We ndtheexistenceofironlineemissioninthe6.4–6.7keVrangeinourmodelswhichisalsoobservedinboth,CHCygandRAqr.OurmodelscannotbedirectlyappliedtoCHCyg,becauseofanadditional uorescencecomponentfromthecentralsourceandaccretiondiskin
In papers I and II in this series, we presented hydrodynamical simulations of jet models with parameters representative of the symbiotic system MWC 560. These were simulations of a pulsed, initially underdense jet in a high density ambient medium. Since th
10
theobservedspectrumandbecause uorescenceisnotin-cludedinourmodels.InthecaseofRAqr,althoughthisemissionhasbeenassociatedwiththecentralsource,ourmodelingshowsthatitisconsistentwithbeingproducedbyjetknotsveryclosetothelatter,becausetheirsepa-rationinourmodeliswellbelowtheangularresolutionofChandra.
Usingourcurrentmodelswhichwerebuiltto ttheopticaldataofthejetinMWC560weareabletoexplainsomeoftheimportantcharacteristicsofX-rayemissionfromjetsinMWC560andothersymbioticstars.Theresultsofthisstudydemonstratethegreatpotentialoffuturenumericalsimulationsofpulsedjetswhichhavebeen ne-tunedtospeci csourcepropertiesforunder-standingthejetphenomenoninsymbioticstars.Fur-Anders,E.,Grevesse,N.1989,GeCoA53,197
Anderson,J.M.,Li,Z.-Y.,Krasnopolsky,R.,Blandford,R.D.2003,ApJ590,L107
Blandford,R.D.,Payne,D.G.1982,MNRAS199,883Ezuka,H.,Ishida,M.,Makino,F.1998,ApJ499,388
Eyres,S.P.S.,Bode,M.F.,Skopal,A.,etal.2002,MNRAS335,526l
Galloway,D.K.,Sokoloski,J.L.2004,ApJ613,L61Goodson,A.P.,Winglee,R.M.,B¨ohm,K.-H.1997,ApJ489,199Hakkila,J.,Myers,J.M.,Stidham,B.J.,Hartmann,D.H.1997,AJ114,2043
Hollis,J.M.,Michalitsianos,A.G.,Kafatos,M.,etal.1985,ApJ289,765
Hollis,J.M.,Lyon,R.G.,Dorband,J.E.,etal.1985,ApJ475,231
Hollis,J.M.,Oliversen,R.J.,Michalitsianos,A.G.,etal.1991,ApJ377,227
Hollis,J.M.,Pedelty,J.A.,Lyon,R.G.1997,ApJ482,L85H¨unsch,M.,Schmitt,J.H.,Schroeder,K.,Zickgraf,F.1998,A&A330,225
Kafatos,M.,Hollis,J.M.,Yusef-Zadeh,F.,etal.1989,ApJ346,991
Karovska,M.,Carilli,C.L.,Raymond,J.C.,Mattei,J.A.2007,ApJaccepted,astro-ph/0703278
Kellogg,E.,Pedelty,J.A.,Lyon,R.G.2001,ApJ563,151
Kellogg,E.,Anderson,C.,DePasquale,J.,etal.2006,posterabstract#70.08,AmericanAstronomicalSocietyMeeting207Korreck,K.E.,Kellogg,E.,Sokoloski,J.L.2006,in:”TheMulticolouredLandscapeofCompactObjectsandtheirExplosiveOrigins”,astro-ph/0611401
thermore,wehopethatthisstudywillinspirenewandmoresensitiveobservationsofX-rayemissionfromjetsinsymbioticstars.
Weacknowledgehelpfulandimprovingcommentsandsuggestionsbythereferee.Thehydrodynamicalsimula-tionswereperformedattheHighPerformanceComput-ingCenterStuttgart,Germany.ThisworkwaspartiallyfundedbyNASA/CHANDRAgrantsGO3-4019XandGO4-5163Z,andNASA/STScIgrantHST-GO-10317.01-A.TheresearchdescribedinthispublicationwascarriedoutattheJetPropulsionLaboratory,CaliforniaInsti-tuteofTechnology,underacontractwiththeNationalAeronauticsandSpaceAdministration.
Leahy,D.A.,Taylor,A.R.1987,A&A176,262M¨akinen,K.,Lehto,H.J.,Vainio,R.,Johnson,D.R.H.2004,A&A424,157
Matt,S.,Goodson,A.P.,Winglee,R.M.,B¨ohm,K.-H.2002,ApJ574,232
Mukai,K.,Ishida,M.,Kilbourne,C.,etal.2006,PASJaccepted,astro-ph/0609245M¨urset,U.,Wol ,B.,Jordan,S.1997,A&A319,201
Nichols,J.S.,DePasquale,J.,Kellogg,E.,etal.2007,ApJacceptedParesce,F.,Hack,W.1994,A&A287,154
Schmid,H.M.,Kaufer,A.,Camenzind,M.,etal.2001,A&A377,206
Smith,R.K.,Brickhouse,N.S.,Liedahl,D.A.,Raymond,J.C.2001,ApJ556,L91
Solf,J.,Ulrich,H.1985,A&A148,274Stute,M.,2006,A&A450,645(PaperII)
Stute,M.,Camenzind,M.,Schmid,H.M.2005,A&A429,209(PaperI)
Sutherland,R.S.,Dopita,M.A.1993,ApJS,88,253
Taylor,A.R.,Seaquist,E.R.,Mattei,J.A.1986,Nature,319,38Thiele,M.2000,Numericalsimulationsofprotostellarjets,PhDThesis,UniversityofHeidelberg
Viotti,R.,Piro,L.,Friedjung,M.,Cassatella,A.1987,ApJ319,L7
Wheatley,P.J.,Kallman,T.R.2006,MNRAS372,1602Ziegler,U.,Yorke,H.1997,m.101,54
REFERENCES
正在阅读:
Hydrodynamical simulations of the jet in the symbiotic star MWC 560 III. Application to X-r07-21
啄木鸟开超市作文500字06-20
泰山杯汇报--定稿06-06
小学教研心得 学习教学评的一致性反思03-08
海上风电全球研发资源分布12-29
吉姆佩尔的信仰111-08
2008高考复习之有机化合物03-08
初中作文指导教案全集 (800字)05-28
六年级语文四字词的复习训练09-08
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- Hydrodynamical
- simulations
- Application
- symbiotic
- star
- jet
- MWC
- 560
- III
- 美国DOT汽车认证检测项目及法规列表(中英文)
- 公积金自由还款方式_计算详解及省钱攻略
- 信息安全 国密算法 加密模块
- 大学校园规划向景观生态学学习
- MOXA-CP134U板卡安装说明0222
- 2003年高考英语试题(全国卷)
- wwwmedercom 关于磁铁 (图37,分门别类的展示各种
- 网络管理技术实践-路由技术(2013-04-12)-10网络使用
- 南昌八大卷(计基)(2014年)
- 远程教学视频在初中语文课堂的有效应用探究
- 技术形态分析(股票)
- 笔记本产业分析报告
- 中国农业银行股份有限公司甘肃省分行征集入围投标供应商公告文库
- 免费看3D教程 PC连TV播放3D视频全攻略(图文教程)
- 标准版私人抵押借款合同书
- 安徽中医学院 2009-2011 年校级质量工程项目一览表
- 2013年数学中考试题汇编-圆的综合题
- 祖国在我心中主题班会设计教案
- 对电力调度自动化相关问题的探讨
- 云南师范大学2010年自愿赴边疆艰苦行业就业先进毕业生候选人名单