六年级奥数正式教材学生用

更新时间:2024-03-26 22:33:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

智合教育……暑期蓝天行动

目录

(一) 数字谜 ....................................... - 2 - ① 横式字谜 ................................... - 2 - ② 竖式字谜 ................................... - 4 - (二) 定义新运算 ................................... - 7 - (三) 不规则图形面积计算(1) ....................... - 9 - (四) 不规则图形面积计算(2) ...................... - 12 - (五) 抽屉问题 .................................... - 17 - (六) 逻辑推理 .................................... - 19 - (七) 牛吃草 ...................................... - 22 - (八) 工程问题 .................................... - 25 - (九) 植树问题 .................................... - 28 - (十) 有趣的树阵图 ................................ - 30 - (十一) 有趣的树阵图练习 ........................... - 33 - (十二) 周期性问题 ................................ - 35 - (十三) 棋盘中的数学............................... - 38 -

- 1 -

智合教育……暑期蓝天行动

(一) 数字谜

小朋友们都玩过字谜吧,就是一种文字游戏,例如“空中码头”(打一城市名)。谜底你还记得吗?记不得也没关系,想想“空中”指什么?“天”。这个地名第1个字可能是天。“码头”指什么呢?码头又称渡口,联系这个地名开头是“天”字,容易想到“天津”这个地名,而“津”正好又是“渡口”的意思。这样谜底就出来了:天津。

算式谜又被称为“虫食算”,意思是说一道算式中的某些数字被虫子吃掉了无法辨认,需要运用四则运算各部分之间的关系,通过推理判定被吃掉的数字,把算式还原。“虫食算”主要指横式算式谜和竖式算式谜,其中未知的数字常常用□、△、☆等图形符号或字母表示。文字算式谜是前两种算式谜的延伸,用文字或字母来代替未知的数字,在同一道算式中不同的文字或字母表示不同的数字,相同的数字或字母表示同一个数字。文字算式谜也是最难的一种算式谜。

在数学里面,文字也可以组成许许多多的数学游戏,就让我们一起来看看吧。

① 横式字谜

一、例题与方法指导

例1 □,□8,□97在上面的3个方框内分别填入恰当的数字,可以使得这3个数的平均数是150。那么所填的3个数字之和是多少? 思路导航:150*3-8-97-5=340

所以3个数之和为3+4+5=12。

例2 在下列算式的□中填上适当的数字,使得等式成立: (1)6□□4÷56=□0□, (2)7□□8÷37=□1□, (3)3□□3÷2□=□17, (4)8□□□÷58=□□6。

分析:(1) 6104/56=109

(2)7548/37=204 (3) 3393/29=117 (4)8468/58=146

例3 在算式40796÷□□□=□99……98的各个方框内填入适当的数字后,就可以使其成为正确的等式。求其中的除数。

分析:40796/102=399...98。

例4 我学数学乐×我学数学乐=数数数学数数学学数学

在上面的乘法算式中,“我、学、数、乐”分别代表的4个不同的数字。如果“乐”代表9,那么“我数学”代表的三位数是多少?

- 2 -

智合教育……暑期蓝天行动

分析:学=1,我=8,数=6 ,81619*81619=6661661161

例5 □÷(□÷□÷□)=24在式中的4个方框内填入4个不同的一位数,使左边的数比右边的数小,并且等式成立。

思路导航: 这样,我们可以先用字母代替数字,原等式写成:a/(b/c/d)=a/(b/c*d)=a*c*d/b,(a

当a=1时,有6*8/2=24,8*9/3=24;

当a=2时,有4*9/3=12,6*8/4=12,8*9/6=12;

所以,满足要求的等式有:1÷(2÷6÷8)=24,1÷(3÷8÷9)=24,2÷(3÷4÷9)=24,2÷(4÷6÷8)=24,2÷(6÷8÷9)=24。

例6 ① □×□=5□;② 12+□-□=□,把1至9这9个数字分别填入上面两个算式的各个方框中,使等式成立,这里有3个数字已经填好。

分析:根据第一个等式,只有两种可能:7*8=56,6*9=54;如果为7*8=56,则余下的数字有:3、4、9,显然不行;而当6*9=54时,余下的数字有:3、7、8,那么,12+3-7=8或12+3-8=7都能满足。

二、训练巩固

1. 迎迎×春春=杯迎迎杯,数数×学学=数赛赛数,春春×春春=迎迎赛赛

在上面的3个算式中,相同的汉字代表相同的数字,不同的汉字代表不同的数字。如果这3个等式都成立,那么,“迎+春+杯+数+学+赛”等于多少?

2. 迎+春×春=迎春,(迎+杯)×(迎+杯)=迎杯

在上面的两个横式中,相同的汉字代表相同的数字,不同的汉字代表不同的数字。那么“迎+春+杯”等于多少?

三、拓展提升

1.在下列各式的□中分别填入相同的两位数:

(1)5×□=2□;

(2)6×□=3□。

- 3 -

智合教育……暑期蓝天行动

2.将3~9中的数填入下列各式,使算式成立,要求各式中无重复的数字:

(1)□÷□=□÷□;

(2)□÷□>□÷□。

3.在下列各式的□中填入合适的数字:

(1)448÷□□=□; (3)13×□□= 4□6。

4.在下列各式的□中填入合适的数:

(1) □÷32=8……31; (3)4837÷□=74……27。

(2)573÷32=□……29;

(2)2822÷□□=□□;

②竖式字谜

一、例题与方法指导

例1 在图4-1所示的算式中,每一个汉字代表一个数字,不同的汉字代表不同的数字.那么“喜欢”这两个汉字所代表的两位数是多少?

分析: 首先看个位,可以得到“欢”是0或5,但是“欢”是第二个数的十位,所以“欢”不能是0,只能是5。 再看十位,“欢”是5,加上个位有进位1,那么,加起来后得到的“人”就应该是偶数,因为结果的百位也是“人”,所以“人”只能是2;由此可知,“喜”等于8。 所以,“喜欢”这两个汉字所代表的两位数就是85。

例2 在图4-2所示的竖式中,相同的汉字表示相同的数字,不同的汉字表示不同的数字.如果:巧+解+数+字+谜=30,那么“数字谜”所代表的三位数是多少?

- 4 -

智合教育……暑期蓝天行动

分析:还是先看个位,5个“谜”相加的结果个位还是等于“谜”,“谜”必定是5(0显然可以排出); 接着看十位,四个“字”相加再加上进位2,结果尾数还是“字”,那说明“字”只能是6; 再看百位,三个“数”相加再加上进位2,结果尾数还是“数”,“数”可能是4或9; 再看千位,(1)如果“数”为4,两个“解”相加再加上进位1,结果尾数还是“解”,那说明“解”只能是9;5+6+4+9=24,30-24=6,“巧”等于6与“字”等于6重复,不能; (2)如果“数”为9,两个“解”相加再加上进位2,结果尾数还是“解”,那说明“解”只能是8;5+6+9+8=28,30-28=2,可以。 所以“数字谜”代表的三位数是965。

例3在图4-3所示的加法算式中,相同的汉字表示相同的数字,不同的汉字表示不同的数字.请把这个竖式翻译成数字算式.

分析:首先万位上“华”=1; 再看千位,“香”只能是8或9,那么“人”就相应的只能是0或1。但是“华”=1,所以,“人”就是0; 再看百位,“人”=0,那么,十位上必须有进位,否则“港”+“人”还是“港”。由此可知“回”比“港”大1,这样就说明“港”不是9,百位向千位也没有进位。于是可以确定“香”等于9的; 再看十位,“回”+“爱”=“港”要有进位的,而“回”比“港”大1,那么“爱”就等于8;同时,个位必须有进位; 再看个位,两数相加至少12,至多13,即只能是5+7或6+7,显然“港”=5,“回”=6,“归”=7。 这样,整个算式就是:9567+1085=10652。

例4 图4-4是一个加法竖式,其中E,F,I,N,O,R S,T,X,Y分别表示从0到9的不同数字,且F,S不等于零.那么这个算式的结果是多少?

- 5 -

智合教育……暑期蓝天行动

分析:先看个位和十位,N应为0,E应为5;再看最高位上,S比F大1;千位上O最少是8;但因为N等于0,所以,I只能是1,O只能是9;由于百位向千位进位是2,且X不能是0,因此决定了T、R只能是7、8这两个;如果T=7,X=3,这是只剩下了2、4、6三个数,无法满足S、F是两个连续数的要求。所以,T=8、R=7;由此得到X=4;那么,F=2,S=3,Y=6。所以,得到的算式结果是31486。

二、训练巩固

1. 在图4-5所示的减法算式中,每一个字母代表一个数字,不同的字母代表不同的数字.那么D+G等于多少?

2. 王老师家的电话号码是一个七位数,把它前四位组成的数与后三位组成的数相加得9063,把它前三位数组成的数与后四位数组成的数相加得2529.求王老师家的电话号码.

3. 将一个四位数的各位顺序颠倒过来,得到一个新的四位数.如果新数比原数大7902,那么在所有符合这样条件的四位数中,原数最大是多少?

- 6 -

智合教育……暑期蓝天行动

三、拓展提升

1.已知图4-6所示的乘法竖式成立.那么ABCDE是多少?

2. 某个自然数的个位数字是4,将这个4移到左边首位数字的前面,所构成的新数恰好是原数的4倍.问原数最小是多少?

3. 在图4-7所示的竖式中,相同的汉字表示相同的数字,不同的汉字表示不同的数字.则符合题意的数“迎春杯竞赛赞”是多少?

(二) 定义新运算

定义新运算通常是用特殊的符号表示特定的运算意义。它的符号不同于课本上明确定义或已经约定的符号,例如“+、-、×、÷、、>、<”等。表示运算意义的表达式,通常是使用四则运算符号,例如a☆b=3a-3b,新运算使用的符号是☆,而等号右边表示新运算意义的则是四则运算符号。

正确解答定义新运算这类问题的关键是要确切理解新运算的意义,严格按照规定的法则进行运算。如果没有给出用字母表示的规则,则应通过给出的具体的数字表达式,先求出表示定义规则的一般表达式,方可进行运算。

值得注意的是:定义新运算一般是不满足四则运算中的运算律和运算性质,所以,不能盲目地运用定律和运算性质解题。

一、例题与方法指导

例1. 设 ab都表示数,规定a△b表示a的4倍减去b的3倍,即a△b=4×a-3×b,试计算5△6,6△5。

- 7 -

智合教育……暑期蓝天行动

解5△6-5×4-6×3=20-18=2

6△5=6×4-5×3=24-15=9

说明 例1定义的△没有交换律,计算中不得将△前后的数交换。

例2. 对于两个数a、b,规定a☆b表示3×a+2×b,试计算(5☆6)☆7,5☆(6☆7)。 思路导航:

先做括号内的运算。

解 (5☆6)☆7=(5×3+6×2)☆7=27☆7=27×3+7×2=95 5☆(6☆7)=5☆(6×3+7×2)=5☆32=5×3+32×2=79

说明 本题定义的运算不满足结合律。这是与常规的运算有区别的。

例3. 已知2△3=2×3×4,4△2=4×5,一般地,对自然数a、b,a△b 表示a×(a+1)×…(a+b-1).

计算(6△3)-(5△2)。 思路导航:

原式=6×7--5×6 =336-30

规定:a△=a+(a+1)+(a+2)+…+(a+b-1),其中a,b表示自然数。

例4. 求1△100的值。已知x△10=75,求x. 思路导航:

(1)原式=1+2+3+…+100=(1+100)×100÷2=5050 (2)原式即x+(x+1)+(x+2)+…+(X+9)=75, 所以

10X+(1+2+3+…+9)=75 10x+45=75 10x=30 x=3

二、巩固训练

1. 若对所有b,a△b =a×x,x是一个与b无关的常数;a☆b=(a+b)÷2,且(1△3)☆3=1△(3☆3)。

求(1△4)☆2的值。

2. 如果规定:③=2×3×4,④=3×4×5,⑤=4×5×6,……,⑨=8×9×10,求⑨+⑧-⑦+⑥-⑤+④-③的值。

- 8 -

智合教育……暑期蓝天行动

三、能力提升

(三) 不规则图形面积计算(1)

我们曾经学过的三角形、长方形、正方形、平行四边形、梯形、菱形、圆和扇形等图形,一般称为基本图形或规则图形.我们的面积及周长都有相应的公式直接计算.如下表:

- 9 -

智合教育……暑期蓝天行动

实际问题中,有些图形不是以基本图形的形状出现,而是由一些基本图形组合、拼凑成的,它们的面积及周长无法应用公式直接计算.一般我们称这样的图形为不规则图形。

那么,不规则图形的面积及周长怎样去计算呢?我们可以针对这些图形通过实施割补、剪拼等方法将它们转化为基本图形的和、差关系,问题就能解决了。 一、例题与方法指导

例1 如右图,甲、乙两图形都是正方形,它们的边长分别是10

厘米和12厘米.求阴影部分的面积。

思路导航: 阴影部分的面积等于甲、乙两个正方形面积之和减去三个“空白”三角形(△ABG、△BDE、△EFG)的面积之和。

例2 如右图,正方形ABCD的边长为6厘米,△ABE、△ADF与四边形AECF的面积彼此相等,求三角形AEF的面积.

思路导航: ∵△ABE、△ADF与四边形AECF的面积彼此相等,

∴四边形 AECF的面积与△ABE、△ADF的面积都等于正方形ABCD的

1。 3在△ABE中,因为AB=6.所以BE=4,同理DF=4,因此CE=CF=2, ∴△ECF的面积为2×2÷2=2。

所以S△AEF=S四边形AECF-S△ECF=12-2=10(平方厘米)。

例3

两块等腰直角三角形的三角板,直角边分别是10厘米和6厘米。如右图那样

C 重合.求重合部分(阴影部分)的面积。

思路导航:

- 10 -

B

智合教育……暑期蓝天行动

在等腰直角三角形ABC中 ∵AB=10

∵EF=BF=AB-AF=10-6=4,

∴阴影部分面积=S△ABG-S△BEF=25-8=17(平方厘米)。

例4 如右图,A为△CDE的DE边上中点,BC=CD,若△ABC(阴影部分)面积为5平方厘米.

求△ABD及△ACE的面积.

思路导航: 取BD中点F,连结AF.因为△ADF、△ABF和△ABC等底、等高,

所以它们的面积相等,都等于5平方厘米.

∴△ACD的面积等于15平方厘米,△ABD的面积等于10平方厘米。 又由于△ACE与△ACD等底、等高,所以△ACE的面积是15平方厘米。

二、巩固训练

1. 如右图,在正方形ABCD中,三角形ABE的面积是8平方厘米,它是三角形DEC的面积的

4,求正方形ABCD的面积。 5

2. 如右图,已知:S△ABC=1,AE=ED,BD=

2BC.求阴影部分的面积。 3

- 11 -

D 智合教育……暑期蓝天行动

3. 如右图,正方形ABCD的边长是4厘米,CG=3厘米,矩形DEFG的长DG为5厘米,求它的宽DE等于多少厘米?

4. 如右图,梯形ABCD的面积是45平方米,高6米,△AED的面积是5平方米,BC=10米,求阴影部分面积.

5. 如右图,四边形ABCD和DEFG都是平行四边形,证明它们的面积相等.

(四) 不规则图形面积计算(2)

不规则图形的另外一种情况,就是由圆、扇形、弓形与三角形、正方形、长方形等规则图形组合而成的,这是一类更为复杂的不规则图形,为了计算它的面积,常常要变动图形的位置或对图形进行适当的分割、拼补、旋转等手段使之转化为规则图形的和、差关系,同时还常要和“容斥原理”(即:集合A与集合B之间有:SA∪B=SA+Sb-SA∩B)合并使用才能解决。

- 12 -

智合教育……暑期蓝天行动

一、例题与方法指导

例1 . 如右图,在一个正方形内,以正方形的三条边为直径向内作三个半圆.求阴影部分的面积。

解法1:把上图靠下边的半圆换成(面积与它相等)右边的半圆,得到右图.这时,右图中

阴影部分与不含阴影部分的大小形状完全一样,因此它们的面积相等.所以上图中阴影部分的面积等于正方形面积的一半。

解法2:将上半个“弧边三角形”从中间切开,分别补贴在下半圆的上侧边上,如右图所示.

阴影部分的面积是正方形面积的一半。

解法3:将下面的半圆从中间切开,分别贴补在上面弧边三角形的两侧,如右图所示.阴影

部分的面积是正方形的一半. 例2. 如右图,正方形ABCD的边长为4厘米,分别以B、D为圆心以4厘米为半径在正方形内画圆,求阴影部分面积。 解:由容斥原理 S

阴影

=S扇形ACB+S扇形ACD-S正方形ABCD

例3 如右图,矩形ABCD中,AB=6厘米,BC=4厘米,扇形ABE半径AE=6厘米,扇形CBF的半CB=4厘米,求阴影部分的面积。

- 13 -

智合教育……暑期蓝天行动

例4. 如右图,直角三角形ABC中,AB是圆的直径,且AB=20厘米,如果阴影(Ⅰ)的面积比阴影(Ⅱ)的面积大7平方厘米,求BC长。

分析 已知阴影(Ⅰ)比阴影(Ⅱ)的面积大7平方厘米,就是半圆面积比三角形ABC面积大7平方厘米;又知半圆直径AB=20厘米,可以求出圆面积.半圆面积减去7平方厘米,就可求出三角形ABC的面积,进而求出三角形的底BC的长.

二、巩固训练

1. 如右图,两个正方形边长分别是10厘米和6厘米,求阴影部分的面积。

分析 阴影部分的面积,等于底为16、高为6的直角三角形面积与图中(I)的面积之差。而(I)的面积等于边长为6的正方形的面积减去

1以6为半径的圆的面积。 4

2. 如右图,将直径AB为3的半圆绕A逆时针旋转60°,此时AB到达AC的位置,求阴影部分的面积(取π=3).

- 14 -

智合教育……暑期蓝天行动

3. 如右图,ABCD是正方形,且FA=AD=DE=1,求阴影部分的面积.

4. 如下页右上图,ABC是等腰直角三角形,D是半圆周上的中点,BC是半圆的直径,且AB=BC=10,求阴影部分面积(π取3.14)。

总结:对于不规则图形面积的计算问题一般将它转化为若干基本规则图形的组

合,分析整体与部分的和、差关系,问题便得到解决.常用的基本方法有:

一、 相加法:

这种方法是将不规则图形分解转化成几个基本规则图形,分别计算它们的面积,然后相加求出整个图形的面积.例如,右图中,要求整个图形的面积,只要先求出上面半圆的面积,再求出下面正方形的面积,然后把它们相加就可以了.

- 15 -

智合教育……暑期蓝天行动

二、 相减法:

这种方法是将所求的不规则图形的面积看成是若干个基本规则图形的面积之差.例如,右图,若求阴影部分的面积,只需先求出正方形面积再减去里面圆的面积即可. 三、 直接求法:

这种方法是根据已知条件,从整体出发直接求出不规则图形面积.如下页右上图,欲求阴影部分的面积,通过分析发现它就是一个底是2,高为4的三角形,面积可直接求出来。 四、 重新组合法:

这种方法是将不规则图形拆开,根据具体情况和计算上的需要,重新组合成一个新的图形,设法求出这个新图形面积即可.例如,欲求右图中阴影部分面积,可以把它拆开使阴影部分分布在正方形的4个角处,这时采用相减法就可求出其面积了.

五、 辅助线法:

这种方法是根据具体情况在图形中添一条或若干条辅助线,使不规则图形转化成若干个基本规则图形,然后再采用相加、相减法解决即可.如右图,求两个正方形中阴影部分的面积.此题虽然可以用相减法解决,但不如添加一条辅助线后用直接法作更简便. 六、 割补法:

这种方法是把原图形的一部分切割下来补在图形中的另一部分使之成为基本规则图形,从而使问题得到解决.例如,如右图,欲求阴影部分的面积,只需把右边弓形切割下来补在左边,这样整个阴影部分面积恰是正方形面积的一半. 七、 平移法:

这种方法是将图形中某一部分切割下来平行移动到一恰当位置,使之组合成一个新的基本规则图形,便于求出面积.例如,如右图,欲求阴影部分面积,可先沿中间切开把左边正方形内的阴影部分平行移到右边正方形内,这样整个阴影部分恰是一个正方

- 16 -

智合教育……暑期蓝天行动

形。

八、 旋转法:

这种方法是将图形中某一部分切割下来之后,使之沿某一点或某一轴旋转一定角度贴补在另一图形的一侧,从而组合成一个新的基本规则的图形,便于求出面积.例如,欲求图(1)中阴影部分的面积,可将左半图形绕B点逆时针方向旋转180°,使A与C重合,从而构成如右图(2)的样子,此时阴影部分的面积可以看成半圆面积减去中间等腰直角三角形的面积.

九、 对称添补法:

这种方法是作出原图形的对称图形,从而得到一个新的基本规则图形.原来图形面积就是这个新图形面积的一半.例如,欲求右图中阴影部分的面积,沿AB在原图下方作关于AB为对称轴的对称扇形ABD.弓形CBD的面积的一半就是所求阴影部分的面积。

十、重叠法:

这种方法是将所求的图形看成是两个或两个以上图形的重叠部分,然后运用“容斥原理”(SA∪B=SA+SB-SA∩B)解决。例如,欲求右图中阴影部分的面积,可先求两个扇形面积的和,减去正方形面积,因为阴影部分的面积恰好是两个扇形重叠的部分.

(五) 抽屉问题

如果将5个苹果放到3个抽屉中去,那么不管怎么放,至少有一个抽屉中放的苹果不少于2个。道理很简单,如果每个抽屉中放的苹果都少于2个,即放1个或不放,那么3个抽屉中放的苹果的总数将少于或等于3,这与有5个苹果的已知条件相矛盾,因此至少有一个抽屉中放的苹果不少于2个。

- 17 -

智合教育……暑期蓝天行动

同样,有5只鸽子飞进4个鸽笼里,那么一定有一个鸽笼至少飞进了2只鸽子。

以上两个简单的例子所体现的数学原理就是“抽屉原理”,也叫“鸽笼原理”。 抽屉原理1:将多于n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品不少于2件。

说明这个原理是不难的。假定这n个抽屉中,每一个抽屉内的物品都不到2件,那么每一个抽屉中的物品或者是一件,或者没有。这样,n个抽屉中所放物品的总数就不会超过n件,这与有多于n件物品的假设相矛盾,所以前面假定“这n个抽屉中,每一个抽屉内的物品都不到2件”不能成立,从而抽屉原理1成立。

从最不利原则也可以说明抽屉原理1。为了使抽屉中的物品不少于2件,最不利的情况就是n个抽屉中每个都放入1件物品,共放入n件物品,此时再放入1件物品,无论放入哪个抽屉,都至少有1个抽屉不少于2件物品。这就说明了抽屉原理1。

一、例题与方法指导

例1. 某幼儿园有367名1996年出生的小朋友,是否有生日相同的小朋友?

分析与解:1996年是闰年,这年应有366天。把366天看作366个抽屉,将367名小朋友看作367个物品。这样,把367个物品放进366个抽屉里,至少有一个抽屉里不止放一个物品。因此至少有2名小朋友的生日相同。

例2. 在任意的四个自然数中,是否其中必有两个数,它们的差能被3整除?

分析与解:因为任何整数除以3,其余数只可能是0,1,2三种情形。我们将余数的这三种情形看成是三个“抽屉”。一个整数除以3的余数属于哪种情形,就将此整数放在那个“抽屉”里。

将四个自然数放入三个抽屉,至少有一个抽屉里放了不止一个数,也就是说至少有两个数除以3的余数相同。这两个数的差必能被3整除。

例3. 在任意的五个自然数中,是否其中必有三个数的和是3的倍数? 分析与解:根据例2的讨论,任何整数除以3的余数只能是0,1,2。现在,对于任意的五个自然数,根据抽屉原理,至少有一个抽屉里有两个或两个以上的数,于是可分下面两种情形来加以讨论。 第一种情形。有三个数在同一个抽屉里,即这三个数除以3后具有相同的余数。因为这三个数的余数之和是其中一个余数的3倍,故能被3整除,所以这三个数之和能被3整除。

第二种情形。至多有两个数在同一个抽屉里,那么每个抽屉里都有数,在每个抽屉里各取一个数,这三个数被3除的余数分别为0,1,2。因此这三个数之和能被3整除。

综上所述,在任意的五个自然数中,其中必有三个数的和是3的倍数。

二、巩固训练

1. 有苹果和桔子若干个,任意分成5堆,能否找到这样两堆,使苹果的总数与桔子的总数都是偶数?

- 18 -

智合教育……暑期蓝天行动

2. 用红、蓝两种颜色将一个2×5方格图中的小方格随意涂色(见右图),每个小方格涂一种颜色。是否存在两列,它们的小方格中涂的颜色完全相同?

3. 在长度是10厘米的线段上任意取11个点,是否至少有两个点,它们之间的距离不大于1厘米?

三、拓展提升

1. 有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。

2. 一副扑克牌(去掉两张王牌),每人随意摸两张牌,至少有多少人才能保证他们当中一定有两人所摸两张牌的花色情况是相同的?

3. 从2、4、6、…、30这15个偶数中,任取9个数,证明其中一定有两个数之和是34。

(六) 逻辑推理

曾经爱因斯坦出过一道测试题, 他说世界上有98%的人回答不出!!让我们一

- 19 -

智合教育……暑期蓝天行动

起来看看是什么题呢。

在一条街上有5座颜色不同的房子,住着5个不同国家的人,他们抽着5种不同的烟,喝着5种不同的饮料,养着5种不同的宠物。有下面15个已知条件,求解。

1、英国人住红色房子。 2、瑞典人养狗。 3、丹麦人喝茶。

4、绿色房子在白色房子左面。 5、绿色房子主人喝咖啡。

6、抽Pall Mall香烟的人养鸟。 7、黄色房子主人抽Dunhill香烟。 8、住在中间房子的人喝牛奶。 9、挪威人住第一间房。

10、抽Blends香烟的人住在养猫的人隔壁。 11、养马的人住抽Dunhill香烟的人隔壁。 12、抽Blue Master的人喝啤酒。 13、德国人抽Prince香烟。 14、挪威人住蓝色房子隔壁。

15、抽Blends香烟的人有一个喝水的邻居。 问:哪个国家的人养鱼?

这道题为什么会难倒这么多人呢,首先,我们就来研究一下关于他的最基本的逻辑问题吧。

一、例题与方法指导

例1. 某地质学院的学生对一种矿石进行观察和鉴别: 甲判断:不是铁,也不是铜。 乙判断:不是铁,而是锡。 丙判断:不是锡,而是铁。

经化验证明:有一个人的判断完全正确,有一个人说对了一半,而另一个人完全说错了。你知道三人中谁是对的,谁是错的,谁是只对一半的吗?

思路导航: 丙全说对了,甲说对了一半,乙全说错了。先设甲全对,推出矛盾后,再设乙全对,又推出矛盾,则说明丙全对,甲说对了一半,乙全说错了。

例2. 数学竞赛后,小明、小华和小强各获得一枚奖牌,其中一人得金牌,一人得银牌,一人得铜牌。老师猜测:“小明得金牌,小华不得金牌,小强不得铜牌。”结果老师只猜对了一个,那么谁得金牌,谁得银牌,谁得铜牌?

思路导航: 小华得金牌,小强得银牌,小明得铜牌。 (1)若小明得金牌,小华一定“不得金牌”,这与“老师只猜对了一个”相矛盾,不合题意。

(2)若小华得金牌,那么“小明得金牌”与“小华不得金牌”这两句都是错的,那么“小强不得铜牌”应是正确的,那么小强得银牌,小明得铜牌。

- 20 -

智合教育……暑期蓝天行动

例3. 一位法官在审理一起盗窃案中,对涉及到的四名嫌疑犯甲、乙、丙、丁进行了审问。四人分别供述如下: 甲说:“罪犯在乙、丙、丁三人之中。” 乙说:“我没有做案,是丙偷的。” 丙说:“在甲和丁中间有一人是罪犯。” 丁说:“乙说的是事实。”

经过充分的调查,证实这四人中有两人说了真话,另外两人说的是假话。 同学们,请你做一名公正的法官,对此案进行裁决,确认谁是罪犯?

思路导航: 乙和丁是盗窃犯。如果甲说的是假话,那么剩下三人中有一人说的也是假话,另外两人说的是真话。可是乙和丁两人的观点一致,所以在剩下的三人中只能是丙说了假话,乙和丁说的都是真话。即“丙是盗窃犯”。这样一来,甲说的也是对的,不是假话。这样,前后就产生了矛盾。所以甲说的不可能是假话,只能是真话。同理,剩下的三人中只能是丙说真话。乙和丁说的是假话,即丙不是罪犯,乙是罪犯。又由甲所述为真话,即甲不是罪犯。再由丙所述为真话,即丁是罪犯。

二、巩固训练

1. 小王、小张、小李三人在一起,其中一位是工人,一位是战士,一位是大学生。现在知道:小李比战士年龄大,小王和大学生不同岁,大学生比小张年龄小。那么三人各是什么职业?

2. 甲、乙、丙分别是来自中国、日本和英国的小朋友。甲不会英文,乙不懂日语却与英国小朋友热烈交谈。问:甲、乙、丙分别是哪国的小朋友?

3. 徐、王、陈、赵四位师傅分别是工厂的木工、车工、电工和钳工,他们都是象棋迷。

(1)车工只和电工下棋;

(2)王、陈两位师傅经常与木工下棋; (3)徐师傅与电工下棋互有胜负; (4)陈师傅比钳工下得好。

问:徐、王、陈、赵四位师傅各从事什么工种?

- 21 -

智合教育……暑期蓝天行动

(七) 牛吃草

牛吃草问题又称为消长问题或牛顿牧场,是17世纪英国伟大的科学家牛顿提出来的。典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。

由于吃的天数不同,草又是天天在生长的,所以草的存量随牛吃的天数不断地变化。解决牛吃草问题重点是要想办法从变化中找到不变量。牧场上原有的草是不变的,新长的草虽然在变化,但由于是匀速生长,所以每天新长出的草量应该是不变的。这类问题常用到四个基本公式,分别是:

(1)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);

(2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数; (3)吃的天数=原有草量÷(牛头数-草的生长速度); (4)牛头数=原有草量÷吃的天数+草的生长速度。

这四个公式是解决牛吃草问题的基础。一般设每头牛每天吃草量不变,设为\,解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题总所求的问题。

一、例题与方法指导

例1.

青青一牧场

青青一牧场,牧草喂牛羊;放牛二十七,六周全吃光。 改养廿三只,九周走他方;若养二十一,可作几周粮?

(注:“廿”的读音与“念”相同。“廿”即二十之意。)

【解说】这道诗题,是依据闻名于世界的“牛顿牛吃草问题”编写的。牛顿是英国人,他的种种事迹早已闻名于世,这里不赘述。他曾写过一本书,名叫《普遍的算术》,“牛吃草问题”就编写在这本书中。书中的这道题目翻译过来是:

一牧场长满青草,27头牛6个星期可以吃完,或者23头牛9个星期可以吃完。若是21头牛,要几个星期才可以吃完?(注:牧场的草是不断生长的。)

解答这一问题,首先必须注意牧场里的草是不断生长增多的,而并非一个固定不变的数值。这虽然大大地增加了解题的难度,但我们不要害怕。只要依据下面的思路,就一定会找到问题的答案。

- 22 -

智合教育……暑期蓝天行动

思路导航:

因为27头6星期草料=(27×6=)162头一星期草料 23头9星期草料=(23×9=)207头一星期草料

而这一牧场6星期吃完与9星期吃完,草料数量要相差207—162=45(头牛吃一星期的草料)

这多出的草料,便是 9—6=3(个星期之内新长出的草料) 所以,一个星期新长出的草料便是

45÷3=15(头牛吃一星期的草料) 进而可知,这牧场最初的草料数量就是

(27—15)×6=72(头牛吃一个星期的草料) 现在,有21头牛来吃这牧场里的草,其中必须拿出15头牛来吃每个星期新长出来的草料,这就只剩下:21-15=6(头牛)

去吃最初已经长成的草料了。所以,21头牛来吃这牧场的草料,全部吃光所需要的时间就是

72÷6=12(个星期) 列成综合算式,就是:

[27-(23×9—27×6)÷(9—6)]×6÷[21-(23×9—27×6)÷(9—6)] =[27-45÷3]×6÷[21-45÷3] =12×6÷6 =12(个星期)

答:21头牛要12个星期才可以吃完。

例2. 一个牧场长满青草,牛在吃草而草又在不断生长,已知牛27头,6天把草吃尽,同样一片牧场,牛23头,9天把草吃尽。如果有牛21头,几天能把草吃尽? 摘录条件:

27头 6天 原有草+6天生长草 23头 9天 原有草+9天生长草 21头 ?天 原有草+?天生长草

解答这类问题关键是要抓住牧场青草总量的变化。设1头牛1天吃的草为\,由条件可知,前后两次青草的问题相差为23×9-27×6=45。为什么会多出这45呢?这是第二次比第一次多的那(9-6)=3天生长出来的,所以每天生长的青草为45÷3=15

现从另一个角度去理解,这个牧场每天生长的青草正好可以满足15头牛吃。由此,我们可以把每次来吃草的牛分为两组,一组是抽出的15头牛来吃当天长出的青草,另一组来吃是原来牧场上的青草,那么在这批牛开始吃草之前,牧场上有多少青草呢? (27-15)×6=72

那么:第一次吃草量27×6=162第二次吃草量23×9=207 每天生长草量45÷3=15

原有草量(27-15)×6=72或162-15×6=72 21头牛分两组,15头去吃生长的草,其余6头去吃原有的草那么72÷6=12(天)

- 23 -

智合教育……暑期蓝天行动

例3. 一水库原有存水量一定,河水每天入库。5台抽水机连续20天抽干,6台同样的抽水机连续15天可抽干,若要6天抽干,要多少台同样的抽水机? 摘录条件:

5台 20天 原有水+20天入库量 6台 15天 原有水+15天入库量

?台 6天 原有水+6天入库量 设1台1天抽水量为\,第一次总量为5×20=100,第二次总量为6×15=90 每天入库量(100-90)÷(20-15)=2

20天入库2×20=40,原有水100-40=60 60+2×6=7272÷6=12(台)

二、巩固训练

1、某车站在检票前若干分钟就开始排队了,每分钟来的旅客一样多,从开始检票到队伍消失(还有人在接受检票),若开5个检票口,要30分钟,开6个检票口,要20分钟。如果要在10分钟消失,要开多少个检票口?

2、画展9点开门,但早有人来排队入场,从第一个观众来到时起,若每分钟来的观众一样多,如果开3个入场口,9点9分就不再有人排队;如果开5个入场口,9点5分就没有人排队。求第一个观众到达的时间。

3、由于天气逐渐变冷,牧场上的草每天匀速减少。经过计算,牧场上的草可供20头牛吃5天,或者供16头牛吃6天,那么这片牧场上的草可供11头牛吃几天?

4、由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定的速度在减少。如果牧场上的草可供20头牛吃5天,或者供15头牛吃6天,那么可供多少头牛吃10天?

三、拓展提升

1. 自动扶梯以均匀的速度由上往下行驶,小明和小红要从扶梯上楼,小明每分钟走20梯级,小红每分钟走14梯级,结果小明4分钟到达楼上,小红用5分钟到达楼上,求扶梯共有多

- 24 -

智合教育……暑期蓝天行动

少级?

2. 两只蜗牛由于耐不住阳光的照射,从井顶走向井底,白天往下走,一只蜗牛一个白天能走20分米,另一只只能走15分米;黑夜里往下滑,两只蜗牛下滑速度相同,结果一只蜗牛5昼夜到达井底,另一只却恰好用了6昼夜。问井深是多少?

3. 有三块草地,面积分别是5公顷,15公顷和24公顷。草地上的草一样厚而且长得一样快。第一块草地可供10头牛吃30天;第二块草地可供28头牛吃45天。那么第三块草地可供多少头牛吃80天?

4. 12头牛28天可以吃完10公亩牧场上全部牧草,21头牛63天可以吃完30公亩牧场上全部牧草。多少头牛126天可以吃完72公亩牧场上全部牧草(每公亩牧场上原有草量相等,且每公亩牧场上每天生长草量相等)?

(八) 工程问题

顾名思义,工程问题指的是与工程建造有关的数学问题。其实,这类题目的

内容已不仅仅是工程方面的问题,也括行路、水管注水等许多内容。 在分析解答工程问题时,一般常用的数量关系式是: 工作量=工作效率×工作时间, 工作时间=工作量÷工作效率,

工作效率=工作量÷工作时间。

工作量指的是工作的多少,它可以是全部工作量,一般用数1表示,也可

工作效率指的是干工作的快慢,其意义是单位时间里所干的工作量。单位时间的选取,根据题目需要,可以是天,也可以是时、分、秒等。

工作效率的单位是一个复合单位,表示成“工作量/天”,或“工作量/时”

等。但在不引起误会的情况下,一般不写工作效率的单位。

一、例题与方法指导

例1. 单独干某项工程,甲队需100天完成,乙队需150天完成。甲、乙两队合干50天后,剩下的工程乙队干还需多少天? 思路导航:

以全部工程量为单位1。甲队单独干需100天,甲的工作效

- 25 -

智合教育……暑期蓝天行动

例2. 某项工程,甲单独做需36天完成,乙单独做需45天完成。如果开工时甲、乙两队合做,中途甲队退出转做新的工程,那么乙队又做了18天才完成任务。问:甲队干了多少天? 思路导航:

将题目的条件倒过来想,变为“乙队先干18天,后面的工作甲、乙两队合干需多少天?”这样一来,问题就简单多了。

答:甲队干了12天。

例3. 单独完成某工程,甲队需10天,乙队需15天,丙队需20天。开始三个队一起干,因工作需要甲队中途撤走了,结果一共用了6天完成这一工程。问:甲队实际工作了几天? 思路导航:

乙、丙两队自始至终工作了6天,去掉乙、丙两队6天的工作量,剩下的是甲队干的,所以甲队实际工作了

例4. 一批零件,张师傅独做20时完成,王师傅独做30时完成。如果两人同时做,那么完成任务时张师傅比王师傅多做60个零件。这批零件共有多少个?

思路导航:

这道题可以分三步。首先求出两人合作完成需要的时间,

二、巩固训练

1. 一水池装有一个放水管和一个排水管,单开放水管5时可将空池灌满,单开排水管7时可将满池水排完。如果一开始是空池,打开放水管1时后又打开排水管,那么再过多长时间池内将积有半池水?

- 26 -

智合教育……暑期蓝天行动

2. 甲、乙二人同时从两地出发,相向而行。走完全程甲需60分钟,乙需40分钟。出发后5分钟,甲因忘带东西而返回出发点,取东西又耽误了5分钟。甲再出发后多长时间两人相遇?

3. 某工程甲单独干10天完成,乙单独干15天完成,他们合干多少天才可完成工程的一半?

4. 某工程甲队单独做需48天,乙队单独做需36天。甲队先干了6天后转交给乙队干,后来甲队重新回来与乙队一起干了10天,将工程做完。求乙队在中间单独工作的天数。

三、能力提升

1. 一条水渠,甲、乙两队合挖需30天完工。现在合挖12天后,剩下的乙队单独又挖了24天挖完。这条水渠由甲队单独挖需多少天?

2. 修一段公路,甲队独做要用40天,乙队独做要用24天。现在两队同时从两端开工,结果在距中点750米处相遇。这段公路长多少米?

3. 蓄水池有甲、乙两个进水管,单开甲管需18时注满,单开乙管需24时注满。如果要求12时注满水池,那么甲、乙两管至少要合开多长时间?

4. 两列火车从甲、乙两地相向而行,慢车从甲地到乙地需8时,比快车从

40千米。求甲、乙两地的距离。

- 27 -

智合教育……暑期蓝天行动

(九) 植树问题

只要我们稍加留意,都会看到在马路两旁一般都种有树木。细心观察,这些树木的间距一般都是等距离种植的。路长、间距、棵数之间存在着确定的关系,我们把这种关系叫做“植树问题”。而植树问题,一般又可分为封闭型的和不封闭型的(开放型的)。

封闭型的和不封闭型的植树问题,区别在于间隔数(段数)与棵数的关系:

1、不封闭型的(多为直线上),一般情况为两端植树,如下图所示,其路长、间距、棵数的关系是:

但如果只在一端植树,如右图所示,这时路长、间距、棵数的关系就是:

如果两端都不植树,那么棵数比一端植树还要再少一棵,其路长、间距、棵数的关系就是:

2、封闭型的情况(多为圆周形),如下图所示,那么:

植树问题的三要素:

总路线长、间距(棵距)长、棵数.

只要知道这三个要素中任意两个要素,就可以求出第三个. 植树问题的分类:

⑴直线型的植树问题 ⑵封闭型植树问题 ⑶特殊类型的植树问题

一、例题与方法指导

- 28 -

智合教育……暑期蓝天行动

例1 有一条公路长1000米,在公路的一侧每隔5米栽一棵垂柳,可种植垂柳多少棵? 思路导航:

每隔5米栽一棵垂柳,即以两棵垂柳之间的距离5米为一段。公路的全长1000米,分成5米一段,那么里包含有1000÷5=200段。由于公路的两端都要求种树,所以要种植的棵数比分成的段数多1,所以,可种植垂柳200+1=201棵。

例2 某一淡水湖的周长1350米,在湖边每隔9米种柳树一株,在两株柳树中间种植2株夹枝桃,可栽柳树多少株?可栽夹枝桃多少株?两株夹枝桃之间相距多少米? 思路导航:

在圆周上植树时,由于可栽的株数等于分成的段数,所以,可栽柳树=1350÷9=150株;由于两株柳树之间等距离地栽株夹枝桃,而间隔数(段数)为150,所以栽夹枝桃的株数=2×150=300株;每隔9米种柳树一株,在两株夹枝桃之间等距地栽2株夹枝桃,这就变成两端都不植树的情形,即2株等距离栽在9米的直线上,不含两端,所以,每两株之间的距离=9÷(2+1)=3(米)。

例3 一条街上,一旁每隔8米有一个广告牌,从头到尾有16个广告牌,现在要进行调整,变成每12米有一个广告牌。那么除了两端的广告牌外,中间还有几个牌不需要移动?

思路导航: 16个广告牌,每相邻的两个广告牌的间隔为8米,则共有16-1=15 个间隔,这条街的总长度为8×15=120(米);现在要调整为每12米一个广告牌,那么不移动的牌离端点的距离一定既是8的倍数,同时也是12的倍数;8×3=12×2=24,也就是说,每24米及其倍数处的广告牌可以不需要移动;120÷24=5,即段数为5个,但要扣除两端的2个,所以,中间不需要移动的有5-1=4个。

事实上,所谓植树问题只是我们对这一种类型问题的总称,并不单指植树问题。例如,与之类似的还有爬楼(梯)问题、队列问题、敲钟问题、锯木头问题的等。所以,植树问题又称上楼梯问题。

二、巩固训练

1 某人要到一座高层楼的第8层办事,不巧停电,电梯停开。如果他从1层走到4层需要48秒,请问以同样的速度走到八层,还需要多少秒?

2 光华路小学三年级学生有125人参加运动会入场式,他们每5人一行,前后每行间隔为2米,主席台长42米,他们以每分钟45米的速度通过主席台需要多少分钟?

- 29 -

智合教育……暑期蓝天行动

3 下图是五个大小相同的铁环连在一起的图形,它的长度是多少?十个这样的铁环连在一起有多长?

4 一个木工把一根长24米的木条锯成了3米长的小段,每锯断一次要用5分钟,共需多少分钟?

三、能力提升

1. 一个街心花园如下图所示,它由四个大小相等的等边三角形组成。已知从每个小三角形的顶点开始,到下一个顶点均匀栽有9棵花。问大三角形边上栽有多少棵花?整个花园中共栽多少棵花?

2. 时钟4点敲4下,用12秒敲完。那么6点钟敲6下,几秒钟敲完? 3. 铁路旁每隔50米有一根电线杆,某旅客为了计算火车速度,测量出从经过第1根电线杆起到经过第37根电线杆止共用了2分。火车的速度是多少?

(十) 有趣的树阵图

把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图.数阵是一种由幻方演变而来的数字图.数阵图的种类繁多,这里只向大家介绍三种数阵图,即封闭型数阵图、辐射型数阵图和复合型数阵图.为了让同学们学会解数阵图的分析思考方法,我们举例说明.

一、例题与方法指导

- 30 -

智合教育……暑期蓝天行动

例1. 在右图的九个方格中填入不大于12且互不相同的九个自然数(其中已填好一个数),使得任一行、任一列及两条对角线上的三个数之和都等于21。

思路导航:

由上一讲例4知中间方格中的数为7。再设右下角的数为x,然后根据任一行、任一列及每条对角线上的三个数之和都等于21,如下图所示填上各数(含x)。

因为九个数都不大于12,由16-x≤12知4≤x,由x+2≤12知x≤10,即4≤x≤10。考虑到5,7,9已填好,所以x只能取4,6,8或10。经验证,当x=6或8时,九个数中均有两个数相同,不合题意;当x=4或10时可得两个解(见下图)。这两个解实际上一样,只是方向不同而已。

例2. 将九个数填入下图的空格中,使得每行、每列、每条对角线上的三个数之和都相等,则一定有

证明:

思路导航:

设中心数为d。由上讲例4知每行、每列、每条对角线上的三个数之和都等于3d。由此计算出第一行中间的数为2d——b,右下角的数为2d-c(见下图)。

根据第一行和第三列都可以求出上图中★处的数由此得到

- 31 -

智合教育……暑期蓝天行动

3d-c-(2d-b)=3d-a-(2d-c), 3d-c-2d+b=3d-a-2d+c, d——c+b=d——a+c,

2c=a+b, a+b c=2。

值得注意的是,这个结论对于a和b并没有什么限制,可以是自然数,也可以是分数、小数;可以相同,也可以不同。

例3. 在下页右上图的空格中填入七个自然数,使得每一行、每一列及每一条对角线上的三个数之和都等于90。

思路导航:

由上一讲例4知,中心数为90÷3=30;由本讲例2知,右上角的数为(23+57)÷2=40(见左下图)。其它数依次可填(见右下图)。

例4. 在右图的每个空格中填入个自然数,使得每一行、每一列及每条对角线上的三个数之和都相等。

思路导航:

由例2知,右下角的数为

(8+10)÷2=9;由上一讲例4知,中心数为(5+9)÷2=7(见左下图),且每行、每列、每条对角线上的三数之和都等于7×3=21。由此可得如图的填法。

- 32 -

智合教育……暑期蓝天行动

二、巩固训练

1. 将1~6分别填在图中,使每条边上的三个○内的数的和相等.

2. 把1~8个数分别填入○中,使每条边上三个数的和相等.

3. 把1~9个数分别填入○中,使每条边上四个数的和相等.

4. 把1~10填入图中,使五条边上三个○内的数的和相等.

5. 将1~8个数分别填入图中,使每个圆圈上五个数和分别为20,21,22.

(十一) 有趣的树阵图练习

- 33 -

智合教育……暑期蓝天行动

1. 把1~7填入下图中,使每条线段上三个○内的数的和相等.

2. 把1~16填入下图中,使每条边上4个数的和相等,两个八边形上8个数的和也相等.

3. 把4~9填入下图中,使每条线上三个数的和相等,都是18.

4. 把1~8这8个数填入下图,使每边上的加、减、乘、除成立. - = + ÷

× =

5. 把0~9填入10个小三角形中,使每4个小三角形组成的大三角形的和相等.

6. 把1~11填入图中,使每条线上三个数的和相等.

= =

- 34 - 智合教育……暑期蓝天行动

7. 把1~8,填入图中,使每条线及正方形四个顶点上的数的和相等.

8. 把1~9,填入下图中,使每条线段三个数和及四个顶点的和也相等.

9. 把17,23,25,31,46,53,58,66,72,88,94,100十二个数填入下图,使任意三个相邻的数相加的和除以7的余数相等.

(十二) 周期性问题

在日常生活中,有一些现象按照一定的规律不断重复出现。如:人调查十二生肖:鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪;一年有春夏秋冬四个季节;一个星期有七天等。像这样日常生活中常碰到的有一定周期的问题,我们称为简单周期问题。这类问题一般要利用余数的知识来解决。

在研究这些简单周期问题时,我们首先要仔细审题,判断其不断重复出现的规律,也就是找出循环的固定数,如果正好有个整数周期,结果为周期里的最后一个;如果不是从第一个开始循环,利用除法算式求出余数,最后根据余数

- 35 -

智合教育……暑期蓝天行动

的大小得出正确的结果。

一、例题与方法指导

例1. 某年的二月份有五个星期日,这年六月一日是星期_____.

思路导航: 因为7?4=28,由某年二月份有五个星期日,所以这年二月份应是29天,且2月1日与2月29日均为星期日,3月1日是星期一,所以从这年3月1日起到这年6月1日共经过了

31+30+31+1=93(天).

因为93?7=13…2,所以这年6月1日是星期二.

例2. 1989年12月5日是星期二,那么再过十年的12月5日是星期_____. 思路导航:

依题意知,这十年中1992年、1996年都是闰年,因此,这十年之中共有 365?10+2=3652(天)

因为(3652+1)?7=521…6,所以再过十年的12月5日是星期日.

[注]上述两题(题1—题2)都是推断若干天、若干月或若干年后某一天为星期几,解答这类问题主要依据每周为七天循环的规律,运用周期性解答.在计算天数时,要根据“四年一闰,整百不闰,四百年才又一闰”的规定,即公历年份不是整百数时,只要是4的倍数就是闰年,公历年数为整百数时,必须是400的倍数才是闰年.

例3. 按下面摆法摆80个三角形,有_____个白色的. ……

思路导航: 从图中可以看出,三角形按“二黑二白一黑一白”的规律重复排列,也就是这一排列的周期为6,并且每一周期有3个白色三角形.

因为80?6=13…2,而第十四期中前两个三角形都是黑色的,所以共有白色三角形13?3=39(个).

例4. 节日的校园内挂起了一盏盏小电灯,小明看出每两个白灯之间有红、黄、绿各一盏彩灯.也就是说,从第一盏白灯起,每一盏白灯后面都紧接着有3盏彩灯,小明想第73盏灯是_____灯.

思路导航: 依题意知,电灯的安装排列如下:

白,红,黄,绿,白,红,黄,绿,白,……这一排列是按“白,红,黄,绿”交替循环出现的,也就是这一排列的周期为4.

由73?4=18…1,可知第73盏灯是白灯.

例5. 时针现在表示的时间是14时正,那么分针旋转1991周后,时针表示的时间是_____.

思路导航: 分针旋转一周为1小时,旋转1991周为1991小时.一天24小时,1991?24=82…23,1991小时共82天又23小时.现在是14时正,经过82天仍

- 36 -

智合教育……暑期蓝天行动

然是14时正,再过23小时,正好是13时.

[注]在圆面上,沿着圆周把1到12的整数等距排成一个圈,再加上一根长针和一根短针,就组成了我们天天见到的钟面.钟面虽然是那么的简单平常,但在钟面上却包含着十分有趣的数学问题,周期现象就是其中的一个重要方面.

二、巩固训练

1. 把自然数1,2,3,4,5……如表依次排列成5列,那么数“1992”在_____列.

第一列 第二列 第三列 第四列 第五列 1 10 … 2. 把分数

?992517?4567?与0.3?.这两个循环小数在小数点后第_____位,3. 循环小数0.12 9 11 18 … … 3 8 12 17 … … 4 7 13 16 … … 5 6 14 15 … … 4化成小数后,小数点第110位上的数字是_____. 7首次同时出现在该位中的数字都是7.

4. 一串数: 1,9,9,1,4,1, 4,1,9,9,1,4,1,4,1,9,9,1,4, ……共有1991个数.

(1)其中共有_____个1,_____个9_____个4; (2)这些数字的总和是_____.

10. 7?7?7?……?7所得积末位数是_____.

50个

- 37 -

智合教育……暑期蓝天行动

三、拓展提升

1. 紧接着1989后面一串数字,写下的每个数字都是它前面两个数字的乘积的个位数.例如8?9=72,在9后面写2,9?2=18,在2后面写8,……得到一串数字:

1 9 8 9 2 8 6……

这串数字从1开始往右数,第1989个数字是什么?

2. 1991个1990相乘所得的积与1990个1991相乘所得的积,再相加的和末两位数是多少?

3. 设n=2?2?2?……?2,那么n的末两位数字是多少?

1991个

4.在一根长100厘米的木棍上,自左至右每隔6厘米染一个红点,同时自右至左每隔5厘米也染一个红点,然后沿红点处将木棍逐段锯开,那么长度是1厘米的短木棍有多少根?

(十三) 棋盘中的数学

所谓棋盘,常见的有中国象棋棋盘(下图(1)),围棋盘(下图(2)), 还 有国际象棋棋盘(下图(3)).以这些棋盘为背景而提出的问题统称为棋盘问 题.这里面与数学推理、计算相关的棋盘问题,就叫做棋盘中的数学问题.解 决棋盘中的数学问题所使用的数学知识,统称棋盘中的数学.

- 38 -

智合教育……暑期蓝天行动

今天,我们就简单介绍关于棋盘中的覆盖问题。

用某种形状的卡片,按一定要求将棋盘覆盖住,就是棋盘的覆盖问题。实际上,这里并不要求一定是某种棋盘,只要是有关覆盖若干行、若干列的方格网的问题,就是棋盘的覆盖问题。

棋盘的覆盖问题可以分为两类:一是能不能覆盖的问题,二是有多少种不同的覆盖方法问题。

一、例题与方法指导

例1. 要不重叠地刚好覆盖住一个正方形,最少要用多少个下图所示的图形?

思路导航: 因为图形由3个小方格构成,所以要拼成的正方形内所含的小方格数应是3的倍数,从而正方形的边长应是3的倍数。经试验,不可能拼成边长为3的正方形。所以拼成的正方形的边长最少是6(见下图),需要用题目所示的图形 36÷3= 12(个)。

- 39 -

智合教育……暑期蓝天行动

思路导航: 在五年级学习“奇偶性”时已经讲过类似问题。左上图共有34个小方格,17个1×2的卡片也有34个小方格,好象能覆盖住。我们将左上图黑白相间染色,得到右上图。细心观察会发现,右上图中黑格有16个,白格有18个,而1×2的卡片每次只能盖住一个黑格与一个白格,所以17个1×2的卡片应当盖住黑、白格各17个,不可能盖住左上图。

例3. 下图的七种图形都是由4个相同的小方格组成的。现在要用这些图形拼成一个4×7的长方形(可以重复使用某些图形),那么,最多可以用上几种不同的图形?

思路导航: 先从简单的情形开始考虑。显然,只用1种图形是可以的,例如用7个(7);用2种图形也没问题,例如用1个(7),6个(1)。经试验,用6种图形也可以拼成4×7的长方形(见下图)。

能否将7种图形都用上呢?7个图形共有4×7=28(个)小方格,从小方格的数量看,如果每种图形用1个,那么有可能拼成4×7的长方形。但事实上却拼不成。为了说明,我们将4×7的长方形黑、白相间染色(见右图),图中黑、白格各有14个。在7种图形中,除第(2)种外,每种图形都覆盖黑、白格各2个,共覆盖黑、白格各12个,还剩下黑、白格各2个。第(2)种图形只能覆盖3个黑格1个白格或3个白格1个黑格,因此不可能覆盖住另6种图形覆盖后剩下的2个黑格2个白格。

综上所述,要拼成 4×7的长方形,最多能用上 6种图形。

- 40 -

智合教育……暑期蓝天行动

例4. 用1×1,2×2,3×3的小正方形拼成一个11×11的大正方形,最少要用1×1的正方形多少个?

思路导航: 用3个2×2正方形和2个3×3正方形可以拼成1个5×6的长方形(见左下图)。用4个5×6的长方形和1 个 1×1的正方形可以拼成 1个11×11的大正形(见右下图)。

上面说明用1个1×1的正方形和若干2×2,3×3的正方形可以拼成 11×11的大正方形。那么,不用1×1的正方形,只用2×2,3×3的正方形可以拼成11×11的正方形吗?

将11×11的方格网每隔两行染黑一行(见下页右上图)。将2×2或3×3的正方形沿格线放置在任何位置,都将覆盖住偶数个白格,所以无论放置多少个2×2或3×3的正方形,覆盖住的白格数量总是偶数个。但是,右图中的白格有11×7=77(个),是奇数,矛盾。由此得到,不用1×1的正方形不可能拼成11×11的正方形。

综上所述,要拼成11×11的正方形,至少要用1个1×1的小正方形。

二、巩固训练

1. 用七个1×2的小长方形覆盖下图,共有多少种不同的覆盖方法?

2. 有许多边长为1厘米、2厘米、3厘米的正方形硬纸片。用这些硬纸片拼成一个长5厘米、宽3厘米的长方形的纸板,共有多少种不同的拼法?(通过旋转及翻转能相互得到的拼法认为是相同的拼法)

- 41 -

智合教育……暑期蓝天行动

3. 有若干个边长为1、边长为2、边长为3的小正方形,从中选出一些拼成一个边长为4的大正方形,共有多少种不同拼法?(只要选择的各种小正方形的数目相同就算相同的拼法)

4. 能不能用9个1×4的长方形卡片拼成一个6×6的正方形?

三、巩固训练

在不重叠的情形下,不能再在正方形中多放一个这样的卡片?(要求卡片的边缘与格线重合)

4.小明有8张连在一起的电影票(如右图),他自己要留下4张连在一起的票,其余的送给别人。他留下的四张票可以有多少种不同情况?

- 42 -

本文来源:https://www.bwwdw.com/article/h09r.html

Top