9、梯形与重心

更新时间:2024-01-02 19:15:02 阅读量: 教育文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

梯形与重心

一、 知识讲解

知识点一:梯形:一组对边平行,另一组对边不平行的四边形叫梯形。 知识点二:等腰梯形:两腰相等的梯形叫等腰梯形。

知识点三:直角梯形:有一个角是直角的梯形叫直角梯形。 知识点四:等腰梯形的性质

1.等腰梯形同一个底上的两个角相等。 2.等腰梯形的对角线相等。

知识点五:等腰梯形的判定

1.梯形的定义。

2.同一底上两个角相等的梯形是等腰梯形。 知识点六:梯形的分类

知识点七:线段、三角形、平行四边形的重心

1、线段的中点是线段的重心;三角形三条中线相交于一点,这个交点叫做三角形的重心;平行四边形对角线的交点是平行四边形的重心。

2、三角形重心的性质:三角形的重心与顶点的距离等于它与对边中点的距离的2倍。

二、 例题与变式

类型一:梯形中的辅助线

1、已知:如图,在梯形ABCD中,AD//BC,AB=DC=AD=2,BC=4。 求∠B的度数及AC的长。

【变式1】(平移对角线)已知梯形ABCD的面积是32,两底与高的和为16,如果其中一条对角线与两底

1

垂直,则另一条对角线长为___________________

【变式2】(过顶点作高)已知AB=BC,AB∥CD,∠D=90°,AE⊥BC.求证:CD=CE.

【变式3】(延长两腰)如图,在梯形中点。求证:

中,

【变式4】(过一腰中点作底边平行线——构造中位线)已知梯形ABCD中,AD∥BC,∠ABC的平分线过CD的中点E. 求证:AD+BC=AB.

【变式5】如图,E是梯形ABCD中腰DC上的中点,

2

类型二:不添加辅助线(多数与全等、面积、梯形中位线有关系)

2、已知:如图,四边形ABCD为矩形,四边形ABDE为等腰梯形,

求证:

【变式1】如图,已知:在梯形ABCD中,,AC、BD相交于点O.

求证:

.

【变式2】如图,已知:AD是的平分线,

,,.

(1)求证:四边形ADCE是等腰梯形. (2)若的周长为

,求四边形ADCE的周长.

3

三、 巩固练习

1.下面命题中错误的命题是( )。

(A)等腰梯形同一底上的两个底角相等 (B)等腰梯形的对角线相等

(C)有两个底角相等的梯形是等腰梯形 (D)对角线相等的梯形是等腰梯形 2.等腰梯形的上底与高相等,下底是上底的3倍,则下底角的度数为( )。 (A)30° (B)45° (C)60° (D)不能确定

3.直角梯形的中位线长为a,一腰长为b,这腰和底所成的角为30,则它的面积是( )。

(A)ab (B)ab (C)ab (D)ab。

4.顺次连结等腰梯形两底的中点和两条对角线的中点所组成的四边形一定是( )。 (A)菱形 (B)矩形 (C)正方形 (D)任意四边形

2

5.一个梯形中位线的长是高的2倍,面积是18cm,则这梯形的高是( )。 (A)6

cm (B)6cm (C)3

cm (D)3cm

6. 直角梯形的一条对角线把梯形分成两个三角形,其中有一个是边长为8的等边三角形,梯形中位线长是( )

(A)4 (B)4

(C)6 (D)8

7. 一个梯形的四边长分别为12,6,6,6,则这个梯形的面积是( )。 (A)54

(B)27 (C)54 (D)27

8.下列关于物体重心的说法,不正确的是( ) (A)重心一定在物体上 (B)重心可以不再物体上

(C)均匀且形状规则的物体的重心是几何中心 (D)人的重心随着人的姿势的改变而改变

9.已知:如图,在梯形ABCD中,AD∥BC,AB=CD,E是底边BC的中点,连接AE、DE. 求证:△ADE是等腰三角形.

4

10.如图,在梯形ABCD中,AD∥BC,AB=DC=AD,∠ADC=120°. 求证:(1)BD⊥DC; (2)若AB=4,求梯形ABCD的面积.

11.已知:如图,在梯形ABCD中,AD∥BC,∠B=45°,∠BAC=105°,AD=CD=4.求BC的长.

12..已知:如图,梯形ABCD中,AD∥BC,AB=DC,∠BAD、∠CDA的平分线AE、DF分别交直线BC于点E、F.求证: CE=BF.

作业

一、选择题

1.两个全等的不等边三角形,按不同方法拼成四边形,其中可以拼成平行四边形的个数有( ) A.1 B.2 C.3 D.4 2.下列说法中,正确的是( )

A.等腰梯形的对角线互相垂直 B.菱形的对角线相等

5

本文来源:https://www.bwwdw.com/article/gyxx.html

Top