第一章习题解答
更新时间:2024-06-26 19:09:02 阅读量: 综合文库 文档下载
- 第一章那一袭素裙是什么书推荐度:
- 相关推荐
第一章 质点运动学
1 -1 质点作曲线运动,在时刻t 质点的位矢为r,速度为v ,速率为v,t 至(t +Δt)时间内的位移为Δr, 路程为Δs, 位矢大小的变化量为Δr ( 或称Δ|r|),平均速度为v,平均速率为v.
(1) 根据上述情况,则必有( ) (A) |Δr|= Δs = Δr
(B) |Δr|≠ Δs ≠ Δr,当Δt→0 时有|dr|= ds ≠ dr (C) |Δr|≠ Δr ≠ Δs,当Δt→0 时有|dr|= dr ≠ ds (D) |Δr|≠ Δs ≠ Δr,当Δt→0 时有|dr|= dr = ds (2) 根据上述情况,则必有( )
(A) |v|= v,|v|= v (B) |v|≠v,|v|≠ v (C) |v|= v,|v|≠ v (D) |v|≠v,|v|= v
分析与解 (1) 质点在t 至(t +Δt)时间内沿曲线从P 点运动到P′点,各量关系如图所示, 其中路程Δs =PP′, 位移大小|Δr|=PP′,而Δr =|r|-|r|表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当Δt→0 时,点P′无限趋近P点,则有|dr|=ds,但却不等于dr.故选(B).
(2) 由于|Δr |≠Δs,故
ΔrΔs,即|v|≠v. ?ΔtΔt但由于|dr|=ds,故
drds?,即|v|=v.由此可见,应选(C). dtdt1 -2 一运动质点在某瞬时位于位矢r(x,y)的端点处,对其速度的大小有四种意见,即
drdrds?dx??dy?(1); (2); (3); (4)?????.
dtdtdt?dt??dt?下述判断正确的是( )
(A) 只有(1)(2)正确 (B) 只有(2)正确 (C) 只有(2)(3)正确 (D) 只有(3)(4)正确 分析与解
22dr表示质点到坐标原点的距离随时间的变化率,在极坐标dt系中叫径向速率.通常用符号vr表示,这是速度矢量在位矢方向上的一个分量;
drds表示速度矢量;在自然坐标系中速度大小可用公式v?计算,在
dtdt22?dx??dy?直角坐标系中则可由公式v??????求解.故选(D).
?dt??dt?1 -3 质点作曲线运动,r 表示位置矢量, v表示速度,a表示加速度,s 表示路程, at表示切向加速度.对下列表达式,即
(1)d v /dt =a;(2)dr/dt =v;(3)ds/dt =v;(4)d v /dt|=at. 下述判断正确的是( )
(A) 只有(1)、(4)是对的 (B) 只有(2)、(4)是对的 (C) 只有(2)是对的 (D) 只有(3)是对的
dv表示切向加速度at,它表示速度大小随时间的变化率,是dtdr加速度矢量沿速度方向的一个分量,起改变速度大小的作用;在极坐标系
dtds中表示径向速率vr(如题1 -2 所述);在自然坐标系中表示质点的速率v;
dt分析与解 而
dv表示加速度的大小而不是切向加速度at.因此只有(3) 式表达是正确dt1 -4 一个质点在做圆周运动时,则有( )
的.故选(D).
(A) 切向加速度一定改变,法向加速度也改变 (B) 切向加速度可能不变,法向加速度一定改变 (C) 切向加速度可能不变,法向加速度不变 (D) 切向加速度一定改变,法向加速度不变
分析与解 加速度的切向分量at起改变速度大小的作用,而法向分量an起改变速度方向的作用.质点作圆周运动时,由于速度方向不断改变,相应法向加速度的方向也在不断改变,因而法向加速度是一定改变的.至于at是否改变,则要视质点的速率情况而定.质点作匀速率圆周运动时, at恒为零;质点作匀变速率圆周运动时, at为一不为零的恒量,当at改变时,质点则作一般的变速率圆周运动.由此可见,应选(B).
*1 -5 如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动.设该人以匀速率v0 收绳,绳不伸长且湖水静止,小船的速率为v,则小船作( )
(A) 匀加速运动,v?v0 cosθ(B) 匀减速运动,v?v0cosθ (C) 变加速运动,v?v0 cosθ(D) 变减速运动,v?v0cosθ (E) 匀速直线运动,v?v0
分析与解 本题关键是先求得小船速度表达式,进而判断运动性质.为此建立如图所示坐标系,设定滑轮距水面高度为h,t 时刻定滑轮距小船的绳
长为l,则小船的运动方程为x?l2?h2,其中绳长l 随时间t 而变化.小船
dldxdt,式中dl表示绳长l 随时间的变化率,其大小即为v0,速度v??dtdtl2?h2l代入整理后为v?v0l2?h2/l?v0,方向沿x 轴负向.由速度表达式,可cosθ判断小船作变加速运动.故选(C).
讨论 有人会将绳子速率v0按x、y 两个方向分解,则小船速度
v?v0cosθ,这样做对吗?
1 -6 已知质点沿x 轴作直线运动,其运动方程为x?2?6t?2t,式中x 的单位为m,t 的单位为 s.求:
(1) 质点在运动开始后4.0 s内的位移的大小; (2) 质点在该时间内所通过的路程;
(3) t=4 s时质点的速度和加速度.
分析 位移和路程是两个完全不同的概念.只有当质点作直线运动且运动方向不改变时,位移的大小才会与路程相等.质点在t 时间内的位移Δx 的大小可直接由运动方程得到:Δx?xt?x0,而在求路程时,就必须注意到质点在运动过程中可能改变运动方向,此时,位移的大小和路程就不同了.为此,需根据
23dx?0来确定其运动方向改变的时刻tp ,求出0~tp 和tp~t 内的位移dt大小Δx1 、Δx2 ,则t 时间内的路程s??x1??x2,如图所示,至于t =4.0 s
dxd2x时质点速度和加速度可用和2两式计算.
dtdt解 (1) 质点在4.0 s内位移的大小
Δx?x4?x0??32m dx (2) 由 ?0
dt得知质点的换向时刻为
tp?2s (t=0不合题意)
则
Δx1?x2?x0?8.0m
Δx2?x4?x2??40m
所以,质点在4.0 s时间间隔内的路程为
s?Δx1?Δx2?48m
(3) t=4.0 s时
v?dx??48m?s?1
dtt?4.0sd2xa?2??36m.s?2
dtt?4.0s1 -7 一质点沿x 轴方向作直线运动,其速度与时间的关系如图(a)所示.设t=0 时,x=0.试根据已知的v-t 图,画出a-t 图以及x -t 图.
1 -11 一质点P 沿半径R =3.0 m的圆周作匀速率运动,运动一周所需时间为20.0s,设t =0 时,质点位于O 点.按(a)图中所示Oxy 坐标系,求(1) 质点P 在任意时刻的位矢;(2)5s时的速度和加速度.
分析 该题属于运动学的第一类问题,即已知运动方程r =r(t)求质点运动的一切信息(如位置矢量、位移、速度、加速度).在确定运动方程时,若取以点(0,3)为原点的O′x′y′坐标系,并采用参数方程x′=x′(t)和y′=y′(t)来表示圆周运动是比较方便的.然后,运用坐标变换x =x0 +x′和y =y0 +y′,将所得参数方程转换至Oxy 坐标系中,即得Oxy 坐标系中质点P 在任意时刻的位矢.采用对运动方程求导的方法可得速度和加速度.
解 (1) 如图(B)所示,在O′x′y′坐标系中,因θ?程为
2πt,则质点P 的参数方Tx??Rsin坐标变换后,在Oxy 坐标系中有
2π2πt, y???Rcost TTx?x??Rsin则质点P 的位矢方程为
2π2πt, y?y??y0??Rcost?R TT2π2π??ti???Rcost?R?jTT??r?Rsin?3sin(0.1πt)i?3[1?cos(0.1πt)]j
(2) 5s时的速度和加速度分别为
v?dr2π2π2π2π?Rcosti?Rsintj?(0.3πm?s?1)jdtTTTT
d2r2π2π2π2πa?2??R()2sinti?R()2costj?(?0.03π2m?s?2)idtTTTT1 -12 地面上垂直竖立一高20.0 m 的旗杆,已知正午时分太阳在旗杆的正上方,求在下午2∶00 时,杆顶在地面上的影子的速度的大小.在何时刻杆影伸展至20.0 m?
分析 为求杆顶在地面上影子速度的大小,必须建立影长与时间的函数关系,即影子端点的位矢方程.根据几何关系,影长可通过太阳光线对地转动的角速度求得.由于运动的相对性,太阳光线对地转动的角速度也就是地球自转的角速度.这样,影子端点的位矢方程和速度均可求得.
解 设太阳光线对地转动的角速度为ω,从正午时分开始计时,则杆的影长为s=htgωt,下午2∶00 时,杆顶在地面上影子的速度大小为
v?dshω??1.94?10?3m?s?1 2dtcosωt1sπarctan??3?60?60s ωh4ω当杆长等于影长时,即s =h,则
t?即为下午3∶00 时.
1 -13 质点沿直线运动,加速度a=4 -t2 ,式中a的单位为m·s-2 ,t的单位
为s.如果当t =3s时,x=9 m,v =2 m·s-1 ,求质点的运动方程.
分析 本题属于运动学第二类问题,即已知加速度求速度和运动方程,必须在给定条件下用积分方法解决.由a?dvdx和v?可得dv?adt和dtdt如a=a(t)或v =v(t),则可两边直接积分.如果a 或v不是时间t 的dx?vdt.
显函数,则应经过诸如分离变量或变量代换等数学操作后再做积分.
解 由分析知,应有
vt?
由
v0dv??adt
0得 v?4t?t?v0 (1)
133?dx??vdt
x002xt得 x?2t?14t?v0t?x0 (2) 12将t=3s时,x=9 m,v=2 m·s-1代入(1) (2)得v0=-1 m·s-1,x0=0.75 m.于是可得质点运动方程为
x?2t2?14t?0.75 121 -14 一石子从空中由静止下落,由于空气阻力,石子并非作自由落体运动,现测得其加速度a=A -Bv,式中A、B 为正恒量,求石子下落的速度和运动方程.
分析 本题亦属于运动学第二类问题,与上题不同之处在于加速度是速度v的函数,因此,需将式dv =a(v)dt 分离变量为
dv?dt后再两边积分. a(v)解 选取石子下落方向为y 轴正向,下落起点为坐标原点. (1) 由题意知 a?用分离变量法把式(1)改写为
dv?A?Bv (1) dtdv?dt (2)
A?Bv将式(2)两边积分并考虑初始条件,有
?vv0tdvdv??dt
0A?Bv得石子速度 v?由此可知当,t→∞时,v?(2) 再由v?A(1?e?Bt) BA为一常量,通常称为极限速度或收尾速度. BdyA?(1?e?Bt)并考虑初始条件有 dtBytA?Bt?0dy??0B(1?e)dt
得石子运动方程
y?AAt?2(e?Bt?1) BB1 -15 一质点具有恒定加速度a =6i +4j,式中a的单位为m·s-2 .在t=0时,其速度为零,位置矢量r0 =10 mi.求:(1) 在任意时刻的速度和位置矢量;(2) 质点在Oxy 平面上的轨迹方程,并画出轨迹的示意图.
分析 与上两题不同处在于质点作平面曲线运动,根据叠加原理,求解时
需根据加速度的两个分量ax 和ay分别积分,从而得到运动方程r的两个分量式x(t)和y(t).由于本题中质点加速度为恒矢量,故两次积分后所得运动方程为固定形式,即x?x0?v0xt?121axt和y?y0?v0yt?ayt2,两个分运动均22为匀变速直线运动.读者不妨自己验证一下.
解 由加速度定义式,根据初始条件t0 =0时v0 =0,积分可得
vtt?dv??adt??(6i?4j)dt
000v?6ti?4tj
又由v?dr及初始条件t=0 时,r0=(10 m)i,积分可得 dt?dr??vdt??(6ti?4tj)dt
r000rttr?(10?3t2)i?2t2j
由上述结果可得质点运动方程的分量式,即
x =10+3t2 y =2t2
消去参数t,可得运动的轨迹方程
3y =2x -20 m
这是一个直线方程.直线斜率k?dy2?tanα?,α=33°41′.轨迹如dx3图所示.
1 -16 一质点在半径为R 的圆周上以恒定的速率运动,质点由位置A 运动到位置B,OA 和OB 所对的圆心角为Δθ.(1) 试证位置A 和B 之间的平均加速度为a?2(1?cosΔθ)v2/(RΔθ);(2) 当Δθ分别等于90°、30°、10°
和1°时,平均加速度各为多少? 并对结果加以讨论.
分析 瞬时加速度和平均加速度的物理含义不同,它们分别表示为
a?dvΔv和a?.在匀速率圆周运动中,它们的大小分别为dtΔtΔvv2an?,a? ,式中|Δv|可由图(B)中的几何关系得到,而Δt 可由转
ΔtR过的角度Δθ 求出.
由计算结果能清楚地看到两者之间的关系,即瞬时加速度是平均加速度在Δt→0 时的极限值.
解 (1) 由图(b)可看到Δv =v2 -v1 ,故
2Δv?v12?v2?2v1v2cosΔθ
?v2(1?cosΔθ)
而
Δt?所以
ΔsRΔθ ?vvΔvv2 a??2(1?cosΔθ)ΔtRΔθ (2) 将Δθ=90°,30°,10°,1°分别代入上式, 得
v2v2a1?0.9003,a2?0.9886
RRv2v2,a4?1.000 a3?0.9987RR以上结果表明,当Δθ→0 时,匀速率圆周运动的平均加速度趋近于一极
v2限值,该值即为法向加速度.
R1 -17 质点在Oxy 平面内运动,其运动方程为r=2.0ti +(19.0 -2.0t2 )j,式中r 的单位为m,t的单位为s.求:(1)质点的轨迹方程;(2) 在t1=1.0s 到t2 =2.0s 时间内的平均速度;(3) t1 =1.0s时的速度及切向和法向加速度;(4) t =1.0s 时质点所在处轨道的曲率半径ρ.
分析 根据运动方程可直接写出其分量式x =x(t)和y =y(t),从中消去参数t,即得质点的轨迹方程.平均速度是反映质点在一段时间内位置的变化
Δr,它与时间间隔Δt 的大小有关,当Δt→0 时,平均速度的极限即Δtdr瞬时速度v?.切向和法向加速度是指在自然坐标下的分矢量at 和an ,
dtdvt前者只反映质点在切线方向速度大小的变化率,即at?e,后者只反映质
dt率,即v?点速度方向的变化,它可由总加速度a 和at 得到.在求得t1 时刻质点的速度
v2和法向加速度的大小后,可由公式an?求ρ.
ρ解 (1) 由参数方程
x =2.0t, y =19.0-2.0t2
消去t 得质点的轨迹方程:
y =19.0 -0.50x2
(2) 在t1 =1.00s 到t2 =2.0s时间内的平均速度
v?Δrr2?r1??2.0i?6.0j Δtt2?t1(3) 质点在任意时刻的速度和加速度分别为
v(t)?vxi?vyj?dxdyi?j?2.0i?4.0tj dtdtd2xd2ya(t)?2i?2j??4.0m?s?2j
dtdt则t1 =1.00s时的速度
v(t)|t =1s=2.0i -4.0j
切向和法向加速度分别为
att?1s?dvd2?2et?(vx?v2)e?3.58m?set ytdtdtan?a2?at2en?1.79m?s?2en
(4) t =1.0s质点的速度大小为
2?1v?vx?v2y?4.47m?s
v2?11.17m 则ρ?an1 -18 飞机以100 m·s-1 的速度沿水平直线飞行,在离地面高为100 m时,驾驶员要把物品空投到前方某一地面目标处,问:(1) 此时目标在飞机正下方位置的前面多远? (2) 投放物品时,驾驶员看目标的视线和水平线成何角度?(3) 物品投出2.0s后,它的法向加速度和切向加速度各为多少?
分析 物品空投后作平抛运动.忽略空气阻力的条件下,由运动独立性原理知,物品在空中沿水平方向作匀速直线运动,在竖直方向作自由落体运动.到达地面目标时,两方向上运动时间是相同的.因此,分别列出其运动方程,运用时间相等的条件,即可求解.
此外,平抛物体在运动过程中只存在竖直向下的重力加速度.为求特定时刻t时物体的切向加速度和法向加速度,只需求出该时刻它们与重力加速度之间的夹角α或β.由图可知,在特定时刻t,物体的切向加速度和水平线之间的夹角α,可由此时刻的两速度分量vx 、vy求出,这样,也就可将重力加速度g 的切向和法向分量求得.
解 (1) 取如图所示的坐标,物品下落时在水平和竖直方向的运动方程分别为
x =vt, y =1/2 gt2
飞机水平飞行速度v=100 m·s-1 ,飞机离地面的高度y=100 m,由上述两式可得目标在飞机正下方前的距离
x?v(2) 视线和水平线的夹角为
2y?452m gθ?arctany?12.5o xgt v(3) 在任意时刻物品的速度与水平轴的夹角为
α?arctanvyvx?arctan取自然坐标,物品在抛出2s 时,重力加速度的切向分量与法向分量分别
为
gt??at?gsinα?gsin?arctan??1.88m?s?2
v??gt??an?gcosα?gcos?arctan??9.62m?s?2
v??1 -19 如图(a)所示,一小型迫击炮架设在一斜坡的底端O 处,已知斜坡
倾角为α,炮身与斜坡的夹角为β,炮弹的出口速度为v0,忽略空气阻力.求:(1)炮弹落地点P 与点O 的距离OP;(2) 欲使炮弹能垂直击中坡面.证明α和β必须满足tanβ?1并与v0 无关.
2tanα分析 这是一个斜上抛运动,看似简单,但针对题目所问,如不能灵活运用叠加原理,建立一个恰当的坐标系,将运动分解的话,求解起来并不容易.现建立如图(a)所示坐标系,则炮弹在x 和y 两个方向的分运动均为匀减速直线运动,其初速度分别为v0cosβ和v0sinβ,其加速度分别为gsinα和gcosα.在此坐标系中炮弹落地时,应有y =0,则x =OP.如欲使炮弹垂直击中坡面,则应满足vx =0,直接列出有关运动方程和速度方程,即可求解.由于本题中加速度g
12gt,做出2????炮弹落地时的矢量图[如图(B)所示],由图中所示几何关系也可求得OP (即
为恒矢量.故第一问也可由运动方程的矢量式计算,即r?v0t?图中的r 矢量).
(1)解1 由分析知,炮弹在图(a)所示坐标系中两个分运动方程为
12gtsinα (1) 21y?v0tsinβ?gt2cosα (2)
2x?v0tcosβ?令y =0 求得时间t 后再代入式(1)得
222v0sinβ2v0sinβOP?x?(cosαcosβ?sinαsinβ)?cos(α?β)
gcos2αgcos2α解2 做出炮弹的运动矢量图,如图(b)所示,并利用正弦定理,有
12gtrv0t ??2ππ????sinβsin??α?β?sin??α??2??2?从中消去t 后也可得到同样结果.
(2) 由分析知,如炮弹垂直击中坡面应满足y =0 和vx =0,则
vx?v0cosβ?gtsinα?0 (3)
由(2)(3)两式消去t 后得
tanβ?1 2sinα由此可知.只要角α和β满足上式,炮弹就能垂直击中坡面,而与v0 的大小无关.
讨论 如将炮弹的运动按水平和竖直两个方向分解,求解本题将会比较困难,有兴趣读者不妨自己体验一下.
1 -20 一直立的雨伞,张开后其边缘圆周的半径为R,离地面的高度为h,(1) 当伞绕伞柄以匀角速ω旋转时,求证水滴沿边缘飞出后落在地面上半径
2为r?R1?2hω/g的圆周上;(2) 读者能否由此定性构想一种草坪上或
农田灌溉用的旋转式洒水器的方案?
分析 选定伞边缘O 处的雨滴为研究对象,当伞以角速度ω旋转时,雨滴将以速度v 沿切线方向飞出,并作平抛运动.建立如图(a)所示坐标系,列出雨滴的运动方程并考虑图中所示几何关系,即可求证.由此可以想像如果让水从一个旋转的有很多小孔的喷头中飞出,从不同小孔中飞出的水滴将会落在半径不同的圆周上,为保证均匀喷洒对喷头上小孔的分布还要给予精心的考虑.
解 (1) 如图(a)所示坐标系中,雨滴落地的运动方程为
x?vt?Rωt (1)
y?212gt?h (2) 22R2ω2h由式(1)(2)可得 x?
g由图(a)所示几何关系得雨滴落地处圆周的半径为
r?x2?R2?R1?2h2ω g(2) 常用草坪喷水器采用如图(b)所示的球面喷头(θ0 =45°)其上有大量小孔.喷头旋转时,水滴以初速度v0 从各个小孔中喷出,并作斜上抛运动,通常喷头表面基本上与草坪处在同一水平面上.则以φ角喷射的水柱射程为
R?v0sin2 g为使喷头周围的草坪能被均匀喷洒,喷头上的小孔数不但很多,而且还不
能均匀分布,这是喷头设计中的一个关键问题.
1 -21 一足球运动员在正对球门前25.0 m 处以20.0 m·s-1 的初速率罚任意球,已知球门高为3.44 m.若要在垂直于球门的竖直平面内将足球直接踢进球门,问他应在与地面成什么角度的范围内踢出足球? (足球可视为质点)
分析 被踢出后的足球,在空中作斜抛运动,其轨迹方程可由质点在竖直平面内的运动方程得到.由于水平距离x 已知,球门高度又限定了在y 方向的范围,故只需将x、y 值代入即可求出.
解 取图示坐标系Oxy,由运动方程
1x?vtcosθ, y?vtsinθ?gt2
2消去t 得轨迹方程
y?xtanθ?g22 (1?tanθ)x22v以x =25.0 m,v =20.0 m·s-1 及3.44 m≥y≥0 代入后,可解得
71.11°≥θ1 ≥69.92° 27.92°≥θ2 ≥18.89°
如何理解上述角度的范围?在初速一定的条件下,球击中球门底线或球门上缘都将对应有两个不同的投射倾角(如图所示).如果以θ>71.11°或θ <18.89°踢出足球,都将因射程不足而不能直接射入球门;由于球门高度的限制,θ 角也并非能取71.11°与18.89°之间的任何值.当倾角取值为27.92°<θ
<69.92°时,踢出的足球将越过门缘而离去,这时球也不能射入球门.因此可取的角度范围只能是解中的结果.
1 -22 一质点沿半径为R 的圆周按规律s?v0t?12bt运动,v0 、b 都2是常量.(1) 求t 时刻质点的总加速度;(2) t 为何值时总加速度在数值上等于b?(3) 当加速度达到b 时,质点已沿圆周运行了多少圈?
分析 在自然坐标中,s 表示圆周上从某一点开始的曲线坐标.由给定的运动方程s =s(t),对时间t 求一阶、二阶导数,即是沿曲线运动的速度v 和加速度的切向分量at,而加速度的法向分量为an=v2 /R.这样,总加速度为a
=atet+anen.至于质点在t 时间内通过的路程,即为曲线坐标的改变量Δs=
st -s0.因圆周长为2πR,质点所转过的圈数自然可求得.
解 (1) 质点作圆周运动的速率为
v?ds?v0?bt dt其加速度的切向分量和法向分量分别为
d2sv2(v0?bt)2at?2??b, an??
dtRR故加速度的大小为
a?a?a?其方向与切线之间的夹角为
2n2tat2b2?(v0?bt)4
R?(v0?bt)2?anθ?arctan?arctan???
atRb??(2) 要使|a|=b,由
1R2b2?(v0?bt)4?b可得 Rvt?0
b2v0s?st?s0?
2b(3) 从t=0 开始到t=v0 /b 时,质点经过的路程为
因此质点运行的圈数为
2sv0 n??2πR4πbR1 -23 一半径为0.50 m 的飞轮在启动时的短时间内,其角速度与时间的平方成正比.在t=2.0s 时测得轮缘一点的速度值为4.0 m·s-1.求:(1) 该轮在t′=0.5s的角速度,轮缘一点的切向加速度和总加速度;(2)该点在2.0s内所转过的角度.
分析 首先应该确定角速度的函数关系ω=kt2.依据角量与线量的关系由特定时刻的速度值可得相应的角速度,从而求出式中的比例系数k,ω=ω(t)确定后,注意到运动的角量描述与线量描述的相应关系,由运动学中两类问题求解的方法(微分法和积分法),即可得到特定时刻的角加速度、切向加速度和角位移.
解 因ωR =v,由题意ω∝t2 得比例系数
ωv??2rad?s?3 22tRt2所以 ω?ω(t)?2t
k?则t′=0.5s 时的角速度、角加速度和切向加速度分别为
ω?2t?2?0.5rad?s?1
α?dω?4t??2.0rad?s?2 dtat?αR?1.0m?s?2
总加速度
a?an?at?αRet?ω2Ren a??αR?2??ω2R?2?1.01m?s?2
在2.0s内该点所转过的角度
2222θ?θ0??ωdt??2t2dt?t30?5.33rad
00331 -24 一质点在半径为0.10 m的圆周上运动,其角位置为θ?2?4t,式
中θ 的单位为rad,t 的单位为s.(1) 求在t =2.0s时质点的法向加速度和切向加速度.(2) 当切向加速度的大小恰等于总加速度大小的一半时,θ 值为多少?(3) t 为多少时,法向加速度和切向加速度的值相等?
分析 掌握角量与线量、角位移方程与位矢方程的对应关系,应用运动学求解的方法即可得到.
解 (1) 由于θ?2?4t,则角速度ω?向加速度和切向加速度的数值分别为
3dθ?12t2.在t =2 s 时,法dtant?2s?rω2?2.30m?s?2
at(2) 当at?a/2?t?2s?rdω?4.80m?s?2 dt122,即 an?at2时,有3at2?an23?24rt??r2?12t2?
24得 t?此时刻的角位置为
3123
θ?2?4t3?3.15rad
(3) 要使an?at,则有
3?24rt??r2?12t2?
24t =0.55s
1 -25 一无风的下雨天,一列火车以v1=20.0 m·s-1 的速度匀速前进,在车内的旅客看见玻璃窗外的雨滴和垂线成75°角下降.求雨滴下落的速度v2 .(设下降的雨滴作匀速运动)
分析 这是一个相对运动的问题.设雨滴为研究对象,地面为静止参考系S,火车为动参考系S′.v1 为S′相对S 的速度,v2 为雨滴相对S的速度,利用相对运动速度的关系即可解.解 以地面为参考系,火车相对地面运动的速度为v1 ,雨滴相对地面竖直下落的速度为v2 ,旅客看到雨滴下落的速度v2′为相对速度,它们之间的关系为v2?v2?v1 (如图所示),于是可得
'v2?v1?5.36m?s?1 otan751 -26 如图(a)所示,一汽车在雨中沿直线行驶,其速率为v1 ,下落雨滴的速度方向偏于竖直方向之前θ 角,速率为v2′,若车后有一长方形物体,问车速v1为多大时,此物体正好不会被雨水淋湿?
分析 这也是一个相对运动的问题.可视雨点为研究对象,地面为静参考系S,汽车为动参考系S′.如图(a)所示,要使物体不被淋湿,在车上观察雨点下落的方向(即雨点相对于汽车的运动速度v2′的方向)应满足
lα?arctan.再由相对速度的矢量关系v?2?v2?v1,即可求出所需车速
hv1.
解 由v?2?v2?v1[图(b)],有
α?arctan而要使α?arctanv1?v2sinθ
v2cosθl,则 hv1?v2sinθl?
v2cosθh?lcosθ?v1?v2??sinθ?
?h?1 -27 一人能在静水中以1.10 m·s-1 的速度划船前进.今欲横渡一宽为1.00 ×103 m、水流速度为0.55 m·s-1 的大河.(1) 他若要从出发点横渡该河而到达正对岸的一点,那么应如何确定划行方向? 到达正对岸需多少时间? (2)如果希望用最短的时间过河,应如何确定划行方向? 船到达对岸的位置在什么地方?
分析 船到达对岸所需时间是由船相对于岸的速度v 决定的.由于水流速度u的存在, v与船在静水中划行的速度v′之间有v=u +v′(如图所示).若要使船到达正对岸,则必须使v沿正对岸方向;在划速一定的条件下,若要用最短时间过河,则必须使v 有极大值.
解 (1) 由v=u +v′可知α?arcsinu,则船到达正对岸所需时间为 v?t?dd??1.05?103s vv?cosα(2) 由于v?v?cosα,在划速v′一定的条件下,只有当α=0 时, v 最大(即v=v′),此时,船过河时间t′=d /v′,船到达距正对岸为l 的下游处,且有
l?ut??ud?5.0?102m v?1 -28 一质点相对观察者O 运动, 在任意时刻t , 其位置为x =vt , y=gt2 /2,质点运动的轨迹为抛物线.若另一观察者O′以速率v 沿x 轴正向相对于O 运动.试问质点相对O′的轨迹和加速度如何?
分析 该问题涉及到运动的相对性.如何将已知质点相对于观察者O 的运动转换到相对于观察者O′的运动中去,其实质就是进行坐标变换,将系O 中一动点(x,y)变换至系O′中的点(x′,y′).由于观察者O′相对于观察者O 作匀速运动,因此,该坐标变换是线性的.
解 取Oxy 和O′x′y′分别为观察者O 和观察者O′所在的坐标系,且使Ox 和O′x′两轴平行.在t =0 时,两坐标原点重合.由坐标变换得
x′=x - v t =v t - v t =0
y′=y =1/2 gt2
d2y??g 加速度 a?ay?dt2?由此可见,动点相对于系O′是在y 方向作匀变速直线运动.动点在两坐标系中加速度相同,这也正是伽利略变换的必然结果.
正在阅读:
第一章习题解答06-26
运动控制系统习题集解(直流部分)204-20
暑期社会实践报告策划书03-23
百度文库初三化学易错题集07-22
浪漫爱情签名02-19
2012年3月份RCTE考题03-05
美味的饺子作文500字06-23
浅谈室内空气中甲醛的测定方法08-07
国内外复杂地质条件下井巷掘进与支护技术修改 - 图文12-02
TOEFL核心词汇21天突破03-08
- 多层物业服务方案
- (审判实务)习惯法与少数民族地区民间纠纷解决问题(孙 潋)
- 人教版新课标六年级下册语文全册教案
- 词语打卡
- photoshop实习报告
- 钢结构设计原理综合测试2
- 2014年期末练习题
- 高中数学中的逆向思维解题方法探讨
- 名师原创 全国通用2014-2015学年高二寒假作业 政治(一)Word版
- 北航《建筑结构检测鉴定与加固》在线作业三
- XX县卫生监督所工程建设项目可行性研究报告
- 小学四年级观察作文经典评语
- 浅谈110KV变电站电气一次设计-程泉焱(1)
- 安全员考试题库
- 国家电网公司变电运维管理规定(试行)
- 义务教育课程标准稿征求意见提纲
- 教学秘书面试技巧
- 钢结构工程施工组织设计
- 水利工程概论论文
- 09届九年级数学第四次模拟试卷
- 习题
- 解答
- 对国家职能与政府职能的理解和处理
- 医学统计学套题1
- 扰动地表及不同坡位土壤养分特征分析
- 全国数控大赛理论试题
- 七年级语文上学期第六单元综合测试5苏教版
- 高三语法总结 - 图文
- 北京市2010年节能节水减排技术推荐目录
- 东北大学15秋学期《工程力学基础》在线作业3 答案
- 《2005年湖南省普通高等学校招生体育专业考试修订方案》
- 财务科安全生产目标责任书(精)
- 2015新课标高考成语新题型专项训练
- 2015-2016第一学期初中语文科组活动记录
- 商品编码
- 王翔:非职权影响力工作坊
- 人教版四年级数学下册第六单元《小数的加法和减法》教案
- 端盖加工艺及专用夹具设计
- 安葬呼龙科
- 成都信息工程学院C语言考试题及答案
- 2018长春市中考化学试题
- Dlwoww医学发展与医德进步