配套K12上海市金山区2018届高三数学上学期期末质量监控试题

更新时间:2023-11-05 14:27:01 阅读量: 综合文库 文档下载

说明:文章内容仅供预览,部分内容可能不全。下载后的文档,内容与下面显示的完全一致。下载之前请确认下面内容是否您想要的,是否完整无缺。

K12教育资源学习用资料

上海市金山区2018届高三数学上学期期末质量监控试题

(满分:150分,完卷时间:120分钟)

(答题请写在答题纸上)

一、填空题(本大题共有12题,满分54分,第1–6题每题4分,第7–12题每题5分) 考生应在答题纸相应编号的空格内直接填写结果.

1.若全集U=R,集合A={x|x≤0或x≥2},则UA= . 2.不等式

x?1?0的解为 . x?3x?2y?13.方程组?的增广矩阵是 .

2x?3y?5?4.若复数z=2–i(i为虚数单位),则z?z?z= .

x2y2??1的两个焦点,P是椭圆上的一个动点,则|PF1|5.已知F1、F2是椭圆

259大值是_______.

PF2|的最

?x?y?1?0?6.已知x,y满足?x?y?3?0,则目标函数k=2x+y的最大值为 .

?x?2?7.从一副混合后的扑克牌(52张)中随机抽取1张,事件A为“抽得红桃K”,事件B为“抽得为黑桃”,则概率P(A∪B)= (结果用最简分数表示).

8.已知点A(2,3)、点B(–2,3),直线l过点P(–1,0),若直线l与线段AB相交,则直线l的倾斜角的取值范围是 . 9. 数列{an}的通项公式是an=2

n–1

(nN),数列{bn}的通项公式是bn=3n(nN),令集合A={a1,

**

a2,…,an,…},B={b1,b2,…,bn,…},nN*.将集合A∪B中的所有元素按从小到大

的顺序排列,构成的数列记为{cn}.则数列{cn}的前28项的和S28= .

10.向量i、j是平面直角坐标系x轴、y轴的基本单位向量,且|a–i|+|a–2j|=5,

则|a?2i|的取值范围为 .

11.某地区原有森林木材存有量为a,且每年增长率为25%,因生产建设的需要,每年年末要

砍伐的木材量为

1a,设an为第n年末后该地区森林木材存量,则an= . 10K12教育资源学习用资料

K12教育资源学习用资料 12.关于函数f(x)?xx?1,给出以下四个命题:(1)当x>0时,y=f(x)单调递减且没有最值;

(2)方程f(x)=kx+b(k≠0)一定有实数解;(3)如果方程f(x)=m(m为常数)有解,则解的个数一定是偶数;(4) y=f(x)是偶函数且有最小值.其中假命题的序号是 .

二、选择题(本大题共4小题,满分20分,每小题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.

13.若非空集合A、B、C满足A∪B=C,且B不是A的子集,则( ).

(A) “x(B) “x(C) “x(D) “xC”是“xA”的充分条件但不是必要条件 C”是“xA”的必要条件但不是充分条件 C”是“xA”的充要条件

C”既不是“xA”的充分条件也不是“xA”的必要条件

14.将如图所示的一个Rt△ABC(∠C=90°)绕斜边AB旋转一周,所得到的几何体的主视图

是下面四个图形中的( ).

C A

(A) (B) (C) (D)

B

. 第14题图

10

15.二项式(3i–x)(i为虚数单位)的展开式中第8项是( ).

777 7

(A) –135x (B)135x (C)3603i x (D)–3603i x

16.给出下列四个命题:(1)函数y=arccosx (–1≤x≤1)的反函数为y=cosx(xR);(2)函

?1?t2x??22?1?tm?m?1数y?x(mN)为奇函数;(3)参数方程?(tR)所表示的曲线是圆;(4)

?y?2t?1?t2?函数f(x)=sinx–()?2

23x11

,当x>2017时,f(x)>恒成立.其中真命题的个数为( ).22(A) 4个 (B) 3个 (C) 2个 (D) 1个

K12教育资源学习用资料

K12教育资源学习用资料

三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.

17.(本题满分14分,第1小题满分7分,第2小题满分7分)

如图,已知正方体ABCD–A1B1C1D1的棱长为2,E,F分别是BB1、CD的中点.

(1) 求三棱锥F–AA1E的体积;

(2) 求异面直线EF与AB所成角的大小(结果用反三角函数值表示).

18.(本题满分14分,第1小题满分6分,第2小题满分8分)

已知函数f(x)=3sin2x+cos2x–1 (x.

(1) 写出函数f(x)的最小正周期以及单调递增区间;

(2) 在△ABC中,角A,B,C所对的边分别为a,b,c,若f(B)=0,BA?BC?求b的值.

19.(本题满分14分,第1小题满分6分,第2小题满分8分)

设P(x, y)为函数f(x)=2xx?a(xD,D为定义域)图像上的一个动点,O为坐标原点,|OP|为点O与点P两点间的距离.

(1) 若a=3,D=[3,4],求|OP|的最大值与最小值;

(2) 若D=[1,2],是否存在实数a,使得|OP|的最小值不小于2?若存在,请求出a的取值范围;若不存在,则说明理由. K12教育资源学习用资料

3,且a+c=4,2K12教育资源学习用资料

20.(本题满分16分,第1小题满分4分,第2小题满分5分,第3小题满分7分)

给出定理:在圆锥曲线中, AB是抛物线:y=2px (p>0)的一条弦,C是AB的中点,过点C且平行于x轴的直线与抛物线的交点为D,若A、B两点纵坐标之差的绝对值|yA?yB|=a 2

a3(a>0),则△ADB的面积 S△ADB=.试运用上述定理求解以下各题:

16p(1) 若p=2,AB所在直线的方程为y=2x–4,C是AB的中点,过C且平行于x轴的直线与抛物线的交点为D,求S△ADB;

(2) 已知AB是抛物线:y=2px (p>0)的一条弦,C是AB的中点,过点C且平行于x轴的直线与抛物线的交点为D,E、F分别为AD和BD的中点,过E、F且平行于x轴的直线与抛物线:y=2px (p>0)分别交于点M、N,若A、B两点纵坐标之差的绝对值|yA?yB|=a (a>0),

2

2

求S△AMD和S△BND;

(3) 请你在上述问题的启发下,设计一种方法求抛物线:y=2px (p>0)与弦AB围成的“弓形”的面积,并求出相应面积.

21.(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分)

若数列{an}中存在三项,按一定次序排列构成等比数列,则称{an}为“等比源数列”. (1) 已知数列{an}中,a1=2,an+1=2an–1.求数列{an}的通项公式;

(2) 在(1)的结论下,试判断数列{an}是否为“等比源数列”,并证明你的结论; (3) 已知数列{an}为等差数列,且a1≠0,an 参考答案

(满分:150分,完卷时间:120分钟)

一、填空题(本大题共有12题,满分54分,第1–6题每题4分,第7–12题每题5分)

2

n*

),求证:{an}为“等比源数列”.

K12教育资源学习用资料

K12教育资源学习用资料

1.A={x|0

?2?352?6?5,3?;11. an?()na?a;12.(1)、(3) ,].;9.820;10.?43545?5?二、选择题(本大题共4小题,满分20分,每小题5分) 13.B; 14.B; 15.C; 16.D

三、解答题(本大题共有5题,满分76分)

17. 解:(1)因为△AA1E的面积为S=2,……………………………………………2分 点F到平面ABB1A1的距离即h=2,……………………………………………………4分 所以VF?AA1E=

14S?h=;………………………………………………………………7分 33(2)连结EC,可知∠EFC为异面直线EF与AB所成角,…………………………10分 在Rt△EFC中,EC=5,FC=1,所以tan∠EFC=5,…………………………13分 即∠EFC=arctan5,故异面直线EF与AB所成角的大小为arctan5.…………14分 18.解:(1)f(x)=2sin(2x+?)–1,………………………………………………………2分 6所以,f(x)的最小正周期T = ,………………………………………………………4分

??,k+],k;………………………………………6分 36??1(2) f(B)=2sin(2B+)–1=0,故sin(2B+)=,………………………………………8分

662???5?所以,2B+=2k+或2B+=2k+,kZ,

6666?因为B是三角形内角,所以B=;…………………………………………………10分

3322

而BA?BC=accosB=,所以,ac=3,又a+c=4,所以a+c=10,………………12分

2f(x)的单调递增区间是[k–

222

所以,b=a+c–2accosB=7,所以b=7.…………………………………………14分

19.解:(1) 当a=3,D=[3,4],

|OP|=x?2x(x?3)?3x?6x?3(x?1)?3,x?[3,4],……………………4分

222|OP|min?3,|OP|max?26; ………………………………………………………6分

(2) |OP|?x2?2xx?a,x?[1,2],因为|OP|的最小值不小于2,即x2+2x|x–a|≥4对于

K12教育资源学习用资料

本文来源:https://www.bwwdw.com/article/gx82.html

Top