2The Navier-Stokes and Euler Equations
更新时间:2023-05-27 02:35:01 阅读量: 实用文档 文档下载
- 2theta推荐度:
- 相关推荐
math
21
2.TheNavier–StokesandEulerEquations–FluidandGasDynamics
Fluidandgasdynamicshaveadecisiveimpactonourdailylives.Therearethe nedropletsofwaterwhichsprinkledowninourmorningshower,thewaveswhichwefaceswimmingorsur ngintheocean,theriverwhichadaptstothetopographybyformingawaterfall,theturbulentaircurrentswhichoftendisturbourtransatlantic ightinajetplane,thetsunami1whichcanwreckanentireregionofourworld,theathmospheric owscreatingtornados2andhurricanes3,thelive-giving owofbloodinourarteriesandveins4…Allthese owshaveagreatcomplexityfromthegeometrical,(bio)physicaland(bio)mechanicalviewpointsandtheirmathematicalmodelingisahighlychallengingtask.
Clearly,thedynamicsof uidsandgasesisgovernedbytheinteractionoftheiratoms/molecules,whichtheoreticallycanbemodeledmicroscopically,i.e.byindividualparticledynamics,relyingonagrandHamiltonianfunctiondependingon3Nspacecoordinatesand3Nmomentumcoordinates,whereNisthenumberofparticlesinthe uid/gas.NotethattheNewtonianensembletrajectorieslivein6Ndimensionalphasespace!FormostpracticalpurposesthisisprohibitiveanditisessentialtocarryoutthethermodynamicBoltzmann–Gradlimit,which–undercertainhypothesisontheparticleinteractions–givestheBoltzmannequationofgasdynamics(seeChapter1onkineticequations)fortheevolutionoftheeffectivemassdensityfunctionin6-dimensionalphasespace.
Undertheassumptionofasmallparticlemeanfreepath(i.e.inthecolli-siondominatedregime)afurtherapproximationispossible,leadingtotime-dependentmacroscopicequationsinpositionspaceR3,referredtoasNavier–StokesandEulersystems.Thesesystemsofnonlinearpartialdifferentialequa-tionsareabsolutelycentralinthemodelingof uidandgas ows.
Formore(precise)informationonthismodelinghierarchywereferto[3].TheNavier–Stokessystem5waswrittendowninthe19thcentury.ItisnamedaftertheFrenchengineerandphysicistClaude–LuisNavier6andtheIrishmath-ematicianandphysicistGeorgeGabrielStokes7.
1
2
3
4
5
6
7/http://www.spc.noaa.gov/faq/tornado/http://www.nhc.noaa.gov/http://iacs.ep .ch/cmcs/NewResearch/vascular.php3http://www.navier–/http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Navier.htmlhttp://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Stokes.html
math
2The
Navier–StokesandEulerEquations–FluidandGasDynamics
22
Fig.2.1.IguassuFalls,BorderofBrazil-Argentina
math
2The
Navier–StokesandEulerEquations–FluidandGasDynamics
23
math
2The
Navier–StokesandEulerEquations–FluidandGasDynamics
24
Fig.2.2.IguassuFalls,BorderofBrazil-Argentina
math
2The
Navier–StokesandEulerEquations–FluidandGasDynamics
25
math
2TheNavier–StokesandEulerEquations–FluidandGasDynamics
26
Undertheassumptionofincompressibilityofthe uidtheNavier–Stokesequations,determiningthe uidvelocityuandthe uidpressurep,read:
u+(u·grad)u+gradp=νΔu+fdivu=0
HerexdenotesthespacevariableinR2orR3dependingonwhether2or3dimensional owsaretobemodeledandt>0isthetimevariable.Thevelocity eldu=u(x,t)(vector eldonR2or,resp.,R3)isinR2orR3,resp.,andthepressurep=p(x,t)isascalarfunction.f=f(x,t)isthe(given)externalforce eld(againtwoand,resp.three-dimensional)actingonthe uidandν>0thekinematicviscosityparameter.ThefunctionsuandparethesolutionsofthePDEsystem,the uiddensityisassumedtobeconstant(say,1)hereasconsistentwiththeincompressibilityassumption.ThenonlinearNavier–Stokessystemhastobesupplementedbyaninitialconditionforthevelocity eldandbyboundaryconditionsifspatiallycon ned uid owsareconsidered(orbydecayconditionsonwholespace).Atypicalboundaryconditionistheso-calledno-slipconditionwhichreads
u=0
ontheboundaryofthe uiddomain.
Theconstraintdivu=0enforcestheincompressibilityofthe uidandservestodeterminethepressurepfromtheevolutionequationforthe uidvelocityu.
Ifν=0thenthesocalledincompressibleEuler8equations,validforverysmallviscosity ows(ideal uids),areobtained.NotethattheviscousNavier–StokesequationsformaparabolicsystemwhiletheEulerequations(inviscidcase)arehyperbolic.TheNavier–StokesandEulerequationsarebasedonNew-ton’scelebratedsecondlaw:forceequalsmasstimesacceleration.Theyareconsistentwiththebasicphysicalrequirementsofmass,momentumandenergyconservation.
TheincompressibleNavier–StokesandEulerequationsallowaninterestingsimpleinterpretation,whentheyarewrittenintermsofthe uidvorticity,de nedby
ω:=curlu.
Clearly,theadvantageofapplyingthecurloperatortothevelocityequationistheeliminationofthepressure.Inthetwo-dimensionalcase(whenvorticitycanberegardedasascalarsinceitpointsintothex3directionwhenu3iszero)weobtain
Dω=νΔω+curlf,Dt
8/~history/Mathematicians/Euler.html
math
2TheNavier–StokesandEulerEquations–FluidandGasDynamics
27
whereDg
denotesthematerialderivativeofthescalarfunctiong:
Dg=gt+u.gradg.Dt
Thus,fortwo-dimensional ows,thevorticitygetsconvectedbythevelocity eld,isdiffusedwithdiffusioncoef cientνandexternallyproduced/destroyedbythecurloftheexternalforce.Forthreedimensional owsanadditionaltermappearsinthevorticityformulationoftheNavier–Stokesequations,whichcorrespondstovorticitydistortion.
TheNavier–StokesandEulerequationshadtremendousimpactonappliedmathematicsinthe20thcentury,e.g.theyhavegivenrisetoPrandtl’s9boundarylayertheorywhichisattheoriginofmodernsingularperturbationtheory.NeverthelesstheanalyticalunderstandingoftheNavier–Stokesequationsisstillsomewhatlimited:Inthreespacedimensions,withsmooth,decaying(inthefar eld)initialdatumandforce eld,aglobal-in-timeweaksolutionisknowntoexist(Leraysolution10),howeveritisnotknownwhetherthisweaksolutionisuniqueandtheexistence/uniquenessofglobal-in-timesmoothsolutionsisalsounknownforthree-dimensional owswitharbitrarilylargesmoothinitialdataandforcing elds,decayinginthefar eld.Infact,thisispreciselythecontentofaClayInstituteMillenniumProblem11withanawardofUSD1000000!!Averydeeptheorem(see[2])provesthatpossiblesingularitysetsofweaksolutionsofthethree-dimensionalNavier–Stokesequationsare‘small’(e.g.theycannotcontainaspace-timecurve)butithasnotbeenshownthattheyareempty…
Weremarkthatthetheoryoftwodimensionalincompressible owsismuchsimpler,infactsmoothglobal2 dsolutionsexistforarbitrarilylargesmoothdataintheviscidandinviscidcase(see[6]).
Whyisitsoimportanttoknowwhethertime-globalsmoothsolutionsoftheincompressibleNavier–Stokessystemexistforallsmoothdata?Ifsmoothnessbreaksdownin nitetimethen–closetobreak-downtime–thevelocity elduofthe uidbecomesunbounded.Obviously,weconceive owsofviscousreal uidsassmoothwithalocally nitevelocity eld,sobreakdownofsmoothnessin nitetimewouldbehighlycounterintuitive.Hereournaturalconceptionoftheworldsurroundingusisatstake!
ThetheoryofmathematicalhydrologyisadirectimportantconsequenceoftheNavier–Stokesor,resp.,Eulerequations.The owofriversingeneral–andinparticularinwaterfallslikethefamousonesoftheRioIguassuontheArgentinian-Brazilianborder,oftheOranjeriverintheSouthAfricanAugra-biesNationalParkandothersshownintheFigs.2.1–2.6,areoftenmodeledbythesocalledSaint–Venantsystem,namedaftertheFrenchcivilengineer9
10
11http://www. /msc/prandtl.htmhttp://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Leray.html/millennium/Navier–Stokes_Equations/
math
2The
Navier–StokesandEulerEquations–FluidandGasDynamics
28
Fig.2.3.IguassuFalls,BorderofBrazil-Argentina
math
2The
Navier–StokesandEulerEquations–FluidandGasDynamics
29
math
2The
Navier–StokesandEulerEquations–FluidandGasDynamics
30
Fig.2.4.AugrabiesFalls,SouthAfrica
math
2TheNavier–StokesandEulerEquations–FluidandGasDynamics
31
Adh´emarJeanClaudeBarr´edeSaint–Venant12.Themainissueistoincor-poratethefreeboundaryrepresentingtheheight-over-bottomh=h(x,t)ofthewater(measuredverticallyfromthebottomoftheriver).LetZ=Z(x)betheheightofthebottomoftherivermeasuredverticallyfromacon-stant0-levelbelowthebottom(thusdescribingtheriverbottomtopogra-phy),whichinthemostsimplesettingisassumedtohaveasmallvariation.NotethatherethespacevariablexinR1orR2denotesthehorizontaldi-rection(s)undu=u(x,t)thehorizontalvelocitycomponent(s),theverticalvelocitycomponentisassumedtovanish.Thedependenceontheverticalco-ordinateentersonlythroughthefreeboundaryh.Then,undercertainassump-tions,mostnotablyincompressibility,vanishingviscosity,smallvariationoftheriverbottomtopographyandsmallwaterheighth,theSaint–Venantsystemreads:
h+div(hu)=0 g (hu)+div(hu u)+gradh2+ghgradZ=02
Heregdenotesthegravityconstant.Notethath+Zisthelocallevelofthewatersurface,measuredverticallyagainfromtheconstant0-levelbelowthebottomoftheriver.Foranalyticalandnumericalworkon(evenmoregeneral)Saint–Venantsystemswerefertothepaper[4].Spectacularsimulationsofthebreakingofadamandofriver oodingusingSaint–VenantsystemscanbefoundinBenoitPerthame’swebpage13.
Manygas owscannotgenericallybeconsideredtobeincompressible,par-ticularlyatsuf cientlylargevelocities.Thentheincompressibilityconstraintdivu=0onthevelocity eldhastobedroppedandthecompressibleEulerorNavier–Stokessystems,dependingonwhethertheviscosityissmallornot,havetobeusedtomodelthe ow.
Herewestatethesesystemsunderthesimplifyingassumptionofanisentropic ow,i.e.thepressurepisagivenfunctionofthe(nonconstant!)gasdensity:p=p(ρ),wherepis,say,anincreasingdifferentiablefunctionofρ.UnderthisconstitutiveassumptionthecompressibleNavier–Stokesequationsread:
ForacomprehensivereviewofmodernresultsonthecompressibleNavier–Stokesequationswerefertothetext[5].
ForthecompressibleEulerequations,obtainedbysettingλ=0andν=0,globallysmoothsolutionsdonotexistingeneral.Considertheone-dimensional12
13ρt+div(ρu)=0(ρu)t+div(ρu u)+gradp(ρ)=νΔu+(λ+ν)grad(divu)+ρf.Hereλisthesocalledshearviscosityandν+λisnon-negative.http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Saint–Venant.htmlhttp://www.dma.ens.fr/users/perthame/
math
2TheNavier–StokesandEulerEquations–FluidandGasDynamics
32
case,thesocalledp-system,withoutexternalforce:
ρt+(ρu)x=0 2 (ρu)t+ρu+p(ρ)x=0
Thisisanonlinearhyperbolicsystem,degenerateatthevacuumstateρ=0.ForanextensivestudyoftheRiemannproblemwereferto[7]andforthepioneeringproofofglobalweaksolutions,usingentropywavesandcompensatedcompactness,to[8].
Finally,weremarkthattheincompressibleinviscidSaint–VenantsystemofhydrologyhasthemathematicalstructureofanisotropiccompressibleEulersystemwithquadraticpressurelawin1or,resp.,2dimensions,wherethespatialground uctuationsplaytheroleofanexternalforce eld.
CommentsontheFigs.2.1–2.4AnimportantassumptioninthederivationoftheSaint–VenantsystemfromtheEuleror,resp.,Navier–Stokesequations–apartfromtheshallowwatercondition–isasmallnessassumptiononthevariationofthebottomtopography,i.e.gradZhastobesmall.Clearly,thisrestrictstheapplicabilityofthemodel,inparticularitsuseforwaterfallmodelling.Recently,anextensionoftheSaint–Venantsystemwaspresentedin[1],whicheliminatesallassumptionsonthebottomtopography.TherethecurvatureoftheriverbottomistakenintoaccountexplicitelyinthederivationfromthehydrostaticEulersystem(assumingasmall uidvelocityinorthogonaldirectiontothe uidbottom).WeremarkthatextensionsoftheSaint–Venantmodelstogranular ows(likedebrisavalanches)existintheliterature,seealso[1].
CommentsontheFigs.2.5–2.6Turbulent ows14arecharcacterizedbyseem-inglychaotic,randomchangesofvelocities,withvorticesappearingonavarietyofscales,occurringatsuf cientlylargeReynoldsnumber15.Non-turbulent owsarecalledlaminar,representedbystreamline ow,wheredifferentlayersofthe uidarenotdisturbedbyscaleinteraction.Simulationsofturbulent owsarehighlycomplicatedandexpensivesincesmallandlargescalesinthesolutionsoftheNavier–Stokesequationshavetoberesolvedcontemporarily.Varioussimpli-fyingattempts(‘turbulencemodeling’)exist,typicallybasedontime-averagingtheNavier–Stokesequationsandusing(moreorless)empiricalclosurecon-ditionsforthecorrelationsofvelocity uctuations.The owsdepictedintheFigs.2.5and2.6arehighlyturbulent,withapparentmicro-scales.
Weremarkthattheturbulentpartsofthe owsdepictedintheFigs.2.1–2.6aretwo-phase ows,duetotheairbubblesentrainedclosetothefreewater-airsurfaceinteractingwiththeturbulentwater ow.
Fig.2.5.TurbulentFlow,CascadadeAguaAzul,Chiapas,Mexico
14
15/wiki/Turbulence/formulae/ uids/calc_reynolds.cfm
math
2The
Navier–StokesandEulerEquations–FluidandGasDynamics
33
math
2The
Navier–StokesandEulerEquations–FluidandGasDynamics
34
math
2The
Navier–StokesandEulerEquations–FluidandGasDynamics
35
Fig.2.6.Turbulent
(upperpart)and
laminar(lowerpart)
owinCascadade
AguaAzul,Chiapas,
Mexico,withhighly
apparenttransition
region
math
2TheNavier–StokesandEulerEquations–FluidandGasDynamics
36
References
[1]F.Bouchut,A.Mangeney-Castelnau,B.PerthameandJ.-P.Vilotte,Anew
modelofSaintVenantandSavage–Huttertypeforgravitydrivenshallowwater ows,C.R.Acad.Sci.Paris,Ser.I336,pp.531–536,2003
[2]L.Caffarelli,R.Kohn,andL.Nirenberg,Partialregularityofsuitableweak
solutionsoftheNavier–Stokesequations,Comm.Pure&Appl.Math.35,pp.771–831,1982
[3]C.Cercignani,TheBoltzmannequationanditsApplication,Springer-Verlag,
1988
[4]J.-F.GerbeauandB.Pertame,DerivationofviscousSaint–Venantsystemfor
laminarshallowwater;numericalvalidation.INRIARR-4084
[5]P-L.Lions,MathematicalTopicsinFluidDynamics,Vol.2,Compressible
Models,OxfordSciencePublication,1998
[6]dyzhenskaya,TheMathematicalTheoryofViscousIncompressibleFlows
(2ndedition),GordonandBreach,1969
[7]J.Smoller,ShockWavesandReaction-DiffusionEquations,(secondedition),
Springer-Verlag,Vol.258,GrundlehrenSeries,1994
[8]R.DiPerna,ConvergenceoftheViscosityMethodforIsentropicGasDynamics,
Comm.Math.Phys.,Vol.91,Nr.1,1983
正在阅读:
2The Navier-Stokes and Euler Equations05-27
企业环境、物质管理流程图08-10
辽宁省公务员考试网申论备考技巧:名言警句背后的哲理之荀子篇08-14
一般土建工程施工图预算编制程序和方法07-26
小学四年级上册体育教案04-28
2022良法app竞赛题库答案大全领导干部和公务员组04-12
高代试卷03-09
2017专技天下《专业技术人员网络安全生态》练习题与答案100分05-30
苏教版七年级下册历史知识梳理01-17
测绘案例分析 - 图文09-14
- 教学能力大赛决赛获奖-教学实施报告-(完整图文版)
- 互联网+数据中心行业分析报告
- 2017上海杨浦区高三一模数学试题及答案
- 招商部差旅接待管理制度(4-25)
- 学生游玩安全注意事项
- 学生信息管理系统(文档模板供参考)
- 叉车门架有限元分析及系统设计
- 2014帮助残疾人志愿者服务情况记录
- 叶绿体中色素的提取和分离实验
- 中国食物成分表2020年最新权威完整改进版
- 推动国土资源领域生态文明建设
- 给水管道冲洗和消毒记录
- 计算机软件专业自我评价
- 高中数学必修1-5知识点归纳
- 2018-2022年中国第五代移动通信技术(5G)产业深度分析及发展前景研究报告发展趋势(目录)
- 生产车间巡查制度
- 2018版中国光热发电行业深度研究报告目录
- (通用)2019年中考数学总复习 第一章 第四节 数的开方与二次根式课件
- 2017_2018学年高中语文第二单元第4课说数课件粤教版
- 上市新药Lumateperone(卢美哌隆)合成检索总结报告
- Equations
- Stokes
- Navier
- Euler
- 2The
- 邢台市地理地质与环境
- 1000条公务员常识(绝对全)
- 太阁立志传2代的十三个历史事件一览表
- 中海地产全面研究分析与借鉴报告
- 2018-2019-保洁员个人年终总结范文-精选word文档 (3页)
- 保洁操作流程标准化(2015-4-15 9.38.33)
- 2003年材料力学试题(西南交通大学土木考研真题)
- 牵引电机悬挂方式
- 新东方老师预测作文
- This is page 1 Printer Opaque this Empirical Bayesian Spatial Prediction Using Wavelets
- 高三地理组工作总结
- 29《湖心亭看雪》练习题
- 2014-2015学年浙江省嘉兴市桐乡高级中学高二(上)期中数学试卷
- 卧式金属罐容积检定结果(内测法)测量不确定度评定
- 加强农村卫生人才队伍建设
- 氧化锆基牙预备禁忌
- 2011年JH-YL101压裂酸化队设备管理年终总结
- PACS系统的现状与发展
- 湿地芦苇对有毒重金属元素的抗性及吸收和累积
- 近期重大道路交通事故原因分析